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Featured Application: Analytical tools for ophthalmic lens design that may guide numerical optimization.

Abstract: A revisited form of the classic third-order ophthalmic lens design theory that provides a
more precise and meaningful use of aspheric surfaces and a generalization of the standard oblique
errors is presented. The classical third-order theory follows from the application of the Coddington
equations to a ray trace through the lens and the expansion of the incidence angles and the surface
sagittas appearing on them up to order two of the radial coordinate. In this work we show that
the approximations for surface sagittas and angles can be decoupled, and the lens oblique powers
predicted by the proposed theory provides a better fit to the numerical results obtained by exact
raytracing and multi-parametric optimization than the classical third-order theory does. Modern
ophthalmic lens design uses numerical optimization and exact ray tracing, but the methods presented
in this paper provide a deeper understanding of the problem and its limitations. This knowledge and
the more general merit functions that are also presented may help guide the numerical approaches.

Keywords: ophthalmic lenses; Coddington equations; optimization; exact ray tracing

1. Introduction

Spectacle lenses can be designed considering several factors, such as visual perfor-
mance, aesthetics (thickness or curvature of the front surface, also known as base curve), or
manufacturing limitations. When visual performance is considered, the usual strategies
are primarily focused on the minimization of oblique aberrations, which are the residual
defocus and astigmatism appearing at oblique gaze directions or when the lenses are tilted.
Secondary objectives can be the reduction of distortion, higher-order aberrations, or even
chromatic aberrations [1–10].

The first complete approaches to the management of oblique aberrations were based
on the so-called third-order approximation [6,9], although trigonometric ray tracing was
also used early on in the development of obliquely corrected eyeglasses [11]. Nowadays,
computers allow us the construction of elaborate lens-eye models that can be explored with
detail by means of exact ray tracing or wavefront tracing [5,12,13]. Lens performance can be
analyzed in terms of the number of oblique errors or the size of the geometrical blur patch
on the retina [6,14]. The computation of geometrical wavefronts and the corresponding
coefficients for higher-order aberrations or optical transfer functions have led many authors
to conclude that ophthalmic lens performance is indeed mainly determined by oblique
errors [15].

Although modern lens design may involve exact ray tracing and recurrence or opti-
mization algorithms [16,17], the third-order approach is still useful for getting an initial
point for more complex analysis, or to find key relationships and limitations that would
guide further design. The classical procedure for obtaining analytical expressions of the
oblique errors in lenses with revolution symmetry is based on the use of Coddington’s
equations, which provide the location of the tangential and sagittal foci for a given surface.
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Repeated application of these equations to the two lens surfaces, along with the use of
third-order and thin-lens approximations to compute incidence and refracted angles, leads
to analytical expressions for tangential and sagittal lens vergences or powers. The main
and classical result from this analysis, when applied to spherical lenses, are the well-known
Tscherning ellipses [6]. They provide the combination of base curve and prescription for
which either oblique astigmatism, mean power error, or tangential error are cancelled.
In general, the third-order solution takes the form

E = x2 fsph(κi, P, n, L)

where E stands for some type of oblique error (classically, oblique astigmatism, oblique
mean power error, or tangential error), x is the radial coordinate, or distance from the
optical axis, of the point the viewing line is passing through, and fsph is a quadratic function
of the curvature of either surface, κ1 or κ2, and the lens power, P; it also depends on the
lens refractive index, n, and the object vergence, L. More generally, fsph will be a function
of the curvature of both surfaces and the lens power. For thin lenses, they are related by
the lens equation, so only two of them are needed to specify lens power and lens bending.
In modern lens design, the front surface is usually spherical, and its refractive power is
known as the base curve, B. Setting fsph(B, P) = 0 leads to the Tscherning ellipse for the
particular oblique error, and it establishes a relationship between lens power and base
curve that will cancel the error. With fsph(B, P) = 0 being a closed curve, there is a finite
range of powers for which the error cancelation can be achieved. Additionally, for any
particular power within this range, there will be two values (Ostwald’s and Wollaston’s
solutions) of the base curve that will seat on the ellipse, henceforth cancelling the oblique
error. Because of the form of the previous equation, cancellation will take place for all
values of x; that is, third-order theory applied to spherical lenses predicts that a given
oblique error will be cancelled at full field if the base curve is selected so that fsph(B, P) = 0.
Finally, as each oblique error has its own function fsph(B, P), only one type of error can
be cancelled.

