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Abstract: Internet of Things (IoT) is promising technology that brings tremendous benefits if used 
optimally. At the same time, it has resulted in an increase in cybersecurity risks due to the lack of 
security for IoT devices. IoT botnets, for instance, have become a critical threat; however, systematic 
and comprehensive studies analyzing the importance of botnet detection methods are limited in the 
IoT environment. Thus, this study aimed to identify, assess and provide a thoroughly review of 
experimental works on the research relevant to the detection of IoT botnets. To accomplish this goal, 
a systematic literature review (SLR), an effective method, was applied for gathering and critically 
reviewing research papers. This work employed three research questions on the detection methods 
used to detect IoT botnets, the botnet phases and the different malicious activity scenarios. The au-
thors analyzed the nominated research and the key methods related to them. The detection methods 
have been classified based on the techniques used, and the authors investigated the botnet phases 
during which detection is accomplished. This research procedure was used to create a source of 
foundational knowledge of IoT botnet detection methods. As a result of this study, the authors an-
alyzed the current research gaps and suggest future research directions. 
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1. Introduction 
Recently, the Internet of Things (IoT) has become an influential area in academia and 

industry. IoT has emerged as a significant technology to provide the basis for the infra-
structure of different innovations in smart environments, such as smart homes, smart 
healthcare and smart everything. The exponential growth of IoT devices and the advances 
in technology are resulting in its adoption in a variety of applications to enhance services. 
IoT devices include electronics, software, sensors, actuators and connectivity between 
them, permitting these devices to connect, interact and exchange data. The low price of 
the IoT devices is increasing their popularity and growth. As predicted by Cisco [1], IoT 
devices could number more than 29 billion by the end of 2023. However, IoT devices are 
resource constrained—e.g., low processing power and small amounts of memory. They 
also have to be adaptable to heterogeneous environments. These restrictions are produc-
ing challenges in offering and developing security solutions for IoT devices. The lack of 
efficient security and standards for IoT devices has led vulnerabilities that cyber-criminals 
can exploit. The device restrictions further amplify emerging obstacles to the IoT ecosys-
tem. Various types of attacks are also probable owing to the vulnerabilities of IoT devices. 
One of the key attack scenarios is an attacker compromising IoT devices to use them as 
parts of an IoT botnet. Once an IoT device is infected and compromised, the attacker 
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controls the infected device and involves it in the execution of different attacks. The latter 
step comes after the completion of the process of the attacker taking control of as many 
IoT devices as possible. In this way, the attacker creates and expands his own IoT botnet. 
Creating IoT botnets is one of the main criminal activities related to IoT; they expand rap-
idly and can cause more harm than disparate malicious activities. The impacts of IoT bot-
nets could be severe. To exemplify that, the famous and huge Mirai Botnet embattled the 
Domain Name Server (DNS) provider company (Dyn) through exploiting different kinds 
of vulnerable IoT devices. Mirai Botnet used closed-circuit television cameras, routers and 
digital video recorders (DVRs) to send requests from ten million IP addresses. The attacks 
generated traffic exceeding one terabyte per second (Tbps) and brought down major In-
ternet platforms, including Twitter, the Guardian, Netflix and CNN; and consequently, 
the attack caused failure of the services and disrupted the Internet. Gartner [2] predicted 
that this attack is an example of similar attacks to come. Unsurprisingly, in light of that 
prediction, and in addition to the tremendous growth of the IoT devices, IoT botnets are 
a hot research area. 

To the best of our knowledge, no prior research has carried out a detailed systematic 
literature review (SLR) that classifies IoT botnet detection approaches. Therefore, it is dif-
ficult to define the methods and techniques used to detect IoT botnets, and to discern gaps 
in research and future directions relevant to this important topic. Our study, therefore, is 
a systematic literature review that defines, explicates, contrasts and assesses current meth-
ods used in the IoT botnet research area. Our goal was to respond to the following ques-
tions: 
• RQ1: What are the different phases of forming an IoT botnet? 
• RQ2: What types of malicious activity and which scenarios involve IoT botnets? 
• RQ3: What methods and techniques are utilized to detect IoT botnets? 

Finally, we specify the current research gaps and suggest future research directions. 
The following subsections will explain our motivation and highlight the contributions of 
this research. 

1.1. Research Motivation 
The IoT botnet threat is an issue facing Internet of Things (IoT) that demands efficient 

defense and response methods and techniques. Different approaches and technologies 
could provide enhancements in the detection of IoT botnets and improve the overall se-
curity of the IoT ecosystem. By probing the recent literature on IoT botnet detection, it 
became clear to us that there is a lack of in-depth study on solutions to IoT botnet detec-
tion, and a lack of systematization for such solutions. Thus, the research is quite undevel-
oped and has much potential.  

There are still some reviews and surveys related to IoT botnet detection. Singh et al. 
[3] thoroughly surveyed IoT botnet detection solutions that applied Domain Name Space 
detection. Their research offers a novel classification framework for botnet detection tech-
niques dependent on DNS and provides a detailed overview of each technique. Koroniotis 
et al. [4] surveyed the current methods of deep learning and forensic mechanisms for bot-
nets in IoT, and discussed their issues. Furthermore, the researchers explored the use of 
deep learning algorithms in network forensics. Prospective directions of research have 
also been highlighted. Al-Hajri et al. [5] investigated the use of machine learning in IoT 
botnet anomaly detection. The researchers considered the feasibility of using autoencoder 
algorithms for detection, and suggested future research directions for the use of machine 
learning algorithms in this area. Finally, Ali et al. [6] presented the research most closely 
related to this study. They provided a demographic review on IoT-based botnets and clas-
sified the approaches into avoidance and detection, and provided recommendations for 
investigation into avoidance approaches. 

The formation of a botnet has several phases, and accordingly, the detection tech-
niques differ based on the phases that are targeted. Each phase may express different 
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activities; thus, a detailed analysis of the detection tactics in each phase is required. How-
ever, hitherto there was no comprehensive and thorough review of IoT botnet detection 
with botnet phases taken into account. Hence, we found the need for a thorough analysis 
focusing on the phases of IoT botnets in which detection is performed and the different 
types of attacks. 

1.2. Contributions of This Research 
To guarantee providing a comprehensive and clear vision of the current research to 

outline new directions for research, this study followed the guidance referred to in the 
studies [7–10] to conduct the SLR. 

This SLR provides baseline knowledge for current IoT botnet detection techniques. It 
provides background for specialists to understand the present methods and techniques, 
and provides information for researchers who want to investigate emerging gaps or be at 
the forefront of mainline research. Concisely, the major contributions of our study are 
summarized below: 
• Conducting a systematic review and investigating the present approaches for IoT 

botnet detection. 
• Recapping the experimental attestations to the advantages and restrictions of the cur-

rent IoT botnet detection approaches. 
• Providing insights into the phases of the IoT botnet and the different types of attack 

and attack scenarios that utilize IoT botnets. 
• Recognizing the challenges and issues in the detection of IoT botnets. 
• Outlining the vital ways future studies could enhance the process of IoT botnet de-

tection. 
The remaining parts of this research paper continue in the following manner: Section 

2 offers a concise overview of Internet of Things and IoT botnets. The methodology of the 
study, the research questions, the domain and the procedure of the SLR are described in 
Section 3. Section 4 addresses the key findings of the systematic analysis, including the 
limitations of the review. Section 5 ends the study and points out directions for new stud-
ies. The arrangement of this paper is shown graphically in Figure 1. 

 
Figure 1. The SLR structure from the main topic in level 0 to the subsections in level 2. 
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2. Relevant Reviews 
In order to highlight the need for this SLR, Section 2 presents a literature review of 

IoT botnet detection methods. 

2.1. The Previous Studies on IoT botnet Detection 
This section identifies the previous studies that are relevant to the topic of this SLR. 

So far, there have been several surveys that addressed the issue of IoT botnet detection in 
different ways, as explained in Table 1. Many of these studies each focused on a specific 
kind of detection method or technique [4,5,11,12]. For instance, S. Dange et al. [11] studied 
methods based on machine learning techniques; they reviewed the various types of pos-
sible IoT attacks and evaluated the significance of each type for botnet attackers. N. Ko-
roniotis et al. in [4] reviewed the network forensics and deep learning methods that could 
be applied in IoT botnet detection, and investigated the problems and the current solu-
tions for deep learning and IoT botnet forensics mechanisms. Moreover, R. Al-Hajri et al. 
in [5] surveyed and investigated the works that used autoencoder algorithms in IoT botnet 
detection, and outlined potential research directions for the use of machine learning in 
this area. In the same manner, J. Sengupta et al. in [12] also surveyed the attacks and se-
curity challenges in industrial IoT and blockchain. They focused on solutions based on 
blockchain as they considered it promising technology for IoT botnet detection methods. 

 Other studies reviewed IoT botnet detection shallowly, without explaining the de-
tails of each method. Ali et al. [6] provided a demographic survey of IoT botnet attacks. 
Moreover, some reviews each focused on only studying one type of IoT botnet malware 
without providing a review of the relevant detection methods. Y. Ji et al. [13] studied Mirai 
Botnet’s malware comprehensively; they conducted a review evaluating and investigating 
the botnet and its IoT avoidance policies. They studied Mirai Botnet’s architecture and 
elements in detail; in addition, the authors investigated the attack methods and the impact 
factor of the botnet propagation model.  

M. Salim et al. [14] handled the detection of a certain attack type triggered by an IoT 
botnet; they reviewed the distributed denial of service (DoS) attack and defenses against 
it in the context of IoT. They identified the reasons why the attackers tended to utilize 
DDoS attacks on IoT devices, and they presented the main methods used against DDoS 
attacks for protection. Finally, M. Singh et al. [3] focused on the detection methods that 
are based on specific protocols (DNS) in IoT environments, with a detailed study of each 
technique. This work offered a novel categorization framework for DNS-based botnet de-
tection methods. The next subsection will explain the importance of the existence of a sys-
tematic review of the literature on IoT botnet detection. 

Table 1. A comparison of the related reviews. 

Authors Year 
Study 
Type Topics SLR 

IoT 
Botnet Detection Methods 

Detection 
Phases 

Malicious 
Activities 

Type 
Purpose Ref 

S. Dange 
et al. 

2020 Survey Attack on IoT ✗ ✓ 
Focus on machine 
learning detection 

techniques 
✗ ✗ 

Generic 
Review  

[11] 

Y. Ji et al. 2019 Study Mirai IoT botnet ✗ ✓ Not provided ✗ ✗ 
Mirai  

Review [13] 

N. 
Koroniotis 

et al. 
2018 Study 

Forensics and 
deep learning 

mechanisms for 
IoT Botnet 

✗ ✓ 
Network Forensics 

Method for IoT 
Botnet 

✗ ✗ 
Network 
Forensics 
Review  

[4] 
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R. Alhajri 
et al. 

2019 Survey 
IoT botnets  

detection using 
auto-encoders 

✗ ✓ 

Focus on using 
Auto-Encoder in 

detection  
techniques 

✗ ✗ 
Auto-

Encoder  
survey 

[5] 

M. Salim 
et al. 2019 Survey DDoS in IoT ✗ ✗ 

Focus on DDoS  
detection  

classification 
✗ ✗ 

DDoS  
Survey [14] 

M. Singh 
et al. 2019 Survey 

DNS based botnet 
in IoT ✗ ✓ 

Focus on DNS 
based botnet  

detection methods 
✗ ✗ 

DNS based 
botnet  
survey 

[3] 

J. 
Sengupta 

et al. 
2020 Survey Attacks on IoT ✗ ✗ 

Focus on 
blockchain based 

methods 
✗ ✗ 

IoT  
security  
issues  
survey 

[12] 

Ali et al. 2020 SLR IoT Botnet Attack ✓ ✓ 

Sketchy review of 
IoT Botnet 
Detection 

techniques 

✗ ✗ 
Demograp

hic  
review 

[6] 

This SLR 2020 SLR IoT Botnet Attack ✓ ✓ 
Review all 
detection 

techniques 
✓ ✓ 

IoT Botnet 
detection 

review 
— 

2.2. The Importance of the Existence of a Systematic Literature Review on the Detection of IoT 
Botnets 

Before carrying out this study, we came across some papers addressing IoT botnet 
detection. Although these studies deal with IoT botnet detection, none of them provides 
a systematic literature review that handles the issue comprehensively. We did encounter 
one SLR that directly related to IoT botnet detection, however. The researchers in that 
study [6] reviewed studies that utilized network forensics for IoT botnet detection, and 
summarized the use of certain datasets and evaluation metrics. They focused on provid-
ing a demographic SLR for the selected studies. 

As explained, to the best of our knowledge, this is the first systematic literature re-
view that deeply analyzes and compares studies on IoT botnet detection. It emphasizes 
studying the different detection solutions according to the phases of forming the botnet. 
It also explains the types of malicious attacks that the solutions focus on detecting. 

To the best of our knowledge, [6] did not present insights into research gaps and 
future work regarding IoT botnet detection approaches, further solidifying our motiva-
tion for creating this systematic review. Consequently, the key contribution of this SLR is 
a widespread review of the literature on botnet detection for IoT systems. Likewise, we 
desire to provide beginners with concise and beneficial content so that they might grasp 
this research. Again, no preceding reviews have categorized and investigated detection 
approaches based on the phase of the botnet. As it is an evolving field, the suggested re-
search directions have not been explored by prior studies, to our knowledge. 

None of the reviewed studies (see Table 1) refers to any of the research questions 
elaborated in Section 4. The major advances in detection methods and their challenges are 
described herein. In addition, perspectives are offered concerning the open issues and for 
recommendations of future study. This research also provides a systematic analysis of the 
literature on IoT botnet detection methods from 2016. The authors found 243 papers, 
which were narrowed down through an accurate and iterative selection process to 37 pri-
mary studies. Thanks to the trends in research identified, this survey will directly help 
academics and practitioners in developing powerful methods for the detection of botnets 
in the IoT context. 
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3. Background 
This section provides background that paves the way to the review topic; it describes 

the Internet of Things (IoT), IoT security, IoT botnets and IoT botnet detection. 