Lenses with aspherical surfaces but still keeping revolution symmetry have also
been thoroughly studied. The extension of the third-order theory to include lenses with
aspherical surfaces has usually been based on a temporary fourth-order approximation to
conicoids [2,8,18]. This procedure provides one extra parameter per aspheric surface: the
conic constant. Once the asphericity is incorporated into the equations, a new second-order
approximation on the transverse coordinate x yields a result similar to that of spherical lenses,

E = x2 fasph(B, P, Q1, Q2, n, L)

where Q1 and Q2 are, respectively, the conic constants of the front and back lens surfaces,
and fasph is no longer a quadratic equation on B and P. The extra degrees of freedom
provided by the asphericity allows for extending the range of lens powers for which there
is a solution fasph = 0, which is infinite now. Moreover, a solution fasph = 0 can be obtained
for any base curve, provided we select the conic constants adequately. Finally, the fact that
fasph does not depend on x implies that correction of the oblique error is uniform across
the whole field. However, when aspheric lenses with conicoid surfaces are studied by
means of exact ray tracing, it is observed that full field compensation of the oblique error
cannot be achieved [9,17]. Numerical computations reveal that, indeed, any lens power
can be corrected of one oblique error for any value of the base curve, but correction takes
place at a single viewing direction (a single value of the x coordinate) and then, typically,
performance rapidly deteriorates as the viewing angle increases [9]. The reason for this
disparity between the two computation approaches is that although local curvatures of
the conicoids are incorporated into the Coddington equations through a fourth-order
approximation (which is the bare minimum to introduce the conic constants), the resulting
equations for the oblique errors are finally simplified by just retaining up to second-order
terms in x.
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One important conclusion that can be deduced from the third-order approach is that,
assuming one surface of the lens is kept spherical, it is not possible to simultaneously
correct the astigmatism error and mean power error. That means all spectacle lenses (with
at least one spherical surface) will have some uncorrected errors that might affect the visual
quality. Therefore, a compromise is needed in how the unwanted power error is distributed
between the mean power and the astigmatism. A usual strategy involves the definition of a
merit function that can include terms for the oblique astigmatism, lens thickness, distortion,
or higher-order aberrations. One example of such merit function is the LeGrand criterion
described by Texier et al. [12], which uses a weight of

√
2/2 on the astigmatism relative

to the mean power. Another example could be the minimization of the blur as defined
by Raasch [19], which implies a relative weight of 1/2 on the astigmatism relative to the
mean power. Sun et al. [1] proposed a merit function that combines oblique astigmatism,
distortion, and a restriction to avoid inflection points on the surface.

As we have previously described, third-order theory has been applied to demonstrate
the existence of solutions for merit functions that correct either oblique astigmatism, mean
power error, or tangential error, but the question about the existence of solutions for general
merit functions is still unanswered. Miks et al. [8] described results for aspherical lenses
that eliminates oblique astigmatism while reducing high-order aberrations. Texier et al. [12]
showed the result for the LeGrand criterion for both spherical and aspherical lenses.

The objective of this paper is twofold: first we show that third-order theory can be
extended by keeping a more accurate description of the surface curvatures as required
in the Coddington equations. Then, we use the resulting expressions for the tangential
and sagittal powers to obtain a general solution beyond the particular cases aimed at the
minimization of either oblique astigmatism, tangential error, or mean power error.

This paper focuses on ophthalmic single-vision lenses. Moreover, the powers consid-
ered will be moderate, below five diopters, as they represent the refractive errors of the
majority of the lens wearers [20]. Therefore, we can assume that both surfaces in the lens
have low curvature. Considering the de facto standard in the modern ophthalmic industry,
we will assume that the front surface is spherical with refractive power B and that the back
surface is aspherical, and we will study the properties of the solution with respect to the
asphericity and the base curve. More complex lens geometries such as bi-aspheric lenses
have been designed and commercialized. When both surfaces are free, the tangential and
sagittal errors can be independently optimized [17,21]. The results presented in this paper
can be extended to bi-aspherical lenses, but we restrict the analysis to lenses with one
spherical surface. Finally, we demonstrate that, within this extended third-order theory, we
have one and only one degree of freedom to cancel any arbitrary combination of oblique
errors. Extensive numerical experiments using exact ray tracing confirm that these results
are not a consequence of the approximations but are an intrinsic feature of ophthalmic lens
geometry and use.

2. Method

The first part of the analysis follows the standard procedure to locate tangential and
sagittal foci of an ophthalmic lens. Though the reader may find this computation else-
where [3,6], we have opted to reproduce the standard development here for completeness
and to make clearer the different approximations we later use. First, we consider the refrac-
tion of a thin astigmatic pencil whose principal ray lays in a meridional plane of a surface
with revolution symmetry (that is, the symmetry axis and the main ray are co-planar). Let
n and n′ be the refractive indexes at either side of the surface, as depicted in Figure 1. The
tangential and sagittal object points are located at points QT and QS. After the principal
ray is refracted at point G, the tangential image for QT is Q′T , and the sagittal image point
for QS is Q′S. The vector N is the normal to the surface S at point G.
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The relationship between the object and image points are given by the Codding-
ton equations

n′

s′
− n

s
=

n′ cos a− n cos b
Rs

, (1)

n′ cos2 a
t′

− n cos2 b
t

=
n′ cos a− n cos b

Rt
, (2)

where s = QSG, t = QTG, s′ = GQ′S, and t′ = GQ′T . RS and RT are the main radii of
curvature at G (sagittal and tangential, respectively). The angles a and b are the incidence
and refraction angles of the principal ray at G.

Let us now consider a lens of refractive index n surrounded by air, as shown in
Figure 2. Let the object point be located at Q, so t1 = s1 = GQ. Consider a thin ray pencil,
which hits point G on the front surface, S1. The incidence and refracting angles of its
principal ray are called a and b, respectively. The ray pencil propagates inside the lens
up to a point H on the second surface, striking this surface with an incidence angle c and
emerging with refraction angle d. In general, the emerging ray pencil is astigmatic, being
t′2 = HQ′T and s′2 = HQ′S.
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To obtain the formulas for the sagittal and tangential powers, the Coddington equa-
tions are applied to the points G and H. For the first surface the equations are

n
s′1
− 1

s1
=

n cos b− cos a
R1S

(3)

n cos2 b
t′1

− cos2 a
t1

=
n cos b− cos a

R1T
(4)

and for the second surface
1
s2
− n

s2
=

cos d− n cos c
R2S

, (5)
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cos2 d
t′2
− n cos2 c

t2
=

cos d− n cos c
R2T

. (6)

R1S and R2S are the local curvature radii in the sagittal plane of the first and second
surfaces at points G and H, respectively. The same convention applies for the radii R1T
and R2T . Next, we will calculate the oblique powers using Equations (3)–(6) to calculate
the oblique powers, following the procedure used by Jalie [6]. If the distance GH can be
neglected with respect to the surface radii and focal distances, then

t′1 ∼= t2, s′1 ∼= s2. (7)

In addition, according to Snell’s law

sin a = n sin b, n sin c = sin d. (8)

In classical third-order theory, the angles are supposed to be small, so the second-order
approximation can be used:

sin a ∼= a, cos a ∼= 1− a2/2. (9)

On the other hand, the local radii can be replaced by the surface refractive powers,
F1S,T = B = (n− 1)/R1S,T and F2S,T = −(n− 1)/R2S,T Finally, the lens sagittal and
tangential powers are defined as FS = 1/s′2 and FT = 1/t′2.

Substituting the previous definitions and relations into the Coddington equations,
we can obtain expressions for the oblique powers that are linear on the surface refractive
powers and quadratic on the angles a and d

FS = (B + F2S)

(
1 +

a2

2n

)
− F2S

a2 − d2

2n
, (10)

FT = (B + F2T )

[
1 +

(n + 2)a2

2n2 +

(
n2 − 1

)
d2

n2

]
−

F2T(n + 2)
(
a2 − d2)

2n2 . (11)

The angle d can be determined by the position of the lens relative to the eye, as shown
in Figure 3. As it is usually done in ophthalmic lens design, we are assuming that the eye is
looking through point H and that its visual axis coincides with the refracted principal ray.
This also means the rotation center of the eye is located at O′2, where the output ray meets
the lens optical axis. We also use the classical assumption that the aperture stop and the
exit pupil are located at the rotation center of the eye. When the eye rotates an angle θ′2, its
visual axis goes through point H, whose transverse or radial coordinate with respect to the
optical axis is x. The distance from the vertex of the back surface to O′2 (also the rotation
center of the eye) is l′2, with a related vergence L′2.
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The angle d is given by
d = φ− θ′2. (12)

where φ is the angle formed between N2 and the optical axis. If the transverse coordinate x is
small with respect to the radius of curvature of the surface at its vertex, we can approximate

φ(x) ∼= −
xF2(0)
n− 1

, θ′2 = xL′2. (13)

As the lens is rotationally symmetric and we are neglecting its thickness, its central
power is given by P = B + F2(0). The angle d is finally given by the expression

d = −x
P− B + L′2(n− 1)

n− 1
. (14)

A similar analysis can be made for the incidence angle a at the first surface, as depicted
in Figure 4. First, we have

a = ϕ− θ1. (15)
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With the same approximations we used for d, under which the transverse coordinate
of G is also x, we have

θ1
∼= xL1, ϕ(x) ∼=

xB
n− 1

, (16)

where we are assuming that the transverse coordinates at G and H are the same, as a
consequence of the thickness being negligible. Likewise, if we call O1 and O′1 to the points
where the incident and refracted rays cross the optical axis, l1 and l′1 to the distances
from the surface vertex to them, and L1 and L′1 to their respective vergences, we can
set L1 = L′1 − B, L′1 ∼= L2 and L′2 ∼= L2 − (P− B). With all these equations we get the
next expression:

a = x
[nP− (P− B)− L′2(n− 1)]

n− 1
. (17)

Now we can substitute the expression for the angles (14) and (17) into the equations for the
oblique power, (10) and (11). The final equations are quadratic in x,
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FT(x) = [B + F2T (x)]