3.1. Internet of Things 
3.1.1. The Internet of Things Concept 

The IoT has matured in recent years in both complexity and functionality. It has 
evolved and become an integral part of modern society in numerous applications. Ashton 
et al. introduced the “Internet of Things” during a presentation in 1999 [4,15], describing 
the importance of providing machines that capture and use data in an automated and 
contextual manner. IoT has several definitions in the literature, owing to its many charac-
teristics, such as the wide array of technologies utilized, the multiplicity of the connected 
protocols in one infrastructure (as explained in in the next Section 3.1.2.), the ability to 
move and its polymorphic nature. All of these characteristics play instrumental roles in 
increasing the difficulty of determining a single thorough concept that best defines it the 
IoT as a whole. The Internet of Things Global Standard Initiative (IoT-GSI) from ITU de-
fined the IoT as follows: “A global infrastructure for the information society, enabling ad-
vanced services by interconnecting (physical and virtual) things based on existing and 
evolving interoperable information and communication technologies.” The IoT makes ef-
fective use of things to provide all forms of applications with services, while guaranteeing 
that security and privacy standards are met; therefore, the IoT has social and technological 
impacts. 

3.1.2. IoT Architecture 
There are different proposed IoT architectures in the literature—for example, mid-

dleware based, SOA based, six-layer and three-layer architectures [16]. In this section, for 
the purpose of addressing the basic communication, this SLR focuses on the basic three-
layer IoT architecture. The three layers are a perception layer, a network layer and an 
application layer, as follows: 
• The perception layer is a physical devices and communication layer that consists of 

sensors and actuators that aggregate, sense and process data, and then transmit the 
data to the network layer. This layer contains physical objects such as cameras, RFIDs 
and baby monitors. 

• The network and transport layer is a communication layer which transmits and 
routes the aggregated data from the perception layer to the application layer using 
different devices, such as gateways, switches, and routers. 

• The application layer is a messaging layer containing the application that interacts 
with users. E-health, smart factory and smart transport fields all utilize such applica-
tions. 
As described in Figure 2, each IoT layer uses different protocols and standards 

[17,18]. The physical devices and communication technology use standards such as WiFi, 
4G/5G and LoRaWAN. The network and transport are use different protocols, such as 
IPv6, 6LowPAN, RPL, TLS and DTLS. The application and messaging protocols include 
MQTT, CoAP, HTTP and XML. In addition, there are different protocols that are used for 
authentication and key management, such as Oauth2.0, OpenId and PKI. 
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Figure 2. The protocols and standards of IoT. 

3.2. IoT Security Issue 
To recap, the IoT ecosystem includes physical or virtual entities that connect to the 

Internet. These entities have IP addresses and the ability to interact with other objects or 
human users. The exponential growth of IoT devices and the advances in technology have 
resulted in the adoption of these devices in diverse types of applications in our lives. In 
today’s world, the IoT is an integral part of most fields. For IoT devices with limited com-
putational ability, memory, radio bandwidth and power resources, it is generally unaf-
fordable or not even possible to have them perform security tasks, particularly under 
heavy data streams because of the requirements for intensive computing and no latency. 
Most current security solutions produce heavy processing and communication loads for 
IoT devices indeed. This makes them inappropriate solutions for protecting IoT devices, 
so IoT devices are typically more susceptible to attacks than computer systems. Hence, 
there is a need to address the security issues related to IoT devices and the whole IoT 
environment. 

IoT Attacks 
In the heterogenous IoT environment, IoT attacks come in different forms. There are 

physical attacks, such as side channel attacks and sleep denial attacks. There are network 
attacks, such as routing attacks, sybil attacks and man in the middle attacks. There are 
software attacks, such as viruses, trojans and malware insertion [12]. The IoT attacks have 
increased with the number of vulnerable devices linearly, since 70% of IoT devices are 
vulnerable devices [19]. Consequently, many incidents have occurred, and they affect so-
ciety and economies. Therefore, following a high number of incidents involving IoT prod-
ucts, IoT security became a major concern. It has been said that most attacks are botnet-
based attacks in IoT environments. Again, on IoT devices, many security vulnerabilities 
still exist because most of them do not have adequate memory and computing resources 
for robust security mechanisms [19]. 

The impacts of IoT botnets could be great, and most IoT malware attempts to create 
a botnet [19,20]. For example, in October 2016, Mirai Botnet target the Domain Name 
Server (DNS) provider company (Dyn) through exploiting different kinds of vulnerable 
IoT devices, including closed circuit television cameras, routers and digital video record-
ers (DVRs). Using those devices, requests were sent from ten million IP addresses. This 
attack generated traffic exceeding 1 Tbps and brought down major Internet platforms, 
including Twitter, the Guardian, Netflix and CNN. Consequently, the attack caused dis-
ruptions in those services and disrupted the Internet overall.  

3.3. IoT Botnet 
The low price of IoT devices was the cause of increasing their popularity and growth. 

As predicted by Cisco [1], IoT devices may number more than 29 billion by the end of 
2023. However, these devices lack efficient security and standards, which leaves them 
vulnerable to being attacked and controlled by attackers. One of the most important attack 
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scenarios is IoT devices being compromised and added to a IoT botnet. Once the IoT de-
vice is infected and compromised, the attacker can control it and use it to share in the 
execution of different attacks. 

Generally, the botnet can be defined as a collection of compromised devices known 
as bots running malicious code and controlled by an administrator called the botmaster 
[21–23]. 

Typically, a botnet consists of three primary components: 
• The attacker; 
• The malicious infrastructure; 
• The bots. 

These components communicate and act differently in different botnet architectures. 
Botnets have a wide variety of malicious uses, including the distribution of email spam, 
distributed denial of service (DDoS) attacks, cracking passwords, key logging and cryp-
tocurrency mining [11,23]. However, the first botnet was designed with benign intentions. 
When the first bot known as “Eggdrop” appeared in 1993, it offered administrative assis-
tance to Internet Relay Chats (IRC) with its key functionality [4]. The malicious bot started 
appearing after that in 1998; the first was known as the “GTbot,” which was capable of 
executing scripts when prompted via its IRC channel’s command and control (C&C). 

More than a decade ago, the first IoT botnet was recognized. Then, it was followed 
by many IoT botnets that became the building blocks of the IoT botnets seen today. The 
Hydra IoT botnet, which appeared in 2008 [21,22,24,25], infected routers and had DDoS 
and spreading competences. Mirai, in 2016, was the largest IoT botnet, which infected 
millions of devices and dominated them to perform the biggest DDoS ever [22,26,27]. The 
year 2016 also witnessed the emergence of another type of botnet competing with Mirai, 
which was known as Hajime, a peer-to-peer (P2P) IoT botnet [28,29]. It did not show any 
acts of sabotage, so some believed that it had a protective role for Internet of Things de-
vices. In addition, during the year 2017 an IoT botnet called Brickerbot [29] appeared that 
aimed to permanently destroy devices through permanent denial of service (PDoS) at-
tacks. In 2018, and according to [30], a new IoT botnet appeared which scanned for vul-
nerable IoT devices and spread its malware inside the IoT environment; it offered attack 
as a service or botnet as a service for herders. In [31], the researchers investigated a poten-
tial attack in which a botnet uses IoT devices with high electrical power to control requests 
and subsequently interrupt the processes of a power grid. The researchers in [27,32] used 
IoT devices to reverse DDoS attacks, which are hard to track; they also discussed the pos-
sibilities of DDoS attacks. Finally, in 2020, Mukashi [33], a new variant of Mirai and one 
of its malware family of IoT botnets, took advantage of the CVE-2020-9054 vulnerability 
existing in Zyxel NAS devices utilizing firmware version 5.21, permitting malicious code 
to be executed on the vulnerable machines by remote attackers. 

Some of the distinguished IoT botnets found over the years are noted in Table 2. 

Table 2. IoT malware families. 

IoT  
BotNet Description 

Estimated  
Number of  
Devices [34] 

Bashlight 
(2014–2016) 

Has IRC based targeting Linux based IoT devices (BusyBox) like cameras and 
DVRs. It executes brute force with default credentials with open TelNet port. 

(120,000) 

Mirai 
(2016) 

Centralized architecture model targeting closed circuit television cameras,  
routers and Digital Video Recorders (DVRs). It uses TelNet port and predefined  

attack vectors Dictionary attack based on 62 entries. 
(145,000+) 

Brickerbot 
(2017) 

Bruteforce the TelNet password then run command to corrupt storage, delete all 
files and make the device inoperable. 

(10,000,000+) 
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Hajime 
(2016–2018) 

Same as Mirai targeting Devices through TelNet but it has Peer-to-Peer  
architecture model. Recently Hajime evolve to use different ports and different 
exploits. Until now Hajime just scan and infect vulnerable devices but does not 

launch any DDoS attack 

(300,000) 

Wirex 
(2017) 

Working on android devices and proliferate through application in Google Play (100,000+) 

Reaper 
(2018) 

Exploit the vulnerabilities of IoT devices such as routers of LinkSys, DLink and 
connected cameras. 

(1,000,000+) 

3.3.1. Botnets in IoT Networks 
Several families of malware have been released to target IoT devices and form IoT 

botnets. Some of the botnets discovered in IoT networks were Mirai, Bashlight, Wirex, 
Brickerbot Reaper and Hajime. An explanation of each of them is given in Table 2 
[34,35,25,36]. 

3.3.2. IoT Botnet Life Cycle Phases 
Many studies [21,22,27,37] have agreed that IoT botnets carry out their actions in at 

least the three main phases (see Figure 3), as described below: 
Phase 1: Scanning Phase: In order to locate a vulnerable device, a bot (or malicious 

code) implements scanning and reconnaissance. The botmaster scans for vulnerable IoT 
devices. Once it finds one, it starts to infect it through brute force or by exploiting a vul-
nerability. Once the vulnerable device is compromised, it becomes a bot and starts com-
municating with the botmaster. Mirai malware families, for example, send fingerprint 
packets to scan for pseudorandom IPv4 addresses to locate IoT devices that are attainable 
through Telnet service on port 23 or port 2323 [26]. Through abusing frail credentials using 
brute force or exploiting the known vulnerabilities of IoT devices, the bot compromises 
new victims. 

Phase 2: Propagation Phase: A suitable version of the bot is installed and executed 
based on the architecture of the vulnerable device. Oftentimes, to avoid targeting devices 
victimized by any other potential malware and acquire complete control, the bot kills the 
process bound to the related service [26] in order to delete any other previous malware 
and lock ports to itself. The malicious code recruit new bots and propagates to expand the 
IoT botnet as quickly as possible. In this phase, the bots are still awaiting commands from 
the botmaster. 

Phase 3: Attack Phase: Execution of malicious activities such as DDoS, crypto mining 
and spam. The attacker initiates the attack by sending the commands through the com-
mand and control server to all the distributed bots to trigger the attack. Consequently, the 
bots start the attack after receiving the identical commands. 
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Figure 3. Phases of an IoT botnet’s life cycle. 

During all phases and depending on the architecture of the botnet, a communication 
and control process are established. In this process, the bot interacts with the controller 
host that manages the commands to receive instructions and exchange messages. 

3.3.3. Basic Components of IoT Botnets 
Understanding the way Internet botnets work is very important in order to find new 

and effective ways to discover these bots and deal with them to limit their damages. Un-
derstanding the workings of these bots more comprehensively will help us to resist them 
and keep cyberspace clean, and thus help to ensure the security of the Internet. After the 
source code for Mirai was published, many cybercriminals cloned and adjusted the code 
and issued copies of IoT malware that aimed to create Internet of Things (IoT) botnets and 
compete in controlling the largest possible number of IoT devices [26]. Therefore, most 
IoT malware has similar working steps. In the following steps, how these IoT botnets work 
will be explained (see Figure 4). 

 
Figure 4. A flow diagram of an IoT botnet. 
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Figure 4 illustrates how IoT botnets work. It is clear from the figure that botnets work 
in several steps. They are generalized and summarized in seven steps as follows: 
• The bots search the IP address space for devices running Telnet or SSH and try to log 

in using a hard-coded IoT credential dictionary. 
• Once successful, a bot reports the IP address of the victim and related credentials to 

a report server. 
• The report server dispatches this information to the loader server. 
• The loader server simultaneously forces the device to be infected in a way dependent 

on the architecture of the victim. 
• The attacker sends a command to the command and control server specifying the 

target and the requested details to start the attack. 
• The command and control server informs the bots in preparation for an attack. 
• The bots trigger the attack against the specified target. 

It is noteworthy that malware for the Internet of Things is developing and being mod-
ified for different reasons. These reasons include having different purposes for the IoT 
botnets, and exploiting new vulnerabilities. Therefore, maintenance [27] is performed for 
such malware. Reconfiguration of such a botnet or adding new devices to it increases its 
size and makes it more powerful. These changes may make IoT botnets more sophisti-
cated and increase the difficulties in IoT botnet detection. 

3.3.4. IoT Botnet Architecture 
Conventional botnets share the same architectures as IoT botnets. They can be de-

fined as centralized botnets, decentralized (peer-to-peer) botnets and hybrid botnets. 
• Centralized botnets. The botmaster manages and tracks all bots from a unified central 

server, which decreases the latency; i.e., all bots receive instructions from and report 
to a central server (C&C server) [11,21]. The botmaster in this architecture may have 
one or more central servers to use [23]. The server uses protocols such as HTTP and 
IRC. The botmaster server may have the disadvantage of being a single point that can 
cause total failure [11,21]. One of the famous families of centralized IoT botnets is the 
Mirai family [26]. 

• Decentralized botnets. These are also called peer-to-peer (P2P) botnets. Each bot op-
erates as a client and a server; each bot is linked to at least one other bot. Only if all 
the bots are interconnected will the commands reach each bot. In this architecture, it 
is difficult to coordinate between bots, but at the same time, it is more sophisticated 
and not easy to detect because of the different communication between peers. This 
type of IoT botnet uses a peer-to-peer protocol in communication [11,21]. One of the 
well-known decentralized (P2P) IoT botnets is Hajime [38]. 

• Hybrid botnets. A hybrid botnet contains two types of bots; some of them have func-
tionality as servers and clients, and others just as clients, so it is a combination of the 
previous two types (centralized and decentralized) of architecture. There is high mes-
sage latency [21]. 

3.3.5. The IoT Botnet Boom and the Marketplace 
The number of botnets has increased in the Internet of Things drastically over time, 

and they have become a great danger due to what we referred to previously regarding 
their uses for illegal purposes. The occurrence of this boom is due to several factors, which 
we refer to in the following points: 
• Usually, it is possible to exploit Internet of Things devices because these devices use 

default authentication data. Moreover, services are exposed and easy to access. 
• IoT devices are continuously connected to the Internet of Things networks; that is, 

they are accessible all the time because of the functions they perform that do not ac-
cept halting. 

• Their market growth is accelerating considerably [37]. 
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• The security standards for these devices are very low. Few end users change the de-
fault manufactory nomenclature once deployed; therefore, it is easy to be speculated 
that often they use root:root and admin:admin. The attacker can alter default pass-
words effortlessly, blocking users from logging in and other attackers from taking 
control. 

• An attacker can easily shut down or dominate large numbers of IoT devices at once 
when these devices are improperly monitored and mismanaged. 
After the public release of IoT botnet codes, such as those of Bashlite and Mirai, more 

botnets have appeared, and attackers are hunting for new victims to exploit. Financial 
gain is a major incentive for spreading more IoT botnets. Thus, there arose the so-called 
Internet of Things bot market, in which IoT botnets are offered for a price. For example, 
many renowned cybercriminal groups have already monetized their capabilities by rent-
ing out IoT botnets with their powerful stressed services to be used by benefiters in DDoS 
attacks. This allows inexperienced attackers to conduct DDoS attacks at over 100 Gbps 
effortlessly [39]. Recently, botnets have been involved in different notable attacks, result-
ing in denial of service and regression, data exfiltration and theft, lost revenue and tar-
nished reputations for organizations. Consequently, IoT botnets have become a major is-
sue that affects the security of the Internet of Things and the whole Internet. In the next 
section, we will explain the importance of IoT botnet detection. 

3.3.6. IoT Botnet Detection 
Our lives have been dramatically changed by the digital revolution, in which the In-

ternet of Things (IoT) plays a significant role. However, the IoT’s rapid growth contributes 
to various and great cybersecurity threats. Therefore, both academia and industry have 
recently had considerable interest in detecting and preventing possible attacks on IoT net-
works. As it mentioned before, creating an IoT botnet is a major attack; usually organiza-
tions use several security controls such as intrusion detection and threat intelligence in 
order to detect and block IoT botnets. These methods may be somewhat effective, but they 
cannot detect the formation of zero-day IoT botnets that have no known signatures. This 
is the reason for both academia and industry to focusing on IoT botnet detection mecha-
nisms. The aim is normally to find the origins of an attack and reduce that traffic. Both 
industry and academia can also help to analyze how botnet structures occur in IoT sys-
tems, which should facilitate enhancing security controls for detecting recognized and the 
new botnets. The study of the distinct behaviors of IoT botnets is improving the means to 
combat them. 

4. Materials and Methods 
In this section, we explain the materials and methods that we used in this research, 

so that any researcher can follow the same steps to get the results. The remainder of the 
paper focuses on a systematic literature review (SLR) with a methodology proposed by 
[7,10]. The study in [7] proposed three major stages for SLR:—planning, conducting and 
reporting—as explained in Figure 5. 
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Figure 5. The steps of a systematic literature review. 

Stage 1. Plan the SLR in the following three steps: identify the needs of the SLR; define 
the research question(s); develop a protocol for the review. 

Stage 2. Conduct the review in three steps: select the studies; define quality assess-
ment criteria; extract and synthesize data. 

Stage 3. Report the SLR with the following three steps: specify the strategy of distri-
bution; format the report; evaluate the report. 

4.1. Planning the SLR 
In this SLR, the authors started the planning stage by identifying the need for this 

SLR and developing the review protocol as follows: 
Step 1: Identification of the need for the review. 
The main objectives of this systematic literature review were to investigate how other 

research has addressed the issue of detection IoT botnet using different methods and tech-
niques. Therefore, this SLR had the following objectives: 
1. To identify what research about IoT botnet detection has been addressed using dif-

ferent methods and techniques. 
2. To identify gaps in IoT botnet detection and suggest directions for future work. 

Step2: Specifying the research questions. 
The authors believe that identifying the research questions clearly is an important 

step of any systematic literature review, because the questions drive the whole methodol-
ogy of the SLR. Therefore, the goal of this process is to allocate research questions that 
clearly identify the research problem. The questions of the research should be focused and 
clear—not vague, nor broad, nor too specific. Therefore, before formulating the research 
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questions and to ensure the research questions were well-built, the authors used the ques-
tion formatting practice PICOC [7,10] (population, intervention, comparison, outcome, 
context). 

Consequently, the research questions and the motivations of this review were created 
as shown in Table 3. 

Table 3. Research questions and the motivations of the SLR. 

Research Questions Motivations 
RQ1: What are the different phases of forming an IoT 

botnet? M1: To determine the phases of IoT botnet 

RQ2: What types of malicious activity and which 
scenarios involve IoT botnets? 

M2: To get insight into different types and scenarios of 
attacks that use IoT botnets. 

RQ3: What methods and techniques are utilized to 
detect IoT botnets? 

M3: To identify the opportunities and trends in IoT Botnet  
detection methods and techniques. 

Step 3: Developing the review protocol. 
This step aims to reduce the possibility of potential bias during the SLR; that is, it 

avoids driving the analysis by the authors expectations. The authors defined the review 
protocol by the following: gathering background information; forming research ques-
tions; creating a search strategy for the primary studies; choosing databases; searching 
using keywords and queries; establishing selection criteria and procedures; performing 
quality assessments; utilizing a data extraction strategy; combining the extracted data and 
preparing them for presentation. The authors further refined the protocol during the SLR 
process. 

Step 4: Evaluating the Protocol of the Review. 
The objective of this evaluation process was to have experts evaluate the protocol to 

ensure its objectivity and make the needed refinements. The authors asked experts to do 
this step since the protocol is a critical element of any SLR. Figure 5 explains the steps of 
this SLR. 

4.2. Conducting the Review 
Step 1: Identification of research. 
The authors in this step identified the research by generating an iterative search strat-

egy which included performing a preliminary search and assessing the number of the 
potentially related studies. Using pilot search queries with diverse search expressions 
boosted the results for the previously selected research questions. After this, the authors 
checked the search results. Then they went to an expert in the field for consultation. The 
authors managed the large number of references by using a bibliography management 
tool, “Mendeley” [40]. As part of the search process, the authors selected the appropriate 
data sources related to the research field to ensure getting relevant articles. The data 
sources are listed in Table 4. The authors searched digital libraries to ensure good cover-
age of the literature. 

Table 4. The data sources used. 

Data Source Website 
Springer rd.springer.com 

ScienceDirect sciencedirect.com 
IEEE eXplore ieeexplore.ieee.org 

ACM DL dl.acm.org 
Willy onlinelibrary.wiley.com 

Taylor & Francis tandfonline.com 
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Step 2: Selection of primary research. 
In this step, the authors developed the search terms according to the approach in [41]. 
The authors followed the above approach by specifying three main groups of key-

words related to the research questions and the PICOC. The authors added synonyms and 
abbreviations related to each keyword and grouped them together. Group one was “In-
ternet of Things,” and it aimed to retrieve all the studies related to the Internet of Things. 
Group two was “botnet,” and it aimed to find all the studies related to botnets. Group 
three was “Detection,” and it aimed to retrieve all the studies related to detection. Our 
research focused on the intersection between the three groups. 

The authors took the advantage of the Boolean operators “AND” and “OR” when 
constructing the search terms. They used “OR” to concatenate the keywords within the 
same groups and “AND” to concatenate keywords from different groups. Finally, the fol-
lowing search terms were used for searching the data sources (Table 4) and retrieving the 
relevant publications. It is worth mentioning that the last search date by the authors was 
on 2 February 2020. 

The search phrase: ((“Internet of things” OR “IoT”) AND (“Botnet”) AND (“Detec-
tion”)). 

Subsequently, the authors adjusted the search phrase and adapted it to conform to 
each data source. We searched by title, keywords and abstract; then we limited the search 
by year of publication to 2016–2020. Many studies in the field were conducted beforehand 
[42–44], but we chose to focus on a short period. 

The articles retrieved from the search results went through a preliminary review of 
content by the authors. This was to ensure the relevance of each article to the purpose of 
this SLR. Then the authors followed the “include” and “exclude” criteria illustrated in 
Table 5. The authors eliminated duplicate versions of studies and discarded the unrelated 
articles (e.g., if they identified another subject as the main research interest), and the au-
thors then progressed to analyzing the articles that addressed the research questions. The 
initial number of total articles was 243, and after enforcing the inclusion and exclusion 
criteria, only 37 articles where chosen. Figure 6 shows a graph explaining the search re-
sults. Finally, the selected articles are shown in Table 6. 

Table 5. Inclusion and exclusion criteria for studies. 

Including Criteria Excluding Criteria 
• Methods, techniques and model for detecting botnet 

in IoT environment 
• Include Technical studies to detect IoT botnet 
• Include studies that published between (1 January 

2016 to 1 January 2020) 
• Include the studies published in English in electronic 

copy 
• Include the newest version of studies if more than one 

available 
• “IoT Botnet” or “IoT Malware” in the paper title 

• Methods, techniques and model for detecting botnet 
in general environment 

• Exclude studies that related to Detection but not re-
lated to IoT botnet 

• Exclude studies that related to IoT botnet but not re-
lated to Detection 

• Exclude survey, review and chapters studies 
• Exclude non-conference and non-journal studies 
• Exclude books, book chapter, posters, workshops and 

theses 
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Figure 6. Number of studies distributed through search sources. 

Step 3: Quality assessment. 
The goal of the quality assessment was to rate the selected articles depending on the 

quality assessment rules below. The assessment was based on relevance to research ques-
tions, research quality and the presence of recommendations for research opportunities 
and future work. The authors used a scale of 1–10 for each paper: The authors gave a score 
for each research paper for each criterion (0, 0.5, 1). The scores had the following scale: 1 
means the paper fully answered the assessment rule (AR), 0.5 means the paper partially 
answered the assessment rule and 0 means the paper did not answer the assessment rule. 
If the paper earned 5 or more, then it was used. The scoring results are shown in Table 7. 
The following are the assessment rules: 

AR1: Was the research objective set clearly? 
AR2: Has the study been referenced by another paper? 
AR3: Does the study explain a specific phase of an IoT botnet obviously? 
AR4: Does the study explain a specific malicious activity scenario? 
AR5: Was the design of the experiment reasonable? 
AR6: Was the experiment conducted on a sufficient IoT dataset? 
AR7: Was the design justification of the proposed technique/method identified? 
AR8: Was the proposed technique/method compared to others? 
AR9: Were the results of the test well evaluated? 
AR10: Was there proof that the method of interest improved the results? 
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Table 6. The studies selected after filtering. 

SID Authors Title Year 
Publish

er 
Referenc

es 

S01 
Prokofiev, Anton O., Yulia S. Smirnova, and 
Vasiliy A. Surov 

A method to detect Internet of Things botnets 2018 IEEE [45] 

S02 
McDermott, Christopher D., Farzan Majdani, 
and Andrei V. Petrovski 

Botnet detection in the internet of things using deep 
learning approaches 

2018 IEEE [46] 

S03 Vishwakarma, Ruchi, and Ankit Kumar Jain 
A Honeypot with Machine Learning based Detection 
Framework for defending IoT based botnet DDoS 
Attacks 

2019 IEEE [47] 

S04 
Tzagkarakis, Christos, Nikolaos Petroulakis, 
and Sotiris Ioannidis 

Botnet Attack Detection at the IoT Edge Based on 
Sparse Representation 

2019 IEEE [48] 

S05 
Nguyen, Huy-Trung, Quoc-Dung Ngo, and 
Van-Hoang Le 

IoT botnet detection approach based on PSI graph and 
DGCNN classifier 

2018 IEEE [49] 

S06 
Meidan, Yair, Michael Bohadana, Yael 
Mathov, Yisroel Mirsky, Asaf Shabtai, 
Dominik Breitenbacher, and Yuval Elovici 

N-baiot—Network-based detection of Iot botnet 
attacks using deep autoencoders 

2018 IEEE [50] 

S07 Nõmm, Sven, and Hayretdin Bahşi 
Unsupervised anomaly based botnet detection in IoT 
networks 

2018 IEEE [51] 

S08 Kumar, Ayush, and Teng Joon Lim 
Edima: early detection of IoT malware network activity
using machine learning techniques 

2019 IEEE [52] 

S09  Liu, Junyi, Shiyue Liu, and Sihua Zhang Detection of IoT botnet Based on Deep Learning 2019 IEEE [53] 

S10 
Bahşi, Hayretdin, Sven Nõmm, and Fabio 
Benedetto La Torre 

Dimensionality reduction for machine learning based 
IoT botnet detection 

2018 IEEE [54] 

S11 Li, Wanting, Jian Jin, and Jong-Hyouk Lee 
Analysis of botnet Domain Names for IoT 
Cybersecurity 

2019 IEEE [55] 

S12 
Nguyen, Huy-Trung, Doan-Hieu Nguyen, 
Quoc-Dung Ngo, Vu-Hai Tran, and Van-
Hoang Le 

Towards a rooted subgraph classifier for IoT botnet 
detection 

2019 ACM [56] 

S13 
Alazzam, Hadeel, Abdulsalam Alsmady, 
and Amaal Al Shorman 

Supervised detection of IoT botnet attacks 2019 ACM [57] 

S14 
Salim, Mikail Mohammed, and Jong Hyuk 
Park 

Deep Learning Based IoT Re-authentication for botnet 
Detection and Prevention 

2019 Springer [58] 

S15 
Nguyen, Huy-Trung, Quoc-Dung Ngo, and 
Van-Hoang Le 

A novel graph-based approach for IoT botnet detection 2019 Springer [59] 

S16 
Al Shorman, Amaal, Hossam Faris, and 
Ibrahim Aljarah 

Unsupervised intelligent system based on one class 
support vector machine and Grey Wolf optimization 
for IoT botnet detection 

2019 Springer [60] 

S17 Javed, Yousra, and Navid Rajabi 
Multi-Layer Perceptron Artificial Neural Network 
Based IoT botnet Traffic Classification 

2019 Springer [61] 

S18 
Koroniotis, Nickolaos, Nour Moustafa, Elena 
Sitnikova, and Jill Slay 

Towards developing network forensic mechanism for 
botnet activities in the iot based on machine learning 
techniques 

2017 Springer [62] 

S19 
Shire, Robert, Stavros Shiaeles, Keltoum 
Bendiab, Bogdan Ghita, and Nicholas 
Kolokotronis 

Malware Squid: A Novel IoT Malware Traffic Analysis 
Framework Using Convolutional Neural Network and 
Binary Visualisation 

2019 Springer [63] 

S20 
Habib, Maria, Ibrahim Aljarah, Hossam 
Faris, and Seyedali Mirjalili 

Multi-objective Particle Swarm Optimization for botnet 
Detection in Internet of Things 

2020 springer [64] 

S21 
Jung, Woosub, Hongyang Zhao, Minglong 
Sun, and Gang Zhou 

IoT botnet detection via power consumption modeling 2020 
Science 
Direct 

[65] 

S22 
Koroniotis, Nickolaos, Nour Moustafa, Elena 
Sitnikova, and Benjamin Turnbull 

Towards the development of realistic botnet dataset in 
the internet of things for network forensic analytics: 
Bot-iot dataset 