{
x2 (n+2)

[
B−P+P n−L′2 (n−1)

]2

2 n2 (n−1)2

+
x2 (n2−1)

[
P−B+L′2 (n−1)

]2

n2 (n−1)2 + 1

}

− 1
2 n2

{
x2
[

P−B+L′2(n−1)
]2

(n−1)2

−
x2
[

B−P+P n−L′2 (n−1)
]2

(n−1)2

}
(n + 2) F2T(x),

(18)

FS(x) = [B + F2S(x)]
{

x2 [B−P+P n−L′2 (n−1)]
2

2 n (n−1)2 + 1
}

+ F2S(x)
2 n

{
x2 [P−B+L′2 (n−1)]

2

(n−1)2

− x2 [B−P+P n−L′2 (n−1)]
2

(n−1)2

}
.

(19)

Note that in the last two equations we have made explicit the dependence of the sagit-
tal and tangential powers on x. The differences between the tangential and sagittal powers
and the central powers are known as tangential and sagittal errors, respectively: ET(x) =
FT(x)− P, ES(x) = FS(x)− P. Similarly, the oblique astigmatism and oblique mean power
errors are defined as EA(x) = FT(x)− FS(x) and EP(x) = [FT(x) + FS(x)]/2− P.

3. Results

We continue to use x as the transverse (radial) coordinate, and we give the name z(x)
to the sag of the back surface. For surfaces of revolution with low curvature, the local
tangential and sagittal radii can be obtained from the simple relations RT(x) = 1/z′′ (x)
and RS = x/z′(x) [22]. Henceforth, the corresponding refractive powers are

F2T(x) = −(n− 1)z′′(x), (20)

F2S(x) = −(n− 1)
z′(x)

x
. (21)

In principle, given any aspherical back surface with revolution symmetry, z(x), we
can compute its local refractive powers and then substitute in Equations (18) and (19)
to obtain an approximation of the oblique powers of the lens. Then we would seek the
conditions for which ET(x) = ES(x) = 0, that is, there are no oblique aberrations; the lens
wearer perceives the same power for any oblique sight direction. In general, this cannot be
achieved, and some classical compromises have been proposed and thoroughly studied [6]:

• Point focal lens. Imposes the oblique astigmatism to be zero for all x, EA(x) = 0.
• Percival lens. Imposes the mean power to be equal to the central power for all x:

EP(x) = 0.
• Zero-tangential-error lens. Imposes the tangential power to be equal to the central

power for all x: ET(x) = 0.

Instead of investigating each of these compromises separately, we may impose that
a weighted average of the oblique (tangential and sagittal) powers must equal the cen-
tral power,

vFT + uFS = (u + v)P, (22)

where the weights u and v can take negative values. Any two pairs (u, v) and (u′, v′) lead
to the same solution if they are linearly dependent, so condition (22) is fully determined
by a single parameter, and a relation between u and v must be chosen. One such relation
that will allow the generation of all interesting balances between tangential, sagittal, and
central power while keeping a finite range of the parameters u and v is
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u2 + v2 = 1, (23)

which normalizes the 2-tupla (u, v). Condition (22), along with normalization (23), can also
be written as a balanced elimination of both the tangential and sagittal errors,

ET cos α + ES sin α = 0, (24)

where v = cos α and α runs from –π to π to generate all the interesting cases.
The solutions for condition (22) includes the classical ones:

• Point focal lens, u = −v = −
√

2/2, and α = −π/4.
• Percival lens, u = v =

√
2/2, and α = π/4.

• Lens with zero tangential error, u = 0, v = 1, and α = 0.

Although not considered a classical solution, the lens with zero sagittal error can also
be obtained when u = 1 and v = 0 (α = π/2).

In the traditional third-order theory, suitable functions describing F2S(x) and F2T(x)
are substituted in Equations (18) and (19); the resulting expressions are expanded in
powers of x, and the results are simplified by retaining up to second-order terms in x. This
procedure leads to the generic expressions E = x2 fasph(B, P, Q1, Q2, n, L) we previously
introduced. With this approach, condition (22) only adds marginal generality, as the
dependence of any combination of oblique error will always be quadratic with x, and will
vanish for all x if fasph can be zeroed.

We show next that analytical results around condition (22) can be easily obtained
without the need to neglect higher powers of x in Equations (18) and (19). With the outgoing
results we are able to explore how (22) is satisfied as a function of the transverse coordinate,
and that brings a richer understanding of the full-field lens optimization problem. Finally,
we will later see that among the family of oblique powers that satisfy condition (22), we
can find the solution to the minimization of more interesting merit functions—for example,
those related to optical blur averaged across the field of view.