2019 
Science 
Direct 

[66] 

S23 
Nguyen, Huy-Trung, Quoc-Dung Ngo, 
Doan-Hieu Nguyen, and Van-Hoang Le 

PSI-rooted subgraph: A novel feature for IoT botnet 
detection using classifier algorithms 

2020 
Science 
Direct 

[37] 
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S24 
 Shafiq, Muhammad, Zhihong Tian, Yanbin 
Sun, Xiaojiang Du, and Mohsen Guizani 

Selection of effective machine learning algorithm and 
Bot-IoT attacks traffic identification for internet of 
things in smart city 

2020 
Science 
Direct 

[67] 

S25 

Pour, Morteza Safaei, Antonio Mangino, 
Kurt Friday, Matthias Rathbun, Elias Bou-
Harb, Farkhund Iqbal, Sagar Samtani, Jorge 
Crichigno, and Nasir Ghani 

On data-driven curation, learning, and analysis for 
inferring evolving internet-of-Things (IoT) botnets in 
the wild 

2020 
Science 
Direct 

[68] 

S26 
Karanja, Evanson Mwangi, Shedden 
Masupe, and Mandu Gasennelwe Jeffrey 

Analysis of internet of things malware using image 
texture features and machine learning techniques 

2020 
Science 
Direct 

[69] 

S27 
Spaulding, Jeffrey, Jeman Park, Joongheon 
Kim, DaeHun Nyang, and Aziz Mohaisen 

Thriving on chaos: Proactive detection of command 
and control domains in internet of things-scale botnets 
using DRIFT 

2019 Willey [70] 

S28 
Sagirlar, Gokhan, Barbara Carminati, and 
Elena Ferrari 

AutoBotCatcher: blockchain-based P2P botnet 
detection for the Internet of Things 

2018 IEEE [71] 

S29 
 Falco, Gregory, Caleb Li, Pavel Fedorov, 
Carlos Caldera, Rahul Arora, and Kelly 
Jackson 

Neuromesh: Iot security enabled by a blockchain 
powered botnet vaccine 

2019 ACM [72] 

S30 
Ozawa, Seiichi, Tao Ban, Naoki Hashimoto, 
Junji Nakazato, and Jumpei Shimamura 

A study of IoT malware activities using association 
rule learning for darknet sensor data 

2020 Springer [73] 

S31 
Hashimoto, Naoki, Seiichi Ozawa, Tao Ban, 
Junji Nakazato, and Jumpei Shimamura 

A darknet traffic analysis for IoT malwares using 
association rule learning 

2018 
Science 
Direct 

[74] 

S32 
Özçelik, Mert, Niaz Chalabianloo, and 
Gürkan Gür 

Software-defined edge defense against IoT-based 
DDoS 

2017 IEEE [75] 

S33 
Yin, Lihua, Xi Luo, Chunsheng Zhu, Liming 
Wang, Zhen Xu, and Hui Lu 

ConnSpoiler: Disrupting C&C Communication of IoT-
Based botnet through Fast Detection of Anomalous 
Domain Queries 

2019 IEEE [76] 

S34 
Sajjad, Syed Muhammad, and Muhammad 
Yousaf 

UCAM: usage, communication and access monitoring 
based detection system for IoT botnets 

2018 IEEE [77] 

S35 
Hu, Jen-Wei, Lo-Yao Yeh, Shih-Wei Liao, 
and Chu-Sing Yang 

Autonomous and malware-proof blockchain-based 
firmware update platform with efficient batch 
verification for Internet of Things devices 

2019 
Science 
Direct 

[78] 

S36 
Sun, Hao, Xiaofeng Wang, Rajkumar Buyya, 
and Jinshu Su 

CloudEyes: Cloud-based malware detection with 
reversible sketch for resource-constrained internet of 
things (IoT) devices 

2017 Willey [79] 

S37 
Giachoudis, Nikolaos, Georgios-Paraskevas 
Damiris, Georgios Theodoridis, and 
Georgios Spathoulas 

Collaborative Agent-based Detection of DDoS IoT 
botnets 

2019 IEEE [80] 

Table 7. Assessment scores for selected studies (1 = fully answered, 0.5 = partially answered and 0 = not answered). 

Study ID 
Assessment Rules 

Total 
AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9 AR10 

S01 1.0 0.5 1.0 0.5 0.5 0.5 1.0 0.0 1.0 0.0 6.0 
S02 1.0 0.5 0.5 1.0 1.0 0.5 1.0 0.5 0.5 0.5 7.0 
S03 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.0 0.0 0.0 5.0 
S04 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.5 6.5 
S05 1.0 0.5 1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 8.5 
S06 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 9.0 
S07 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.0 5.5 
S08 1.0 0.5 0.5 0.5 1.0 0.5 1.0 0.0 1.0 1.0 7.0 
S09 1.0 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 8.5 
S10 1.0 0.5 0.5 0.5 1.0 1.0 1.0 0.0 1.0 1.0 7.5 
S11 0.5 0.5 0.5 0.5 1.0 0.5 1.0 0.5 0.0 0.0 5.0 
S12 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 9.0 
S13 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.0 1.0 1.0 7.0 
S14 1.0 0.0 0.5 0.5 1.0 0.0 1.0 0.0 0.0 0.0 4.0 
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S15 0.5 0.5 1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 8.0 
S16 1.0 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 8.5 
S17 1.0 0.0 0.5 0.5 1.0 0.5 1.0 0.0 1.0 1.0 6.5 
S18 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 8.0 
S19 0.5 0.5 0.5 0.5 1.0 0.5 1.0 1.0 1.0 1.0 7.5 
S20 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.0 0.0 6.0 
S21 1.0 0.5 0.5 0.5 1.0 0.5 1.0 1.0 1.0 1.0 8.0 
S22 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 1.0 1.0 9.0 
S23 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 9.0 
S24 1.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 1.0 1.0 8.0 
S25 1.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 1.0 1.0 8.0 
S26 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 9.0 
S27 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.5 1.0 1.0 7.5 
S28 1.0 0.5 1.0 0.5 1.0 0.0 1.0 0.0 0.0 0.0 5.0 
S29 0.5 0.5 0.5 0.5 1.0 0.0 1.0 0.0 0.0 0.0 4.0 
S30 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.0 1.0 1.0 6.0 
S31 0.5 0.5 0.5 0.5 0.5 1.0 1.0 0.0 0.5 0.5 5.5 
S32 1.0 1.0 0.5 0.5 0.5 0.0 1.0 0.0 0.0 0.0 4.5 
S33 1.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 8.0 
S34 1.0 0.5 0.5 1.0 0.5 0.0 1.0 0.0 0.5 0.5 5.5 
S35 0.5 0.5 0.5 0.5 1.0 0.0 1.0 1.0 0.0 0.0 5.0 
S36 1.0 1.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 1.0 8.5 
S37 1.0 0.5 0.5 1.0 0.5 0.0 1.0 0.0 1.0 1.0 6.5 

Total 30.0 19.5 23.0 22.0 32.5 25.0 37.0 17.0 26.0 25.0 AVG = 6.9 

Step 4: Data extraction and synthesis. 
The purpose of this phase was to gather the needed data. We collected the data pro-

vided in Table 8 from each study in order to address the research questions. 

Table 8. A comparison of the methods used for the selected studies. 

Ref Publisher Entity 
Detected  

Detection Methods Dataset  Evaluation 
Measurement 

Botnet 
Phase 

Malicious 
Activities 

S01 IEEE device logistic regression model 100 botnets device 97.3% propagation IoT botnet 

S02 IEEE 
Malicious 

traffic 
unidirectional LSTM-RNN and 

Bidirectional Deep BLSTM-RNN 

Simulated using 3 
servers and 2  

cameras 
99% attack DDoS 

S03 IEEE 
Malicious 

traffic 
Machine Learning, not specified 

Collected from 
honeypot:  
ThingPot +  

simulated data 

Not mentioned, 
proposal 

Attack 
zero day 

DDoS 

S04 IEEE device 
sparsity representation, thresholding 

rule 
N-BaIoT 

better than 
single hidden 

layer 
autoencoder 

Attack IoT botnet 

S05 IEEE 
Malware 

file 
DG-CNN convolutional neural  

network 

IOTPOT +  
collected benign 

ELF  

Accuracy of 
92% and a F-
measure of 

94%. 

propagation 
IoT  

malware 

S06 IEEE device Deep Autoencoder 
N-BaIoT,9 devices 

in lab 
FPR of zero Attack IoT botnet 

S07 IEEE 
malicious 

traffic 
Support Vector Machine (SVM),  

Isolated Forest 
balanced N-BaIoT More than 90% Attack IoT botnet 
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S08 IEEE 
malicious 

traffic 
Random Forest, k-Nearest Neighbors 

(k-NN), Gaussian Naive Bayes 
Stored scanned 

patterns 

Accuracy = 
77.5%, 94, 

88.5%, F1-score 
= 0.96 

Scanning Scan Attack 

S09 IEEE 
malicious 

traffic 
convolutional neural network (CNN) N-BaIoT 

accuracy of 
99.57% 

Attack IoT botnet 

S10 IEEE 
malicious 

traffic 
Decision Tree, k-Nearest Neighbors 
(k-NN), Dimensionality Reduction 

N-BaIoT 
accuracy = 0.98, 

0.94 
Attack IoT botnet 

S11 IEEE 

C&C 
domain 
name, IP 
queries 

Adaboost,Bagging, Naive Bayes and 
k-Nearest Neighbors (kNN) 

collect the DNS 
querying log data 

KNN, Precision, 
Recall, F-

Measure, ROC 
Area  = 1 

Attack IoT botnet 

S12 ACM 
malware 

file 

Random Forest (RF), Bagging, Radial 
Basis Function Support Vector  

Machine RBF SVM, Decision Tree. 

VirusShare and 
IoTPOT, 9943 ELF 

samples 

accuracy = 97%, 
F-score = 98% 

propagation 
IoT 

malware 

S13 ACM 
malicious 

traffic 
Naive Bayes, K Nearest Neighbors 

(KNN), and Random Forest 
Subset of N-BaIoT 

99% TPR, 100% 
TNR, and near-

zero false 
alarms 

attack IoT botnet 

S14 Springer device 
Deep Learning + Software Defined 

Network (SDN) 
no implementation 

no 
implementation 

Scanning  IoT botnet 

S15 Springer 
malware 

file 
PSI Graph, graph2Vec using 

convolutional neural network (CNN) 
11,200 ELF files 

accuracy of 
98.7%, 

propagation 
IoT  

malware 

S16 Springer 
malicious 

traffic 

One Class Support vector machine 
(OCSVM),Grey Wolf Optimization 

(GWO) 
N-BaIoT 96–99% Attack IoT botnet 

S17 Springer 
malicious 

traffic  
the Multi-Layer Perceptron (MLP)  
Artificial Neural Network (ANN) 

subset for 2 devices 
of N-BaIoT dataset 

100% Attack IoT botnet 

S18 Springer 
malicious 

traffic 

Decision Tree C4.5 (DT), Association 
Rule Mining (ARM), Artificial Neural 

Network (ANN) and Naïve Bayes 
(NB) 

USNW-NB15, 
KDD99 

93% for DT Attack IoT botnet 

S19 Springer 
malicious 

traffic 
convolutional neural network (CNN) 

collected 100 pcap 
from repositories. 

96% for botnet 
and 89% for 

DDoS 
attack 

IoT  
malware 

S20 springer 
malicious 

traffic 
k-Nearest Neighbors (K-NN) 

5 datasets from N-
BaIoT 

100% Attack IoT botnet 

S21 
Science 
Direct 

malicious 
behavior 

convolutional neural network (CNN) 
collected power 

consumption data 
Accuracy = 

96.5% 
Attack IoT botnet 

S22 
Science 
Direct 

malicious 
traffic 

Support Vector Machine (SVM), Short 
Term Memory Recurrent Neural  

Network (LSTM-RNN), RNN 
BoT-IoT 

Accuracy for 
SVM = 99% 

Attack DoS/DDoS 

S23 
Science 
Direct 

malware 
file 

Random Forest, Decision Tree,  
Bagging, k-NN, SVM 

IoTPOT,  
VirusShare 

97% true  
positive rate, RF 

propagation 
IoT  

malware 

S24 
Science 
Direct 

malicious 
traffic 

Naïve Bayes, Bayes Net, C4.5 decision 
tree, Random Forest 

Bot-IoT 
acc = 99.99 for 
random tree 

Attack IoT botnet 

S25 
Science 
Direct 

device convolutional neural network (CNN) 

Collected dataset 
consisted of 34,974 

IoT and 7193  
non-IoT. 

no. of 
compormised  

device = 400.000 
scanning Scan Attack 

S26 
Science 
Direct 

malware 
file 

KNN, naïve Bayes and random forest IoTPOT 
95% accuracy 
for Random 

Forest 
propagation 

IoT  
malware 

S27 Willey 
C2 domain 

name 
nearest centroid neighborhood (NCN) 

classifier  
99% N/A Attack IoT botnet 

S28 IEEE device blockchain N/A N/A propagation IoT botnet 
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S29 ACM IP address neural network, Blockchain not mentioned not mentioned attack IoT botnet 

S30 Springer device Association rule 
collected from 

darknet 
N/A scanning Scan Attack 

S31 
Science 
Direct 

TCP SYN 
packets 

Association Rule Learning 
1,840,973,403  

packets 
not specified scanning scan attack 

S32 IEEE 
malicious 

traffic 
Software Defined Network (SDN) not specified N/A Attack DDoS 

S33 IEEE 
C2 domain 

name 
Threshold Random Walk (TRW) 94% 

DNS traffic 
generated by 19 
different botnet 

Attack IoT botnet 

S34 IEEE 
malicious 

traffic 
defined policies on SIEM 

compare Usage, 
Contact and Access 

Monitoring 
Not specified attack DDoS 

S35 
Science 
Direct 

device blockchain-based N/A N/A scanning scan 

S36 Willey 
malware 

file 
signature based anti-malware N/A 

460,000 to 
3,700,000  
signature 

propagation 
IoT  

malware 

S37 IEEE 
malicious 

traffic 
traffic profile N/A N/A Attack DDoS 

5. Analysis 
Having explained in depth the methodology for this research in the previous section, 

we can now present the analysis in this section, as per the three research questions previ-
ously identified. The research questions are addressed in Sections 5.1–5.3, respectively. 

5.1. RQ1: What Are the Different Phases of Forming an IoT Botnet? 
One of the major motivations of cybercriminals, when taking over IoT devices, is to 

use the devices as parts of botnets. As we mentioned in Section 3, an IoT botnet is a net-
work comprising infected IoT devices controlled by malicious software named a bots. 
Cyber criminals have the ability to use special software to circumvent detection and in-
trusion prevention systems. They can obtain illegal access and control IoT devices to in-
corporate them into global networks called botnets that can be controlled remotely. The 
An IoT botnet is created in a series of phases, as seen in Figure 3. In the studies we selected, 
researchers chose different numbers of the phases for forming IoT botnets. They consid-
ered the process to have three phases, four phases, five phases or seven phases. The rea-
sons for the different numbers of phases could have been the researchers wanting to put 
more emphasis on certain events and wanting to be more detailed. Phases help create 
models for protective methods. For example, in [81] the authors considered that IoT bot-
nets have seven phases: (1) Searching the (inter)network for open ports on connected de-
vices. (2) Brute force attacks on the exposed ports to obtain access to the victims. (3) Killing 
possible competitors on infected hosts. (4) Building a channel to the botmaster (command 
and control (C&C) channel). (5) Running a malicious script (and sometimes removing oth-
ers) in the RAM. (6) Spreading across the network by looking for new instances. (7) Initi-
ating attacks or executing other malicious acts. 

In article [45], the authors considered that an IoT botnet goes through five phases—
namely, initial infection, secondary infection, communication, malicious activity, upgrade 
and maintenance. Initial infection: Compromising an exposed device. Secondary infec-
tion: Downloading malware which will communicate with a botmaster. Communication: 
Connecting to the command and control server (C&C) to receive commands from the bot-
master. Malicious activity: Performing malice acts upon the directives of the botmaster 
(DDoS, scams, etc.). Upgrade and maintenance: Efficiently observing contaminated hosts 
whenever possible, adapting their behavior through downloading malicious code up-
dates. In the same context, article [57] considered IoT botnets to have four phases—
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specifically, scanning, attack, infection and violation. In the scanning phase, the botmaster 
orders the bots to scan for exposed IoT devices on the Internet that have available ports 
for Telnet services or other services. In the attack phase, the successful login credentials 
for the new IoT system (cracked via brute force attack with a list of established default 
credentials) are sent to the C&C. Infection is when the infected device is directed to trans-
fer and run the conformable payload binary. Some malware is extremely aggressive and 
will try to delete other malware found on the device. When run, the binary malware will 
be deleted and will only run in RAM to prevent detection. In the violation phase, the IoT 
botnet will be used for mounting a DDoS attack, i.e., via HTTP, UDP floods, etc. Other 
research, such as [82], in the same manner considered the IoT botnet’s lifecycle to be com-
posed of four phases: formation, control and compromise, attack, and post attack. The first 
phase of the bot is the discovery of a vulnerability in the target system. The vulnerability 
is abused in the next step and the host is compromised. The host then provides access to 
targeted device to the botmaster. Then, the bot will install some binary or executable files 
that are malicious, and in this process, the target machine will turn into an infected device, 
i.e., a bot. The final phase is a protective phase, during which the bot uses a technique to 
counter detection or removal. In addition, the authors in [51] divided the IoT botnet into 
four phases—formation, command and control, attack and post attack. Likewise, in the 
article [83], the authors divided IoT botnets into four different phases as follows: selection 
of the target; device fingerprinting and infection; detection of avoidance and persistence; 
and activation. In a different manner, [84] considered that IoT botnets have three phases: 
host scanning, system acquisition and service attack denial. 

In summary and from the above, it can be noted that each study divided the phases 
of development for a botnet in a different way. They provided acceptable phases based 
on the objectives of the solutions proposed, which could be the discovery of the malware 
file, the discovery of suspicious activities carried out by the botnet or the discovery of the 
devices attached to the botnet. 

As seen in Figure 7, the results show that most of the selected studies, approximately 
62%, concentrated on proposing solutions for detecting the IoT botnet in the attack phase, 
which is considered a late phase in the IoT botnet’s lifecycle. Only 16% of the selected 
studies focused on proposing solutions for detection in the scanning phase, and 22% fo-
cused on the propagation phase for their solutions. Thus, fewer papers concentrated on 
detection in the early phases. Hence, it appears that there is little interest in the early 
stages. Table 9 displays the numbers of studies that focused on the various phases of IoT 
botnet development. 

 
Figure 7. Percentages of studies focusing on the different phases of IoT botnet development. 

Scanning
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propagation
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Table 9. Numbers of studies focusing on the different phases of IoT botnet development. 

Phase of Botnet Number of Studies 
Scanning 6 

Propagation 8 
Attack 23 
Sum 37 

Finally, we believe that the most appropriate for proposing a solution of detection 
the IoT botnet is detecting the IoT botnet in the early phase of the lifecycle i.e., Scanning 
and Propagation, since that the IoT botnet in these phases does not start their harm activ-
ities. 

5.2. RQ2: What Types of Malicious Activity and Which Scenarios Involve IoT Botnets? 
Regarding to the second research question in this study, which is to deliver the types 

and scenarios of attacks that using IoT botnet and have been studies by the selected stud-
ies. From this review, and after analyzing all the selected studies, it can be found out that 
they dealt with four types of attacks or malicious activities, which are IoT botnet, 
DoS/DDoS, scanning attack and analyzing IoT malwares. In this section, we will explain 
the types and scenario of attacks that investigated by the selected studies. Table 10 dis-
plays these types. 

Table 10. Number of studies found by type of malicious activity. 

Malicious Activities Number of studies 
IoT botnet 19 

IoT malware 7 
DoS/DDoS 6 

Scan 5 
Sum 37 

5.2.1. Forming an IoT Botnet 
The majority of chosen studies targeted IoT botnets by their malicious activities. As 

explained before, cybercriminals try in the propagation phase to rally as many compro-
mised devices as possible to expand their botnets. As has been stated in Section 3.3.3, IoT 
botnets are remotely managed through command and control channels to trigger different 
malicious activities, for example, DDoS attacks, sensitive data theft, phishing [85] or min-
ing of cryptocurrency. An attacker that gains access to a network and gets control, spreads 
his malware by exploiting the IoT devices. Different vulnerabilities in IoT environments 
facilitate the process of forming IoT botnets. Cyber criminals are monetizing IoT botnets 
by actually selling them to interested customers and offering them as a service. Therefore, 
in the coming years, IoT botnets will continue to be a part of the threat landscape. Accord-
ing to the studies selected in this SLR, most research focuses on solutions for detecting IoT 
botnets through detecting the malicious devices. As Figure 8 explains, 51% of the studies 
concentrated recruitment activity—19 studies, as Table 10 displays. Some of those studies 
are [45,71,73]. 
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Figure 8. Number of studies selected per malicious activity. 

5.2.2. Downloading IoT Malware 
IoT malware is malicious software designed to access, exploit and compromise an 

IoT device; it is different from other malware in that it has the ability to adapt to various 
CPU architectures, including MIPS, ARM, Intel x86 and PowerPC [56]. IoT malware has 
various essential models to finish its functions, including a scanner, an attacker and a killer 
[86]. After scanning and receiving the information of a vulnerable IoT device, the attacker 
uses a downloader server to download the bot. After that, the new bot starts its functions 
and communication with the C&C. Some of the selected studies concentrated on propos-
ing techniques for detecting whether an input executable file is malware or benign 
[49,56,69,79]. As Figure 8 explained, 19% of the studies concentrated on this type of at-
tack—nine studies, as Table 10 displays. 

5.2.3. Denial of Service (DoS/DDoS) Attacks 
The aim of a DDoS attack is to harm, collapse or close down a service or to block the 

benign users from using said service by employing many previously infected sources. An 
attacker aims to make the target inaccessible by overwhelming its resources with a large 
volume of traffic using IoT devices [87]. A large number of DDoS attack botnets are em-
ployed to start an attack, once the compromised devices are usable. If the DDoS attack is 
not discovered and avoided, the DDoS will flood the target with illegitimate requests and 
reject the requests of the authentic users [88]. DDoS is one of the types of attack that has 
been a significant challenge in the IoT environment. It comes in different types: flooding 
attacks (e.g., UDP flood or HTTP flood), amplification and IP spoofing, selective forward-
ing, hello floods, overloading, sinkholes, wormhole attacks, packet fragmentation attacks, 
exhaustive attacks and jamming attacks [89]. Figure 9 explains the DDoS attack mecha-
nism. Throughout DDoS attacks, the attacker utilizes a command mechanism to exploit 
and compromise other devices by imposing malicious code on them and creating a dis-
persed network of controlled IoT devices. As Figure 8 explains, 16% of the studies con-
centrated on this type of attack—six studies, as Table 10 displays [46,47,63,66,74,77,80]. 
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Figure 9. The mechanism of DDoS. 

5.2.4. Scanning Attacks 
In this type of attack, the cybercriminal illegally scans the IoT devices in a network 

to gather information about them prior to launching sophisticated attacks. For example, 
they send packets by bots to find out whether a specific port is open on the device and 
return the information back to the botmaster to take the advantage of this information to 
exploit this device. In the literature, some studies analyzed scanning techniques to identify 
coordinated IoT campaigns that sought open ports that could be exploited for amplifica-
tion attacks [90]. Others checked for updates and applied patches for device software to 
be proactive, as this prevents vulnerabilities from being discovered by attackers [91]. Fi-
nally, [92] proposed a solution that detects port scanning behavior. Some of the selected 
studies focused on bots scanning for vulnerable devices [52], whereas the article [74] ana-
lyzed the Dark Web to detect the scanning activities of IoT botnets. As Figure 8 explained, 
14% of studies concentrated on this type of attack—five studies, as Table 10 displays. Some 
of the selected studies that focused on this attack are [52,74,78]. 
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5.3. RQ3: What Methods and Techniques Are Utilized to Detect IoT Botnets? 
As shown in Figure 10, the revised selection of studies from 2016 to 2020 that used 

various methods to detect IoT botnets numbered, on average, 7.5 each year. In the follow-
ing section, we discuss the methods and techniques that have been used, and we summa-
rize the relevant studies for each method according to categories of methods. 

 
Figure 10. Number of publications per year. 

In the overview, we concentrate on the concept behind each approach; the dataset 
used, if any; the outcome; the deficiencies, if found; and the standing in comparison to 
other studies. For the analysis, we classified the selected studies into a few main categories 
according to the methods proposed by the studies, as shown in Table 11. It explains these 
categories and the number of selected studies per category. 

Table 11. Number of studies selected per detection method. 

 Type of Used Method Number of 
Studies References 

1 AI Supervised Learning 15 45, 48, 51, 52, 54, 55, 56, 57, 61, 62, 
64, 37, 67, 69, 70, 

2 AI Unsupervised Learning 3 60, 73, 74 

3 AI Deep Learning 11 46, 47, 49, 50, 53, 58, 59, 63, 65, 66, 
68 

4 Blockchain based 3 71, 72, 78 
5 SDN based 1 75 
6 Specification based 3 76, 77, 80 
7 Signature based 1 79 

Sum 37 - 

It is worth noting that most of the studies relied on artificial intelligence to suggest 
solutions for the problem of detecting botnets in the Internet of Things—78% of the stud-
ies. Figure 11 shows the percentage of selected studies per category. 
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Figure 11. Number of selected studies per detection method. 

In the following sections, we describe these methods and describe the relevant se-
lected studies. Figure 12 explains these methods’ categories. 

5.3.1. Methods Based on Artificial Intelligence Algorithms 
This section reviews the suggested approaches that depend on artificial intelligence 

algorithms (AI) for detecting IoT botnets. The concept behind AI and its branches, ma-
chine learning and deep learning, is providing an algorithm that can analyze information 
and recognize patterns, and thereby construct a model that could be used by the machine 
to analyze information that it has not seen before. The algorithm learns continuously and 
should be able to make reliable decisions repeatedly as systems provide more data to it 
[93]. The selected studies used different AI algorithms and different datasets, as explained 
in this section. 

AI-Based Supervised Learning 
One article [45] suggested a method for distinguishing IoT botnets at the propagation 

phase, i.e., when compromised devices (bots) that are a portion of a botnet infect other 
devices to expand the botnet. The method is based on a logistic regression model. The 
paper describes an established logistic regression model that allows the likelihood of a bot 
being run by a system initiating a connection to be calculated. A list of network protocols 
that are employed to gain illegal access to devices and get commands from a command 
and control server is also given . The model given is appropriate for the detection of bot-
nets propagated by brute force attacks exploiting the Telnet and SSH services. 

The authors in [48] suggested a method of rapid detection of IoT botnet attacks based 
on a small number of benign instances for training and a single malicious instance for 
detection. The experimental evaluation showed that regarding to F1 ratings, detection rate 
and precision, the suggested method performed better than the autoencoder. They pre-
sented a diagnostic approach for instantaneous IoT botnet attack detection with the ulti-
mate goal of minimizing the impacts of the attacks through instant quarantining of in-
fected IoT devices placed at the IoT edge. They were highly concerned with delivering an 
efficient IoT botnet attack detector that uses as little training and testing data as possible, 
because of the restricted computational resources that regulate IoT devices on the edge. 
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They believe that no preceding knowledge of untrustworthy traffic on an IoT network is 
needed in the training phase. 

 
Figure 12. Methods and techniques extracted from the selected studies. 
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In systems of detecting IoT botnets with only normal traffic training the learning 
model, it is possible to achieve lower computational complexity through decreasing the 
feature collection. The researchers in [51] showed that in an unsupervised learning model 
that offers anomaly-based detection in IoT, a feature selection process is able to decrease 
the number of features needed. The reduced feature set makes it possible to use fewer 
computational resources, which leads to results that are more interpretable. It was shown 
that with less than ten features, one model using conventional learning techniques, for 
example, SVM or isolation forests, can accomplish acceptable detection ratios that have 
desirable scalability. On the other hand, while one common learning model can achieve 
reasonable detection rates for a whole network, better detection rates are provided by cre-
ating a separate model for each device. Nevertheless, the study showed that their trained 
model produced fair results regarding accuracy and precision. 

In [52], the authors proposed a modular solution which is distributed and can be 
applied during the scanning/infection process rather than during an attack. Thus, it can 
expose the behavior of large infected IoT networks, such as those of large organizations 
or ISPs. For edge devices’ traffic classification, EDIMA uses machine learning algorithms, 
a database of packet traffic feature vectors, a module for the policy and a module for elec-
tive packet subsampling. In order to detect potentially malicious activities based on pat-
tern-scanning traffic, a machine learning algorithm is used at the user access gateway. 
Furthermore, a policy module was built to discover the actions necessary for malicious 
packets. In addition, a database was used to store the scanned patterns to update or obtain 
them if necessary. Via test bed experiments, the authors assess the classification efficiency 
of EDIMA and demonstrated the results attained. 