When expressions (20)–(22) are applied to Equations (18) and (19), the problem is
converted into a second-order linear ordinary differential equation, for which finding
an explicit solution is not generally possible. However, if the surface has a Taylor series
representation, z(x) = ∑

i>0 even
cixi, it can be inserted into Equations (20) and (21), and

the uniqueness of the Taylor series yields similar expansions for the surface powers F2T
and F2S,

F2T(x) = −(n− 1) ∑
i≥0 even

(i + 2)(i + 1)ci+2xi,

F2S(x) = −(n− 1) ∑
i≥0 even

(i + 2)ci+2xi.
(25)

Now, using these expansions in Equations (18) and (19) delivers the oblique powers
also as a power series in x. Finally, we can use them in condition (22) and solve for the
coefficients ci that fulfill the condition. The first two coefficients are

c2 =
B− P

2(n− 1)
, (26)

c4 =
P

8n (u + 3 v) (n− 1)3 ∆, (27)

where ∆ is a shorthand description for the quantity

∆ = B2 [u (2 n + 1)+v (4 n + 5)] + [P + L′2 (n− 1)]2 (u + v + 2 n v)
−B P

[
u
(
−n2 + 2 n + 2

)
+ v

(
−n2 + 4 n + 6

)]
−2 B L′2

(
n2 − 1

)
(u + 3 v).

(28)

The coefficients for i > 4 can be obtained from the recurrence relation
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ci = −ci−2
(i− 2)[u + (i− 3)v + 2(i− 3)nv][B− L′2(n− 1)− P]2

2 i n[u + (i− 1)v](n− 1)2 , (29)

from which any higher-order coefficient can be obtained. For example, the sixth- and
eighth-order coefficients are

c6 = −P (u + 3 v + 6 n v) [B− L′2(n− 1)− P]2

24 n2 (u + 3 v) (u + 5 v) (n− 1)5 ∆, (30)

c8 =
P (u + 3 v + 6 n v) (u + 5 v + 10 n v) [B− L′2(n− 1)− P]4

64 n3 (u + 3 v) (u + 5 v) (u + 7 v) (n− 1)7 ∆. (31)

The term c2 gives the curvature of the second surface at x = 0. Indeed, this result
for c2 is nothing but the lens having power P. The term c4 provides the second degree of
freedom after the base curve. We call this term “fourth-order asphericity” of the surface; it
is related with the conic constant when the surface is a conicoid. The terms c6, c8, etc., are
higher-order asphericity terms.

Let us check the accuracy of the presented approach when the back surface contains
terms up to order four. Once we choose values for P, B, n, and L′2, we can compute the
coefficients c2 and c4 by means of (26) and (27). With these coefficients, condition (22)
should be satisfied within the approximations used to obtain (18) and (19) and within the
fourth-order approximation for the back surface.

The results are compared with those of a numerical computation performed as follows.
A computer model of the lens is constructed using the values P, B, n, and the thickness
that would be used by default in actual lens manufacturing. A fourth-order coefficient
c4 = 0 is chosen as seed. The oblique powers are computed by exact ray-tracing through
the lens assuming an inverse distance to the rotation center of the eye L′2 [6,22]. The tracing
is repeated in an optimization loop that searches the value of c4 for which condition (22) is
better fulfilled.

The comparison is presented in Figure 5 as curves of tangential (blue) and sagittal
(red) power vs the transverse coordinate. Lens data are P = 5 D, B = 6 D, n = 1.5, L′2 = 37
D, and the optimization was repeated for nine values of u ranging from −

√
2/2 to +

√
2/2.

Solid lines represent the analytical predictions (up to order four), and the dashed lines
represent the optimal solution obtained by numerical methods.

The first conclusion we can draw from Figure 5 is that oblique powers do not behave
as expected at full field, that is, for all values of the transverse coordinate used in the
computation, up to 15 mm (which corresponds to θ′2 = 29 deg). This is especially easy to
spot for the classical solutions, which occupy the main diagonal of the grid in Figure 5.
For punctual lenses (u = −0.707), we expect that FT = FS. For Percival lenses (u = 0.707),
FT − P should equal P− FS. For lenses with zero tangential error (u = 0), FT should equal
P. We indeed observe these behaviors but only for values of x smaller than around 5 mm
(θ′2 = 10 deg). As the transverse coordinate grows larger, the error in meeting condition
(22) also grows, more or less uniformly across the different values of the parameter u. The
reason for this error is explained next: When the expressions for the oblique powers are
inserted into the condition (22), and we solve for the coefficients of the Taylor expansion
of z(x), we find a condition for c2 that gives (26), a special relation between c2 and c4 that
gives (27), and the recurrence relation (28) linking ci with ci−2 starting with i = 6.