In the article [54], the authors built the suggested model based on one general classi-
fier being used to develop a classifier for each device individually; it looks appealing from 
deployment and online usage perspectives when considering core networks. To reduce 
the number of characteristics for the detection of IoT bots, it applies feature selection. They 
proved that alongside a multiclass classifier built on a shallow process, a decision tree, 
fewer features can accomplish very elevated precision rates and offer explainable find-
ings. 

From various perspectives, the behaviors of Rustock botnet domain names that only 
employ fast-flux as the technique of communication among C&C and the bots were ana-
lyzed intensely in [55]. The results showed that the Rustock domain name resolution used 
only four DNS query forms, and the sum of a type of RR predominated between them. 
The Rustock domain names have minimal static values for querying density. In addition, 
there were only two change points for Rustock domain names, and there were several 
change points within 24 h for benign domain names. Furthermore, the lifespan of the 
Rustock domain was quite short, and the regular behaviors were evidently disparate. In 
addition, 32 specific features of Rustock domain name query traffic were extracted. To 
select suspicious domain names from the DNS traffic utilizing the 32 features, multiple 
common classifiers were then adopted. 

To create a new feature-based PSI-rooted subgraph to detect cross-architecture IoT 
botnet malware in a fully static way, the researchers in [56] proposed a technique that 
combines deep learning with machine learning. They argued that this function is suffi-
ciently powerful, due to its accuracy of about 97% and F-score of about 98%. When com-
pared to various common machine learning classifiers, the experiments showed that their 
approach is efficient and robust. Furthermore, they argued that their technique is different 
to established earlier research; the findings showed that their technique works superiorly. 

The authors in [57], with the aim of detecting zero-day attacks, used a supervised 
machine learning technique to identify patterns and distinguish anomalies in an IoT en-
vironment. They employed a random forest classifier, and considered only four types of 
attack in the training data and 10 types of attack for testing. When detecting the new at-
tacks, the proposed model was productive, and attained a TPR of 99%, a TNR of 100% and 
around zero false alerts. 
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The researchers in [61] suggested an artificial intelligence-grounded approach for the 
detection of malicious behavior. They investigated the accuracy of the artificial neural net-
work multi-layer perceptron learning algorithm in the identification of botnet behavior in 
IoT devices compromised by two significant botnets, Mirai and Bashlite. The MLP-ANN 
algorithm succeeded in achieving 100% accuracy in the classification of IoT botnet traffic 
in the testing stage after refinement and optimization. To demonstrate that the proposed 
solution can attain a similar degree of accuracy even with restricted sources, they used a 
subset of the N-BaIoT dataset. 

The functions of machine learning methods used for detecting and inspecting botnets 
were discussed in article [62]. On the USNW-NB15 dataset, four ML algorithms were 
tested—DT, ANN, NB and ANN—and they were evaluated in terms of the accuracy and 
false alarm rate. The findings showed that DT was superior to the other algorithms. As a 
network forensics process, they found the finest machine learning algorithm and flow 
identifiers of IP addresses (source and destination), and protocols capable of identify bot-
nets and their sources effectively and efficiently. 

The goal of the study in [64] was to build a multi-objective particle swarm optimiza-
tion (MOPSO) detection model for the identification of malicious traffic in IoT network. 
MOPSO’s performance was validated against the multi-objective, non-dominating genetic 
sorting algorithm (NSGA-II), popular conventional machine learning techniques and 
some traditional filter-based feature selection techniques. According to the results 
achieved, MOPSO beat NSGA-II, traditional machine learning techniques and filter-based 
techniques on most of the datasets examined. 

In article [37], the authors proposed a new high-level, PSI-rooted, subgraph-based 
function for IoT botnet detection. They produced a reduced number of features with de-
tailed behavioral descriptions that required littler space and less processing time. They 
showed results having effectiveness and robustness. In addition, the proposed approach 
obtained a better output compared to other work. Finally, they published all of the mate-
rials on GitHub. 

In article [67], the researchers proposed a fusion algorithm-based system model. First, 
the BoT-IoT recognition dataset was used, and its 44 successful features were chosen from 
a variety of features for the machine learning algorithm. Next, five efficient machine learn-
ing algorithms were picked for malicious and anomaly behavior detection, and the most 
commonly used ML algorithm performance assessment metrics were selected. They uti-
lized a bijective soft-set approach to figure out which fusion ML algorithm was most suc-
cessful in detecting IoT anomalies and intrusion behavior. The experiment’s findings 
prove that the suggested algorithm was successful at selecting ML algorithms, and it was 
obvious that the naïve Bayes algorithm was efficient in the detection. 

In article [69], the authors offered a method for analyzing and classifying IoT mal-
ware using machine learning and by employing Haralick image texture features. They 
used different algorithms—specifically, k-nearest neighbors, naïve Bayes and random for-
est. A binary file was transferred to a grayscale image. The gray level co-occurrence dis-
tribution was calculated for each of the mined images. Then, five Haralick features were 
determined and used to identify malware. The experimental findings demonstrate that 
the proposed method achieved 95% accuracy with random trees, 89% accuracy with naïve 
Bayes and 80% accuracy with k-nearest neighbors. Generally, they showed that the use of 
texture features results in a computationally simple and platform-independent classifica-
tion method. 

Finally, one paper [70] presented DRIFT, a method for identifying command and 
control domain names on the Internet of Things botnet scale. By applying an inherent 
feature of malicious domain name queries preceding registration, they developed a dif-
ference-based, lightweight feature for detecting malicious C&C domain names. Using 
NXDomain queries and answers from common malware, they evaluated the efficiency of 
the method, and found 99% accuracy and above 48 h prior to registering. The technique 
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works as a detection method for whenever other methods dependent on entropy or on 
domains generating reversing algorithms are unfeasible. 

AI-Based Unsupervised Learning 
The purpose of the algorithm proposed in article [60] was to identify IoT botnet be-

havior by using the Grey wolf optimization (GWO) algorithm to optimize one-class sup-
port vector machine hyperparameters and operate selection features together. The exper-
imental results on the NN-BaIoT dataset (a subset of the N-BaIoT dataset [50]) showed the 
GWO’s effectiveness in improving the results of the one-class support vector machine 
classifier. The suggested algorithm surpassed three other unsupervised algorithms widely 
applied for anomaly detection. It attained the shortest detection time, whilst decreasing 
the number of features picked. 

In article [73], the authors introduced a method that uses association rule learning to 
find out from data collected on a large-scale from darknets, with a big stream, the uni-
formities of attacks. They were able to discover the behaviors of hitting hosts related to 
recognized malware groups by discovering symmetries in IoT-related signs, for instance, 
destination ports, operation type and TCP window size. As a case study, prior to and 
following the first source code publication of Mirai, they performed a noteworthy inspec-
tion of the attack operations. The experiments confirmed that the proposed framework is 
accurate and productive in the early detection and monitoring of new malware on the 
Internet. Thus, it is a promising means of automating and speeding up detection and 
avoiding the latest threats. 

The authors in article [74] conducted a darknet study. The common pattern mining 
and association rule learning were applied on a large collection of TCP SYN packets gath-
ered from 1 July 2016 to 15 September 2016, with a darknet sensor called NICT/16. The 
total number of packets received was 1,840,973,403, sent from 17,928,006 separate hosts. 
In this analysis, they concentrated on commonly occurring groupings of “window sizes” 
in TCP headers. They fruitfully obtained several frequent patterns and association rules 
for window sizes, and they listed source hosts that delivered SYN packets which fit either 
of the rules obtained. Additionally, they demonstrated that nearly all such hosts dis-
patched SYN packets to meet the three circumstances recognized from Mirai source code. 
These hosts began the scanning activities 3 days prior to the publishing of the source code. 

AI-Based Deep Learning 
In combination with word embedding, the authors of [46] introduced an application 

of a bidirectional long short term memory recurrent neural network (BLSTM-RNN) for 
botnet detection. The proposed solution was contrasted with a unidirectional LSTM-RNN. 
This was done to decide if the improved accuracy and loss metrics achieved on the cap-
tured dataset could be matched by the latter technique. For the different attack vectors 
used by Mirai, the two models equally achieved high-level precision and minimal loss 
metrics. 

In article [47], the authors presented a malware detection honeypot-based method 
that employs machine learning algorithms. The produced IoT honeypot data were utilized 
as a dataset for the successful and lively training of a machine learning algorithm. As a 
proactive start to countering zero-day DDoS attacks, which has now surfaced as an open 
challenge in protecting IoT devices against DDoS attacks, the proposed method can be 
used. To catch several attempts at installing malware onto the IoT device, they used a 
honeypot method. The collected information was used in the form of log files as inputs to 
the machine learning model, so it was utilized for training purposes. The training process 
repeats once it surpasses the permissible size of training data to render the process active 
and effortlessly operable on resource-limited IoT devices. The benefit of employing the 
honeypot method to teach the model is that rather than only utilizing restricted identified 
data, the unknown variants of malware families can also train the model. Using honeypots 
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guarantees the logging of new malware features, which can then be used to train classifi-
ers effectively using the ML-based detection system. 

Researchers in [49] proposed an approach to generating a PSI-graph to reflect the 
connections among PSI, which was very valuable for static analysis details in order to 
boost the identification of IoT botnet malware. The graphic convolution neural network 
classifier was also applied for IoT malware detection based on a convolutional neural net-
work (CNN) and was able to identify malware without obtaining the previously chosen 
features. In their study, they suggested a novel approach based on the combination of a 
PSI graph and a CNN classifier for Linux IoT botnet detection. For the experiment, 10033 
ELF files were used, including 4002 IoT botnet samples and 6031 benign files. The outcome 
of the test indicated that the PSI graph CNN classifier achieved 92% precision and a 94% 
F-measure. It does not deal with packed .exe files. 

As a full means to detect botnet attacks, researchers in [50] employed completely de-
tached automatic autoencoder algorithms to detect anomalies in IoT traffic instead of us-
ing them partially, as in previous studies. An autoencoder was usually used as an initial 
method for feature training, for reducing of dimensionality or as a half-manual detector 
for outliers that depend significantly on human labeling for consequential classification 
or additional investigation by security analysts. For the technique in article [50], the au-
thors were dependent completely on deep autoencoders to detect IoT botnet attacks and 
learned by statistical characteristics obtained from non-malicious traffic data of the sys-
tem. Detected anomalies can show that a device is compromised when the method is em-
ployed for new potentially contaminated data from an IoT device. This technique consists 
of four main phases: collection of data, extraction of features, training of an anomaly de-
tector and continual monitoring. 

The authors of [53] proposed an approach focused on deep learning for IoT botnet 
detection. In order to extract fundamental traffic features of IoT devices, the authors used 
the dampened incremental statistics and applied the z-score technique to standardize the 
features. Subsequently, the multivariate correlation analysis (MCA) algorithm based on 
triangle area maps (TAM) was used to produce datasets. They built a convolutional neural 
network to train on the dataset, and detected the traffic using the learned CNN. The last 
tests indicated that the proposed method can effectively differentiate benign traffic and 
various forms of attacks and achieved 99.57% precision. 

Since they are assigned weak passwords during manufacturing, IoT devices are rec-
ognized for having weak default verification processes. Consequently, IoT devices are 
vulnerable to different attacks. Intruders can seize power over them using brute force. If 
hijacked, vital services such as healthcare and transportation can be endangered. Using a 
bot, an attacker may force the surrender of power from officers and users of smart city 
networks. In the article [58], the authors proposed a software defined IoT protection 
(SDID) mechanism based on deep learning that tracks and contrasts the historical traffic 
flow of devices with current trends to decide whether an attack is being carried out on a 
system. In addition, the technique compares data with neighboring nodes to decide if the 
traffic stream is abnormal or not, in order to avoid false detection in flash-crowd cases. 

The authors in [59] proposed a lightweight IoT botnet detection method based on 
extracting high-level characteristics for each executable file from function call graphs, 
known as PSI graph. This function deals with the issue of multi-architecture while avert-
ing the difficulty of analyzing control flow graph utilized by the majority of the current 
approaches. The experimental findings revealed that with the dataset of 11,200 ELF files 
comprising samples of 7199 pieces of IoT botnet traffic and 4001 pieces of benign traffic, 
the proposed approach achieved a precision of 98.7%. In addition, a comparative analysis 
with other current approaches indicated that the technique produced better outcomes. 
Finally, through GitHub the source code was made accessible. 

The authors of [63] offered a new IoT malware traffic analysis technique, powered by 
multilevel artificial intelligence, that operates as a blend of a neural network and a binary 
image. The technique could be utilized to safeguard IoT devices on the gateway level, 



Appl. Sci. 2021, 11, 5713 33 of 47 
 

avoiding the limitations related to the IoT environment. From the preliminary experi-
mental outcomes, the technique appears encouraging and capable of detecting unrecog-
nized malware. Furthermore, the technique learns from misclassifications, which en-
hances its effectiveness. An improvement of this techniques could be added by including 
the usage of extra samples for learning and testing and by using a GPU for binary imag-
ining and CNN classification. The proposed technique should be tested for encrypted traf-
fic. 

The authors of [65] offered a CNN-based deep learning model consisting of a data 
handling component and an 8-layer CNN. Until implementing the CNN model, they seg-
mented and standardized the energy utilization data obtained, to help the CNN model to 
attain greater precision. The model categorizes handled data into four classes, including 
the botnet class, which is the prime objective. To show results, they conducted a self-eval-
uation; a cross-device assessment; and leave-one-device-out and leave-one-botnet-out ex-
aminations on three conventional kinds of IoT devices—a security camera, a router and a 
voice assistant. The self-assessment reached a classification accuracy of 96.5%, and cross-
tests attained approximately 90% accuracy. In the same manner, leave-one-out tests at-
tained more than 90% accuracy for botnet identification. 

The paper [66] presented a brand-new dataset, named Bot-IoT, which includes legal 
and modeled IoT network traffic, in conjunction with different forms of attacks. The au-
thors introduced a practical experimental environment to address the current dataset dis-
advantages of collecting full network details, correct labeling and having the latest and 
most complicated attack varieties. After all, they tested the BoT-IoT dataset’s reliability by 
applying various statistical and machine learning approaches for forensic functions, and 
contrasted the results to those achieved with existing datasets. The proposed solution pro-
vides a basis for activating botnet identification through IoT-specific networks. 