Let us assume that there are just two terms (second- and fourth-orders) in the series
expansion for z(x). The outline procedure then gives two contradictory equations for c4,
equation (27) and c4 = 0, the latter from the recurrence relation (28) with c6 = 0. The
meaning of this is that there is no surface defined with just a quadratic and a quartic
coefficient that allows (22) to be fulfilled for all x, at least with the approximations used to
reach (18) and (19) and with the approximation giving rise to the sagittal and tangential
refractive powers of the surface.
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Figure 5. Tangential (blue line) and sagittal (red line) powers up to term c4 for a lens with P = 5 D,
B = 6 D, n = 1.5, and L′2 = 37 D, for u ranging from−0.707 to +0.707. The continuous line represents
the analytical solution obtained within the approximation described in the text, while the dashed line
corresponds to the numerical solution obtained by optimization.

The impossibility of coping with (22) is especially clear for u = 0. In this case, the
tangential power should be constant and equal to P. However, Equations (26) and (27) yield

FT(x) = P− x4 P (2 n+1) [B−L′2(n−1)−P]
2

4 n2 (n−1)4 (4 B2 n + 5 B2 − 6 B L′2 n2

+6 B L′2 + B P n2 − 4 B P n− 6 B P + 2L′2
2 n3 − 3 L′2

2 n2 + L′2
2

+4 L′2 P n2 − 2 L′2 P n− 2 L′2 P + 2 P2 n + P2), (32)

and the existence of a non-zero fourth-order term implies that the tangential error cannot
be zeroed for all x.

In the classical third-order theory, fourth-order terms are accounted for in the surface
powers, but only second-order terms are retained in the oblique powers before testing the
conditions for oblique astigmatism, power error, or tangential error [2,8,18]. The result is
that, within the frameworks of these third-order theories, the resulting lenses cope with
the zeroing of the selected oblique error at full field. However, this is not how the lens
will actually work. In particular, the exact oblique powers of the lens with the optimal c4,
determined by exact ray tracing, present a remarkably similar behavior as those obtained
with the analytic tools presented so far, as shown in Figure 5.

Let us go back to the inconsistency for c4 discussed before. If we add a third term with
coefficient c6, this will be given in terms of c4 (which in turn is given in terms of c2), and
the last application of the recurrence formula will give c6 = 0. The inconsistency has been
translated to c6. In general, for any given number of terms, there will be an inconsistency
for the last one. However, we can expect that each high-order coefficient will be much
smaller than the previous one. If that is so, condition (22) should be better fulfilled by using
more terms in the power expansion for z(x).

We tested this hypothesis with the same lens parameters used in the previous experi-
ment but using coefficients up to c8. For the numerical computation, we used a polynomial
surface with the same degree, and we optimized the fourth-order asphericity and the two
high-order coefficients to minimize the error in condition (22). The results are shown in



Appl. Sci. 2021, 11, 5696 11 of 16

Figure 6, using the same color and line type schemes as before. Once again, the match
between the analytical results and the numerical computation is remarkably good up to
x ∼= 12 mm (θ′2 = 24 deg). Additionally, the two techniques now provide a much better
fulfillment of condition (22) for any u. We observe that the analytical solutions start deviat-
ing from the numerical one for x > 12 mm, especially the tangential power. We suspect
that at this value of the transverse coordinate, the approximations made on the angles
and the curvatures start showing up. The results presented in Figure 6 strongly suggest
that higher-order polynomial terms are indeed needed for a full-field correction of the
oblique aberrations, even when the oblique powers have been obtained with the low-angle,
low-curvature, and negligible-thickness approximations.
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Figure 6. Tangential (blue line) and sagittal (red line) powers up to the term c8 for a lens with P = 5 D,
B = 6 D, n = 1.5, and L′2 = 37 D, for u ranging from –0.707 to +0.707. The continuous line represents
the analytical solution obtained within the approximation described in the text, while the dashed line
corresponds to the exact numerical solution.

It is worth noting that all the coefficients ci with i > 2 are proportional to ∆. If the lens
parameters combine in a way that ∆ = 0, all these coefficients will be zero, and condition
(22) will be satisfied at full field. A surface with a single second-order term is, within the
approximations used, nothing but a spherical surface, and the condition ∆ = 0 expresses
the relation between the base curve and the lens power that will satisfy condition (22).
∆(u) = 0 is then the equation of the Tscherning ellipse for each value of the parameter u.

There is a final consideration about the oblique powers shown in Figure 6. Their
behavior is smoother and more “parabolic” than those in Figure 5, where the curves clearly
deviate from the parabolic shape when the fourth-order term dominates. This behavior
is not a special feature of the chosen example; we have always found the same pattern in
many other cases numerically analyzed.

To have a better understanding of this feature, let us assume we start with a back
surface defined by a polynomial having N terms and maximum order 2N. Using Equations
(26)–(29) we find the coefficients {ci}i=2,...,2N for which the lens satisfies condition (22).
Using these coefficients, we use expressions (18) and (19) to find the polynomial expansions
for the oblique powers. We can easily check that these polynomials have the same order
than z(x), so FT = P + ∑

i=2,4,...,2N
cTixi and FS = P + ∑

i=2,4,...,2N
cSixi.
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Although we have not found analytical proof, the numerical analysis of many cases
suggests that, for an N that is large, the next property holds:

∑
i=4,6,··· ,2N

cTixi � P + cT2x2, ∑
i=4,6,··· ,2N

cSixi � P + cS2x2. (33)

In other words, the more terms we use in z(x), the better condition (22) is fulfilled
for all x, and the smaller is the sum of all the higher-than-fourth-order terms in the series
that give the oblique powers. This property is illustrated in Figure 7, where we show the
tangential power corresponding to the example analyzed in Figure 6, using FT = P + cT2x2

(blue curve), and the complete FT = P + ∑
i=2,4,··· ,8

cTixi (orange curve). The maximum

difference between the two curves at x = 10 mm is about 0.01 D. This property is closely
related with the use of solutions of condition (22) as optimizers of more general merit
functions involving blur.
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4. Discussion

Several authors have pointed out that the fourth-order asphericity is well defined for
any pair (B, P) and for the three classical solutions [3,9,12]. In other words, in classical
third-order theory, for any pair (B, P) we can always find a coefficient c4 for which the lens
meets one of the three classical conditions EA = 0, EP = 0, or ET = 0.

According to the theory presented in this paper, the fourth-order asphericity is well
defined except when u + 3v = 0, that is, when u = −3v. By inspection of the recurrence
relation (29) and examples (30) and (31), we can see that any higher-order term ci fails to be
well defined for all uj, such that

{
uj = −(j− 1)v

}
j=4,6,··· ,i.

If we use the normalization condition (23), we can state that any theory of order 2N,
that is, a theory using monomials up to order 2N in the expansion of z(x), will fail to meet
condition (22) for the set of values of the parameter u satisfying

uj =
1− j√

1 + (1− j)2
, j = 4, 6, · · · , 2N (34)
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This is a decreasing monotonic sequence with limit −1 and starting at u4 = 3/
√

10.
We conclude that the general problem stated by condition (22) has a solution for any pair

(P, B) when u ∈
(
−3/
√

10, 1
]
. This interval includes the classical solutions: point focal

lenses, Percival lenses, and lenses with zero tangential error. Lenses with zero sagittal
error (u = −1) or with very small sagittal error (u & −1) lie in the complementary interval
u ∈

[
−1,−3/

√
10
]
. In this interval, and whenever Equation (36) is satisfied for a given j,

all the coefficients with i > j are not defined. Lenses with identically zero sagittal error can
be computed, as all the coefficients are finite. However, convergence of expansions (25)
will be slower than for those problems with bigger values of u.

Despite the fact that Equations (27)–(30) are not linear on u, we can find the relation-
ships between the asphericity parameters of a given order corresponding to different values
of u. For example, let us call c4p, c4m, and c4t to the fourth-order asphericities corresponding
to point-focal lenses, Percival lenses, or zero tangential error lenses, respectively. It can be
shown that

c4t =
2
3

c4m +
1
3

c4p, (35)

that is, the fourth-order asphericity coefficient of the lens with zero tangential error is a
weighted sum of the coefficients for the Percival lens and the point-focal lens. Among the
classical solutions, asphericity for zero tangential errors provides a more balanced solution.

Figure 8 shows the curve c4(u) in the interval u =
(
−
√

3/10, 1
]

for the example lens
used in Figures 5–7. The amount of asphericity needed to meet some design criterion,
whether it is a determined value of u or the use of other merit functions, which are related,
as we show next, is of great value to the lens designer. In general, smaller values of
asphericity may facilitate the lens manufacturing and will make the lens more stable with
respect to variation of the wearer’s parameters or lens misalignment.
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Figure 8. Fourth-order asphericity c4 as a function of u for the same lens example used in Figures 5–7.

We finally discuss the relation between condition (22) and the use of more general
merit functions that may balance combinations of the oblique powers across the complete
field of view. A standard example of such merit function can be

f = ∑
k

wk
[
(αPT(xk) + βPS(xk)− Ptgt(xk)

]2 (36)



Appl. Sci. 2021, 11, 5696 14 of 16

where α and β provides a weighted average of the oblique powers that are evaluated at
points xk, as it is the target power Ptgt(xk), and Wk are weights controlling the importance
given to the transverse coordinate.

The idea behind this approach is that the surface minimizing (36) can be found among
the surfaces that comply with (22) and whose coefficients are given by (26) to (29). If that
were the case, we would have converted a multi-parametric optimization of the surface
coefficients into the minimization of a functional that depends on a single variable.