The original probabilistic model in [68] was designed to clean irrelevant flow by elim-
inating noise samples, such as misconfigured traffic. Then, multiple low and deep learn-
ing models were tested in an endeavor to create an efficient multi-window convolutional 
neural network. Through using active and passing weights while creating learning da-
tasets, the goal of the neural network is to precisely classify infected IoT devices. There-
fore, to understand organized and unwanted behaviors produced by well-cooperating IoT 
botnets, tiered conglomerative clustering is used to analyze a collection of creative and 
effective network features. Analyzing 3.6 TB of the freshly captured darknet flow uncov-
ered a substantial 440,000 infected IoT devices and created proof-based objects associated 
with 350 IoT botnets. In addition, by performing a detailed study of such indirect projects, 
they exposed the scan activities, packet time intervals, rates of jobs and geo-scanning. 
While some campaigns displayed substantial declines in those variables, some showed 
the opposite via being restricted to particular geolocations or due to carrying out arbitrary 
port scans in addition to their core objectives. Whilst many of the implied botnets are parts 
of formerly reported campaigns such as Hide, Seek, Hajime and Fbot, in fact more events 
represent the emerging existence of such IoT risk trends. These events show increasing 
cryptojacking abilities or affect industrial management services. 

5.3.2. Methods Based on Blockchain Technology 
This section reviews the proposed methods that are based on blockchain technology. 

Initially, blockchain was used to register financial transactions; such transactions are en-
crypted and managed by all parties (e.g., Bitcoin and other cryptocurrencies). All transac-
tions are thus transparent, and any changes can be easily tracked and identified [94]. It is 
possible to apply blockchain to boost IoT botnet detection. Three of the selected studies 
that used blockchain are discussed below. 

The goal of AutoBotCatcher [71] was to analyze IoT device communities dynami-
cally, according to their network traffic flow. The authors implemented a dynamic P2P 
botnet identification and prevention framework for IoT based on blockchain, referred to 
as AutoBotCatcher, which performs group identification on IoT application network 
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flows. IoT gateway devices become peers of a BFT blockchain in AutoBotCatcher, where 
system vendors and/or security regulators take positions as block generators and engage 
in the process of consensus. Blockchain was used for snapshots of the IoT devices’ mutual 
communication graph to perform dynamic, network-based botnet group identification. 

The researchers of [72] created a lightweight security IoT solution that uses hacker 
tools against hackers, an IoT vaccine, in essence. The solution provides IoT devices with 
managed protection and intelligence using a “friendly” botnet powered by the Bitcoin 
blockchain, a validated existing communication framework for distributed systems. To 
date, NeuroMesh has been tested on routers, cameras with CCTV and smart meters. Neu-
roMesh was able to destroy the Mirai botnet in all cases and prevent the running of errant 
processes. In addition, access to the system was effectively blacklisted for any IP address 
sent through the blockchain communication channel. 

The authors of [78] proposed new firmware to modernize a platform for IoT devices. 
The firmware improved the upgrade procedure, making it more efficient and secure. In 
specific, the suggested method was founded on blockchain and makes use of smart con-
tracts to guarantee firmware integrity and attain malware-resistant properties. To ensure 
accessibility of the new platform, they used a peer-to-peer file distribution method that 
not merely stores a variety of firmware editions of devices in a dispersed way, but reduces 
the ability to perform DDoS attacks with protected devices. In addition, this platform 
greatly enhances device scalability by checking multiple signature requests at the same 
time. Massive assessments and operation simulations were performed to ensure that the 
anticipated method can achieve exceptional operating effectiveness for IoT devices on the 
firmware update platform. They considered the effectiveness related to computing costs 
and overhead connections, and compared it to the most current works. 

5.3.3. Methods Based on Software Defined Network Technology 
Software defined networking (SDN) is a modern technology that enables the overall 

behavior of a network to be managed by a central program, named the SDN controller. 
The controller allows fast security threat responses, granular traffic filtering, and the im-
plementation of complex security policies [95]. SDN can support IoT botnet detection. One 
of the selected studies that was based on SDN is discussed below. 

In [75], the authors developed a detection and mitigation method using the Mirai 
botnet as a particular case study for IoT-originating DDoS attacks. By performing the mit-
igation near the IoT devices, protection contra DDoS attacks from IoT to ICT public ser-
vices came to be successful. SDN was utilized as a compliant resolution for this purpose 
in order to impose different flow rules and actively renew them when needed. Even 
though the proposed work is aimed at Mirai variations, it is possible to easily configure 
and extend its detection mechanism for various BotNet threats. To enable the proposed 
solution in this setting, they also used fog computing. The proposed scheme has shown 
that when forcing attacks the edge first by using fog computing, DDoS attacks can be al-
leviated by exploiting SDN. This solution can also be offered in the fog computing envi-
ronment as a security as a service (SECaaS) plan. There are practical problems with the 
integration of this method into IoT networks, which are characteristically diverse, loosely 
administered and emergent systems. On the other hand, a huge base of IoT infrastructure 
previously implemented without SDN and inheritance devices. The vital role of IoT net-
works as portion of the upcoming Internet is to make these remedies necessary and highly 
valuable. 

5.3.4. Specification-Based Methods 
The following methods did not use AI algorithms, and instead used specification-

based methods for detection. Generally, a specification detection method depends on 
specifications that describe the intended behavior. It can detect non-previously-encoun-
tered attacks and has a low false positive rate, but it has the disadvantages of being less 
effective than anomaly detection methods and more time consuming. 
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The authors in [76] introduced an agile detection system termed ConnSpoiler that 
can identify IoT botnets accurately in a resource-restricted way. ConnSpoiler operates via 
rapidly categorizing the flows of NXDomain queries to build openings for the C&C link 
to be interrupted. The results indicated that the ConnSpoiler had a 94% probability of 
identifying queries prior to their being sent to the C&C, and achieved great accuracy and 
scalability of detection using a month of labeled data. In addition, ConnSpoiler can iden-
tify the domains created by six DGAs that relate to recognizing botnet groups and six new 
DGAs that were not recorded any earlier DNS traces gathered from two separate huge, 
scaled ISP networks. 

The authors of [77] proposed the IoT Based Botnet Detection System for Usage, Con-
tact and Access Monitoring. The descriptor specifies policies for system use, communica-
tion and access. The monitor observes the current states of device use, contact and access; 
and the comparator detects abnormalities. In the open-source security event and infor-
mation management system, they developed the detection system. The researchers se-
lected the open-source Security Information Management (OSSIM) alien vault and set up 
the OSSIM detection system. Results showed that Mirai IoT malware is detected effec-
tively by the proposed detection mechanism. 

In article [80], the authors proposed a different method for IoT security focused on a 
scattered multi-agent framework. In every single one of several IoT systems, for example, 
smart homes, they employed a lightweight agent to work in cooperation to detect security 
incidents and avoid likely attacks. To test the efficiency of the proposed technique, a sim-
ulation was performed. In particular, the technique was used to mitigate the effects of 
using IoT system botnets, for instance, the Mirai Botnet, for distributed denial of service 
attacks. The key concept is to employ an effective number of path messages to cumula-
tively create a behavioral profile for possible victims of DDoS attacks that passes via 
agents installed on different IoT sites. Additionally, the results obtained have shown that 
in the cases examined, a length coefficient of 0.3 was efficient. The lowest degree of coor-
dination needed to detect such an attack was assessed. Although there are still many open 
issues about the application of such a scheme or the core consensus method, studies show 
that large-scale DDoS attacks can be identified. 

5.3.5. Signature-Based Methods 
The signature-based methods retain databases of known intrusion techniques (attack 

signatures) and detect intrusion by comparing behaviors to the database. They accurately 
detect known attacks and require less resources to detect intrusions. They have the disad-
vantage of being ineffective at detecting unknown or emerging attacks. 

The authors of [79] suggested a cloud-based system termed CloudEyes that is re-
sistant to malware and offers effective and secure services for resource-concentrated de-
vices. For cloud servers, CloudEyes, introduces suspect container cross-filtering, a new 
signature identification method founded on a mutable plan framework that offers fair and 
precise identification of signature malicious parts. For the host, CloudEyes implements a 
lightweight scanning agent that uses signature fragments to significantly decrease the va-
riety of precise fitting. In addition, by communicating, sketch synchronizing and modular 
hashing, CloudEyes guarantees both data privacy and low-cost communication. They 
tested the efficiency of the proposed solution through using both suspicious traffic on site 
and regular files. The findings showed that the methods in CloudEyes are efficient and 
realistic, and the approach could surpass other current systems with less time and inter-
action. 
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6. Results 
After analyzing the selected studies, and as a result of the above analysis, it can be 

realized that there are various research gaps, open issues and future directions. In this 
section, we explain the importance of each of them. 

6.1. Research Gaps and Challenges 
The following research gaps and challenges are summarized to guide the researchers 

who investigate in this field. 

6.1.1. Early Phases IoT Botnets 
As has been explained in Section 3.3.2., the IoT botnet’s lifecycle has three phases, 

scanning, propagation and attack. Throughout these phases, there is communication 
amongst the bots and the C&C, and among the bots. From Figure 7, it is clear that most of 
the studies developed detection techniques for IoT botnets in the late phase, when they 
are launching and triggering attacks on the targets, whereas they could be detecting bot-
nets in earlier phases, for instance, when the attacker starts the scanning or propagation 
activities. Therefore, researchers need to further investigate the detection of IoT botnets in 
their early phases before triggering attacks; this would reduce the illegal utilization of the 
devices’ resources, and thereby disrupt or deny the services of the IoT network [52,96]. 

6.1.2. Types of Malicious Activities 
It is obvious that most of the effort put toward the detection of IoT botnets goes into 

developing detection techniques for DoS/DDoS, scanning or IoT malware as attacks 
launched by IoT botnets—mainly by Mirai—instead of proposing solutions for detecting 
the other attacks (see Figure 8). The reviewed studies also have not encompassed the re-
cent trends in attacks, such as attacks with intent to illegally utilize the resources of IoT 
devices in computational tasks, for example, cryptomining, other tasks or fraud on social 
media. This was caused by the lack of datasets, the difficulty of implementing experiments 
associated with other types of suspicious activities and the lack of simulations. More in-
vestigations are needed in these areas. 

6.1.3. Methods and Techniques 
Most of the studies herein proposed techniques based on employing artificial intelli-

gence (AI). AI is considered as an interesting approach in detecting IoT botnets because it 
can accelerate the process of making decisions, and these approaches and techniques 
could be integrated with different trendy technologies to form more powerful techniques, 
such as SDN [97,98,99] or blockchain [72]. Hence, more studies are required in this area. 
At the same time, the proposed methods tend to be concentrated on defensive techniques, 
whereas a proactive approach could help to understand the techniques of IoT botnet and 
therefore prevent the damage that may be caused by a variety of malicious activities by 
IoT botnets. 

6.1.4. IoT Datasets 
The construction of IoT datasets from commercial products faces immense challenges 

due to the restrictions on obtaining attacks of diversity or privileged access. Mirai mal-
ware and its variants are believed to be known attacks, but only for particular types of IoT 
devices, such as IP camera surveillance devices. Therefore, some studies resorted to con-
structing synthetic datasets through simulation tools [99] or carrying out experiments us-
ing limited sets of smart home devices and generating datasets that way. It is worth men-
tioning that some IoT datasets available for the public have been used by many research-
ers, such as N-BaIoT [50], BoT-IoT [66] and the recently published IoT23 [100] and MedIoT 
[101]. On the other hand, and regarding the selected studies, the used datasets do not 
include sufficient different suspicious activities related to bot networks, as the datasets 
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were either not derived from IoT devices and thus does not reflect the IoT ecosystems, or 
do not represent the data of Internet of Things. Furthermore, they were extracted from 
IoT devices and are limited to specific purposes or to specific environments, such as the 
home system. As a consequence, a number of proposed solutions may face difficulties if 
they are applied to other ecosystems or if different other devices are present. More IoT 
botnet datasets are needed, and researchers should investigate building more datasets and 
finding solutions for extracting real datasets. 

6.1.5. Competent Frameworks 
Given on the above points, it can be noted that there is a need for a competent and 

proficient IoT botnet detection and prevention framework. It should be leveraged from 
the trendy technologies and can be adapted to the requirements such that it covers differ-
ent layers of IoT architecture and takes into consideration defense against all the phases 
of IoT botnet’s lifecycle. 

6.2. Open Issues and Future Trends 
6.2.1. Explainable Artificial Intelligence (XAI) 

One of the important trends and directions for study is using explainable artificial 
intelligence. In XAI the outcomes and the decisions of an AI solution are understandable 
by humans, so the administrator can understand why the AI solution considered certain 
traffic as malicious or benign, in contrast to the existing blackbox AI solutions. This will 
give useful feedback for understanding the reasons behind the AI decisions and give the 
administrator the ability to either reject or accept the decisions related to his system. Con-
sequently, this will reduce the number of false positive alerts and improve the system. 

6.2.2. Offensive Techniques 
Offensive techniques are some of the open issues that need to be investigated. That 

will enable a deeper understanding of how the Internet of Things botnets work through 
reverse engineering or by exploitation of functions that may exploit the vulnerabilities of 
the botnet itself. More studies are required for this research. Understanding and knowing 
the methods and techniques of cybercriminals through offensive techniques will facilitate 
and improve the defensive techniques. 

6.2.3. The Representative IoT Dataset Issue 
As discussed earlier, many factors have recently contributed to the increase in the 

spread of the Internet of Things networks. These factors include the digital transfor-
mation, where organizations desire to automate and share their services. Another factor 
is the appearance of the COVID-19 pandemic; that is, the spread of this virus and the de-
sire to track and monitor society through different types of devices. For this reason, a 
properly organized and descriptive dataset is important for the training and validation of 
the trustworthiness of a system. While there are many IoT networks, in extreme situations 
there is no knowledge about the IoT botnet scenarios present. More research is therefore 
required to propose new botnet datasets that combine legal IoT network traffic generated 
through simulations with various kinds of attacks [66]. An IoT network produces a noisy, 
heterogeneous stream of data, whereas IoT botnet detection techniques need high quality 
data; this issue should be investigated to improve of the quality of data. On the other hand, 
it is necessary to consider how the detection techniques can handle such IoT data. This is 
one of the open issues. 

6.2.4. IoT Honeypots 
A honeypot is an isolated and independent network tool that mimics a genuinely 

useful network that would be to use by attackers. The goal is to draw attackers into it, and 
thus track the communication between the attackers and the compromised computer. It is 
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a powerful tool for IoT security researchers in botnet attack identification. Moreover, it 
provides the logging of communications of the attackers, as IoT attackers usually hide 
their fingerprints and extract other IoT attacks features. Thus, honeypots are a powerful 
and useful tool for IoT botnet detection, because they can detect new waves of technology 
hitting IoT devices, particularly those that exploit zero-day vulnerabilities [102]. Honey-
pot-based detection techniques can deal with new IoT malware variants [47]. On the other 
hand, IoT honeypots should be open source to support the research community in this 
field [103]. A deployment framework for IoT honeypots is required; it is important to re-
search which honeypots should be deployed, how they can attract attackers and how they 
can be enhanced on the basis of the information collected [104]. It is necessary to adapt 
honeypots so they can deceive the attackers to expose their origins [105]. 