The merit functions are usually constructed to balance the error between sagittal and
tangential power or between mean power and astigmatism. One instance of these merit
functions consists of the minimization of the defocus defined by Raasch [19], which is
given by

δ(x) =
√
[FS(x)− P]2 + [FT(x)− P]2 (37)

For example, we could choose

f =
∫ x̂

0
δ2(x)dx, (38)

where x̂ is a limiting value for the field of view. Another example is the “rational lens” [12].
Let us consider a more general merit function of the form:

f =
∫ x̂

0 {w1 [FS(x)− P]2 +w2[FT(x)− P]2 + w3[FS(x) + FT(x)− 2P]2

+w4[FS(x)− FT(x)]2}dx,
(39)

which aims to reduce tangential error, sagittal error, power error, and astigmatism uni-
formly over the transverse coordinate and with weights that can be organized in a single
4-tupla w = (w1, w2, w3, w4). This general merit function includes the minimization of the
Raasch defocus when the weight vector is set to w = (1, 1, 0, 0).

Let zu(x) be the surfaces that meet condition (22) for the parameter u, and let us try to
minimize f in the set of functions {zu}. Now, f depends on the single variable u (which
will determine the coefficients {ci}i=2,··· ,2N), and we just must impose ∂ f /∂u = 0. The
problem can be analytically solved if N is large enough so that property (33) holds. In that
case we use FT = P + cT2x2 and FS = P + cS2x2, where the coefficients are given by

cT2 =
L′2

2 P u
u + 3 v

+
P u
(

B2 − L′2
2 + 2 L′2 P− P2

)
n (u + 3 v)

−
P u
(

B2 + B P− P2)
(u + 3 v) (n− 1)

,

cS2 = − L′2
2 P v

u + 3 v
−

P v
(

B2 − L′2
2 + 2 L′2 P− P2

)
n (u + 3 v)

+
P v
(

B2 + B P− P2)
(u + 3 v) (n− 1)

(40)

Now, the minimization of (39) can be analytically obtained, with the result

umin =
w1 + 4w3 − 2w4√

w2
1 + 8w1w3 − 4w1w4 + 9w2

2 + 24w2w3 + 12w2w4 + 32w2
3 + 8w2

4

. (41)

For the particular case of the Raasch defocus, the optimum value for u is umin =
1/
√

10 ∼= 0.316. This prediction has been validated with the result obtained when the
Raasch defocus is numerically minimized with exact ray tracing and multi-parametric
optimization of the surface coefficients. Figure 9 shows the tangential and sagittal powers
for the lens with parameters P = −4 D, B = 0.5 D, n = 1.5, and L′2 = 37 D, which satisfies
condition (22) with u = 0.316, compared with the oblique powers of the lens numerically
optimized. The difference between the two approaches is below 0.01 D for the range of
transverse coordinates for which the angles and curvature approximations make sense. The
prediction fits the numerical result quite well, which indicates that the previous method is
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adequate for exploring lens performance using nonlinear merit functions without the need
for numerical optimization.
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Figure 9. Tangential (red line) and sagittal (blue line) powers up to the term c8 for a lens with
P = −4 D, B = 0.5 D, n = 1.5, and L′2 = 37 D. The continuous lines represent the analytical
solution obtained with the approximation described in the text for u = 0.316, while the dashed lines
correspond to the oblique power of the lens computed by multiparametric minimization of the merit
function (39) with weights (1, 1, 0, 0).

5. Conclusions

This work shows that it is possible to use high-order polynomial terms to describe the
optical surface of an ophthalmic lens while at the same time maintaining the second-order
approximation of the incident and refraction angles typically used in the so-called third-
order theory of spectacle lenses. There is previous work that used high-order aspherical
terms to correct oblique aberrations in ophthalmic lenses [1,17], but the calculation has
always been based on multiparametric optimization. Here, we presented analytical expres-
sions for the surface coefficients c2 up to c8 and a general recursive relation for higher-order
terms. The need for higher-order polynomial terms in the surface description may seem
to contradict the second-order approximation in angles shown in Equation (9), but in fact,
both are independent: high-order asphericity may bring richness to the central region of
the lens where the incident angles are still small, as demonstrated by the numerical results
and corroborated by the analytical approach.

We verified that this formulation provides a more accurate estimation of the oblique
powers than previous third-order approximations because they closely match the equiva-
lent ray-traced solutions.

A generalization of the three classical solutions (point-focal lens, Percival lens, and
lens with zero tangential error) was proposed, depending on a parameter u. We have
shown that these generalized solutions are well-defined for all base curves and powers
for a wide range of values of the parameter u. Moreover, we have shown that the oblique
powers of the solutions obtained with this parametrization tend to be parabolic and smooth.
Moreover, it seems that the surfaces that minimize a broad set of nonlinear merit functions
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belong to the set of functions that meets the general compromise (22). This hypothesis
allows the analytical solving of minimization problems relevant in ophthalmic lenses.

Though modern ophthalmic lens design will rely on numerical computation to opti-
mize general lenses with tilts, prescription astigmatism, even progressive lenses, the tools
presented in this paper offer new insight on the behavior of the oblique powers and their
relationship with the surface geometry and allow fast testing of new design hypotheses.
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