6.2.5. Big Data, IoT Threat Intelligence and Analytics 
The IoT threat intelligence should be further investigated: terabytes of data are used 

daily in collaborations among different countries. This data should be analyzed, visual-
ized and shared with other organizations. The analytics of this data can support the de-
tection of IoT botnets and improve the security of the Web in general. 

6.2.6. Integration of Machine Learning with other Technologies 
The following technologies can be integrated with machine learning algorithms to 

build a better defense model that takes advantage of these technologies. 

Deep Learning 
Deep learning is a subdivision of machine learning with three types—supervised 

learning, e.g., CNNs and restricted Boltzmann machines (RBM); semi-supervised learn-
ing; and unsupervised learning, e.g., autoencoders. It comprises several layers of artificial 
neural networks. Each layer covers some neurons with initiation functions that can be 
used to generate non-linear outputs [106]. It has strong analytical capabilities which are 
used for various applications, including malicious activity detection and IoT botnet detec-
tion. Important improvements in efficiency over some machine learning algorithms can 
be seen in [107] and have lately been utilized in some IoT applications with edge and fog 
computing. Deep learning can be used to mine for the features in datasets that will best 
enhance machine learning classification algorithms. IoT applications need significant 
amounts of data to be transmitted across a network, and deep learning provides improved 
performance with more massive data than shallow learning. In addition, deep learning 
can operate with new features and resolve difficulties with no interference. Deep learning 
can ease time-consuming manual analysis and increase detection accuracy by automati-
cally detecting Internet of Things (IoT) software vulnerabilities [108]. Various approaches 
using deep neural networks have been used as IoT classification engines to identify IoT 
connections as natural and to identify attacks using an intelligent intrusion detection en-
gine. The results of the performance assessments indicate the efficacies of these ap-
proaches [109,110,46,50,53,111,106]. Deep learning can be used with software defined net-
works (SDN) to analyze and contrast the chronological traffic stream of a device with ex-
isting trends to decide whether the device seems to be under attack [58]. 

Software Defined Network (SDN) Technology 
Managing and protecting a sizeable and diverse network of devices, such as an IoT 

networks, is challenging, and software defined networking (SDN) solves these difficulties 
through its simplicity and comprehensive network vision. SDN is the latest evolving tech-
nology for fundamental networks that can be used to deal with malicious activities created 
by many IoT devices, such as IoT botnets, as it offers network flow observing and unified 
control of network devices [75]. SDN has various features, including traffic engineering, 
complex policy enforcement tracking, on-time access control and system mobility [112]. It 
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offers centralized control of defense for IoT networks. It facilitates detecting and prevent-
ing IoT botnets because SDN is responsible for the continuous examination of traffic data 
through the IoT network with the purpose of delivering an ideal mode and faster re-
sponses of attacks, such as DDoS [113,114]. On the other hand, the SDN controller could 
be a single point of failure. 

Edge Computing 
Edge computing provides processing units that increase computer power with the 

capability of processing and storing real time data close to the sensors instead of sending 
them to the cloud, which improves the response time and reduces latency. IoT botnet de-
tection and prevention needs rapid responses that cannot be realized under a conven-
tional data transmission model that includes a data center for central handling until res-
toration by a user. Edge cloudlets also serve as data extraction and grouping resources 
that only transmit mandated data to the conventional cloud data center and redeem criti-
cal network resources, such as bandwidth, electricity and storage [115]. Hence, edge com-
puting lowers the cost of transmitting and processing massive amounts of data compared 
to using the cloud, reduces delays, enhances the efficiency of energy and increases the 
scalability of lightly-weight IoT devices. There is a necessity, therefore, to explore the de-
ployment of edge-based detection of IoT botnets [48,75], which should provide a reduc-
tion in network traffic loads through its effective structure for handling the data. In addi-
tion, edge computing can integrate with SDN [75,99,115] to avoid a single point of failure. 

Blockchain 
A blockchain relies on the idea of a distributed directory managed by a peer-to-peer 

network. It is a public, decentralized and fault-tolerant ledger to which registers are ap-
pended in sequence chronologically, and registers become more permanent every time a 
new register is published [116]. Blockchain relies on the idea of a distributed directory 
managed by a peer-to-peer network. It currently offers one of the most reliable communi-
cation protocols, which relies on proof of work (PoW) to validate transactions and is a 
non-trusting protocol that provides pseudo-anonymity. Blockchain has an enormous 
amount of distributed computing capacity behind it, and to date it has been difficult to 
hack [72]. Therefore, blockchain can enable multiple parties to work together to detect 
botnets. A blockchain platform does not need a trusted centralized party to verify the cor-
rect execution of cooperative botnet detection, nor to ensure clarity of the obtained snap-
shots of IoT devices to address the potential lack of confidence between the parties in-
volved in botnet detection [71]. While blockchain is primarily intended to store and verify 
digital currency (such as Bitcoin) transactions, it may have key roles in management, ad-
ministration and securing IoT devices and detecting IoT botnets. In addition, blockchain 
offers privacy preservation and anonymity for IoT applications. Often, it ensures that the 
data are original and keeps them secure from data tampering. The combination of IoT 
botnet detection methods and the blockchain system would improve the reliability of the 
models, improve the reliability of the data and enhance the key management of the IoT 
devices. On the other hand, blockchain is not light-weight because the proof of work pro-
cedure has a high cost due to the intense using of resources. In addition, generating a 
block increases the throughput and latency [117]. Thus, each of these problems needs to 
be resolved in order to improve IoT protection and privacy based on blockchain. 

Fog Computing 
In recent times, the idea of fog computing has been implemented, wherein processing 

models bring the required processing power and storage closer to the computers in need. 
It typically involves cloud computing in a layer-based design. It allows instantaneous data 
analysis by analyzing data in fog with the cooperation of edge layer data, and provides 
an enabling method to support the generation of high-bandwidth and low-latency 
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networks and applications. Fog computing is hierarchical and offers computing, network-
ing, storage, power and acceleration anywhere from cloud to Internet of Things, whereas 
edge computing appears to be restricted to edges. Fog computing allows data analysis 
closer to the edge than to the cloud, which ensures that decisions can be made more easily 
[93]. Fog computing also helps with delivering an effective attack detection technique in 
conjunction with edge and SDN for IoT ecosystems by contributing to reducing the time 
required to detect and mitigate attacks [118,75,113], and thus helps with detecting IoT 
botnets using fog-based detection systems [109]. The detection mechanisms should con-
sider the presence of fog devices in the center with the goal of increasing protection, while 
at the same time providing reliability and timeliness [78,119]. 

Network Function Virtualization (NFV) 
Network function virtualization (NFV) is a technique to add virtualization to net-

work services—for instance, routers, firewalls and load balancing systems—which have 
historically been operated on private hardware. The services are promoted as virtual ma-
chines (VMs) on product hardware, enabling one to operate networks on common servers 
instead of private ones. Various computing nodes operate security functions unloaded 
from IoT devices using the NFV technique that actively enables virtualized network func-
tions for a variety of protection services. This technique with integration to SDN enhances 
the detection of IoT botnets [120]. 

7. Discussion 
In this section, we go over the limitations of our SLR and how the COVID-19 Pan-

demic relates to IoT botnets. 

7.1. The Limitations of the This SLR 
This research was limited to journals and related conference papers on Internet of 

Things botnet identification that were published in English. We applied our research ap-
proach to a large number of articles, but found that most of these articles had no relevance. 
Therefore, we picked just the studies that were issued between 2016 and 2020 that com-
pletely met this study goals and the quality evaluation criteria. We faced some challenges 
which made it hard to sketch satisfactory conclusions for this SLR: The empirical studies 
claimed to have dealt with IoT botnet detection, prevention and mitigation of malicious 
botnet activities and botnet as a blackbox. Nevertheless, there is a shortage of experi-
mental research dealing with IoT botnets via white-box approach. In addition, there are 
disparities and disagreements about the phases of the IoT botnet, and there was a lack of 
clarification about the assessment calculations in some experiments. Some other studies 
appeared to concentrate on the verification of authentication and so on, rather than the 
detection of the botnet. 

7.2. IoT Botnets during the COVID-19 Pandemic 
The WHO Emergency Committee declared a global health emergency in January 

2020 on the basis of rising case reporting rates for the novel coronavirus that spread to 
many countries [114]. Due to this worldwide pandemic of COVID-19 and its implications, 
the use of the Internet has been increased. Hence, every organization today, whether gov-
ernmental or private, is digital and relies on the Internet and computer networks to ex-
change business data. There is an immediate need to make full use of available technolo-
gies, since there are changes in customer behavior, new ways of working and travel re-
strictions. Therefore, the Internet of Things (IoT) is considered to be one of the highly in-
novative technologies with great potential in the fight against coronavirus outbreaks. The 
IoT consists of a scarce network in which IoT devices sense the world, collect data and 
send useful data to the Internet. 
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As IoT is rapidly being adopted in the context of COVID-19 [121], the value of IoT 
has significantly increased in the presence of this disease, and the number of Web-con-
nected devices has increased, but most devices have little to no security features. The first 
quarter of 2020 showed a considerable increase in malware. There was a 58% increase in 
new IoT malware [122]. Consequently, the magnitude and complexity of the IoT botnet 
threats have gradually increased; IoT botnets exploit more vulnerabilities and cause ever-
more malicious activities. These activities include information theft and persistence 
threats, which impact critical systems through exfiltration channels and resource hijack-
ing to convert the IoT devices into bots. This raises the need for similarly complex detec-
tion systems. It is projected that the need for IoT botnet detection is increasing at a signif-
icant rate due to the COVID-19 pandemic. Various methods, along with sensors and wire-
less communication techniques, could be used to build secure systems suitable for 
COVID-19 detection and monitoring. 

Many industries are using IoT to meet the requirements of government responses to 
COVID-19 [114] and are being targeted by attacks as a consequence, including healthcare, 
education, finance, retail and entertainment industries [122]. Given the importance of 
managing the COVID-19 pandemic globally and ensuring social distance, healthcare IoT 
devices have recently become more connected to the Internet as part of the linked health 
environment. With the aim of automating healthcare procedures, different applications 
are being employed to retrieve electronic health histories and medical files created by 
healthcare IoT devices in hospitals. As a result of the widespread outbreak triggered by 
the human-to-human spread of COVID-19, health officials exploited IoT devices to iden-
tify COVID-19 patients. With the intention of enabling faster diagnosis, different models 
have been utilized, such as X-ray images, ultrasound symptom detection, CT scan images, 
ICU data gathering, non-intrusive facial-recognition hospital profile examinations and 
others. Healthcare systems are highly important, as they provide life-critical services. Ef-
fective cyber-attacks on healthcare would directly endanger not only the protection of 
networks and information, but also the health and safety of patients—they may threaten 
lives. The impacts of cyber-attacks on healthcare facilities are large. They can range from 
malware that compromises the security of the infrastructure and privacy of patients to 
distributed denial of service (DDoS) attacks that threaten the ability of the facilities to pro-
vide patient care. In the last two quarters of 2020, a high rate of cyber-attacks by various 
actors against the healthcare sector has been observed. These actors aim to infect vital 
healthcare networks with various forms of cyber-attacks by using a variety of strategies, 
techniques and procedures (TTPs) to gain initial access and further exfiltrate sensitive 
health sector data. 

There is a great deal of worry about private data collection; this includes ensuring 
the quality of the collected data, as well as ethical problems related to the use and storage 
of data. The data sent from the sensors attached to COVID-19 patients’ bodies should be 
correct; the data should reach the destination successfully; the data should not be forged; 
the data should not be intercepted along the communication route; and the data should 
be stored in an IoT computer’s memory, which should not be available to all. There are 
concerns about protecting the collected data from abuse by command and communication 
channels. 

IoT networks have scalability, and conversely, IoT devices are resource limited; 
hence, conventional cryptographic techniques are not feasible solutions for implementing 
IoT security. Security solutions should be energy efficient, and algorithms established to 
secure the IoT network should have less computational complexity to provide end-to-end 
data protection, user privacy and secure authentication. As a result, lightweight security 
algorithms need to be built to implement IoT security. With coronavirus outbreaks, the 
safety criteria of IoT-enabled networks have increased. 

Significant challenges include addressing privacy and security concerns when ena-
bling IoT devices to collect personal data needed for the smart management of the 
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pandemic and social distance; and preventing the data theft, resource exploitation and 
suspension of vital digital services. 

Further research and innovations are needed to enhance data protection and privacy 
for IoT architectures, in order to improve the level of trust between groups involved in 
data sharing. 

Generally, IoT security will be improved by developments in authentication, crypto-
graphic technology and blockchain. In addition, adoption of IoT regulations, policies and 
frameworks will help strengthen the security of IoT devices and mitigate the risk of IoT 
botnets. 

8. Conclusions 
The state-of-the-art methods and techniques for IoT botnet detection were systemat-

ically reviewed in this research. As per the conducted SLR on IoT botnet detection meth-
odologies from 2016 to 2020, the number of published studies has been progressively in-
creasing, showing that this topic is being investigated and will continue to gain attention. 
All these studies were released by noteworthy journals and conferences. The authors as-
sessed the 37 selected studies and classified these studies according to the methods and 
technologies used. Moreover, we contrasted the selected studies depending on the phase 
of detection, types of attack and evaluation metrics. 

Most of the articles focused on detection in late botnet phases. In addition, depending 
on the method of classification, artificial intelligence-based solutions are popular in the 
research field. In brief, this SLR sought to contribute to overcoming the scarcity of present 
IoT botnet detection methods and provide an opening for supplementary debate so that 
such detection methods could facilitate tighter IoT security in future. The thrilling areas 
for research include consolidating machine learning algorithms with trendy technologies 
such as blockchain and SDN to overcome limitations, and using deep learning for feature 
engineering with machine learning classifiers. Despite the great number of studies per-
formed, there are still many different trends and open issues—for example, take the need 
to implement a capable botnet detector in early botnet phases. Additionally, XAI could be 
used to resolve the problem of excessive false positives. A further possibility is the pro-
duction of an advanced and comprehensive approach, for instance, integrating more than 
one level of detection regarding each botnet phase. In the same context, one could inte-
grate machine learning classifiers with other technologies, such as software defined net-
work (SDN) technology, edge computing, blockchain, fog computing and network func-
tions virtualization (NFV). 
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