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Abstract: Aircraft icing presents a serious threat to the aerodynamic performance and safety of
aircraft. The numerical simulation method for the accurate prediction of icing shape is an important
method to evaluate icing hazards and develop aircraft icing protection systems. Referring to the
phase-field method, a new ice accretion mathematical model is developed to predict the ice shape.
The mass fraction of ice in the mixture is selected as the phase parameter, and the phase equation
is established with a freezing coefficient. Meanwhile, the mixture thickness and temperature are
determined by combining mass conservation and energy balance. Ice accretions are simulated
under typical ice conditions, including rime ice, glaze ice and mixed ice, and the ice shape and its
characteristics are analyzed and compared with those provided by experiments and LEWICE. The
results show that the phase-field ice accretion model can predict the ice shape under different icing
conditions, especially reflecting some main characteristics of glaze ice.

Keywords: numerical simulation; phase-field method; aircraft icing; ice accretion model

1. Introduction

The aircraft icing problem is one of the most serious problems in the aviation industry [1].
Aircraft ice accretion may not only increase the weight of aircraft, but also destroy the
aerodynamic performance [2] and increase the resistance of aircraft [3], which is an im-
portant hidden danger leading to flight safety accidents. Consequently, in order to ensure
the flight security of aircraft and the reliability of anti-icing and deicing systems, it is
necessary to study ice accretion on aircraft surfaces. Aircraft icing is affected by many
factors, including flight status, geometry of icing area, atmospheric conditions and dura-
tion of passing through icing clouds [4]. Among them, the characteristic parameters of
atmospheric conditions and flight status are the most important external factors for ice
accretion, including liquid water content (LWC), median volume diameter (MVD), ambient
temperature, etc.

According to the ice shape, aircraft ice can be roughly categorized as rime ice, glaze
ice and mixed ice [5]. Rime ice forms under the atmospheric conditions of low freezing
temperature, usually below −15 ◦C, relatively low LWC and small MVD. After hitting
the aircraft surface, the supercooled droplets freeze into ice rapidly, resulting in more
gaps in the ice layer, less density and opacity, as seen from the appearance. Due to the
instantaneous freezing characteristic, rime ice is loosely cemented and easily falls off, but
its surface maintains an aerodynamic shape and is less harmful to the flight security of
aircraft. Glaze ice mainly occurs when the ambient temperature is relatively high, usually
in the range of −10 ◦C to 0 ◦C, with higher LWC and relatively larger MVD. In this case,
supercooled droplets do not freeze or partially freeze after hitting the surface. A fraction
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of residual liquid water flows under the action of external airflow and gradually freezes.
The structure of glaze ice is relatively compact, with higher density and a transparent
appearance, which does not easily fall off. In the process of ice accretion, horn ice may
form on the leading edge of the wing, which has a great influence on the aerodynamic
characteristics. Mixed ice is a mixture of rime ice and glaze ice, which has the characteristics
of both ice types. Similar to glaze ice, mixed ice may also seriously damage the aerodynamic
performance and pose a threat to flight safety.

At present, the approaches to studying aircraft ice accretion can be classified into
two categories: experimental research with ground or flight tests [6–8] and numerical
simulation methods [9,10]. In the process of research, each has its own advantages and
disadvantages. In recent years, with the development of computer technology, the efficiency,
economy and flexibility of numerical simulation methods are more and more prominent,
and have been widely studied and applied. Since the 1940s, a number of icing simulation
codes have been developed, such as LEWICE [11], ONERA [12], DRA [13], CIRAMIL [14]
and FENSAP-ICE [15,16]. These icing simulation codes generally consist of three major
modules, including calculating the airflow field, droplet trajectory and ice accretion.

In 1953, the Messinger model was first established based on energy balance [17].
Subsequently, Ruff [18] and Gent [19] improved the Messinger model by considering the
temperature rise caused by compressible flow and adding an energy source at the substrate,
which improved the applicability of the Messinger model. In order to build the Messinger
model, the following limitations need to be adopted: the ice and water layers are isothermal.
The heat is not allowed to be transferred from the interface of ice and water, and the energy
can only be balanced by the latent heat generated during ice formation. Hence, Huang [20]
introduced heat conduction in the ice layer into the classical Messinger model. These
methods are relatively complex and difficult to implement in the icing code in a simple
manner. However, these improvements have not changed the basic form of the Messinger
Model. The Messinger model can accurately predict the ice shape of rime ice, but the
prediction results for glaze ice and mixed ice need to be improved.

Bourgault [15] introduced the shallow water icing model (SWIM) into the icing calcu-
lation and established the differential equation of continuous water film flow on the icing
surface. The SWIM can describe the morphology and distribution of liquid water on the
ice surface in more detail, and improve the accuracy of ice prediction. Otta [21] assumed
that the water film is controlled by a Couette flow driven by a shear force and the thickness
of the water film is determined by the kinematic conditions at the interface between air
and water, which together constitute the SWIM equations.

Meanwhile, Myers [22] extended the Messinger model for aircraft icing, involving
solving heat equations in the ice and water layers. This method is very simple to introduce
into the icing code. Cao [23] extended the heat transfer model of the Myers Model by
introducing the concept of critical ice thickness as the criterion to judge whether there is
overflow in each ice control volume. Thus, a simple and reasonable mathematical model
was established, which can directly simulate the ice accretion on three-dimensional objects.
Giulio [24] improved the Myers model based on the local, exact solution of the unsteady
Stefan problem with heat transfer in the ice layer, and introduced local air temperature to
replace the constant freestream value in the Myers model.

Aircraft icing is a very complex physical process, involving a phase change of the
three-phase mixture of air, water and ice. Previous icing models focused on liquid water
on the surface, or regarded ice and water as independent. In this study, we researched the
flow and phase transition of a two-phase mixture of ice and water. The phase-field method
is a powerful method to study this kind of multi-phase flow. The phase-field method
treats multi-phase fluids as one fluid with variable material properties [25]. Specifically, the
phase-field method utilizes order parameters such as the concentration or volume fraction
of the fluids to represent different fluid phases. The order parameter is typically evolved
by the Cahn–Hilliard (C-H) equation, the Allen–Cahn equation or other types of dynamic
equations, so as to capture motion of the fluid interface.
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In order to simulate the complex flows of a fluid mixture, especially binary incompress-
ible fluid, a phase-field model was successfully established by Chella and Vinals [26], in
which the total density and the density of each phase are constant in the model. In the same
year, Gurtin, Poligone and Vinale extended the model to the framework of classical contin-
uum mechanics and proved that it conformed to the second law of thermodynamics [27].
Antanovskii proposed a temperature-dependent free energy, and introduced the Cahn–
Hilliard gradient term related to the phase-field model into the entropy function [28].
Recently, Guo proposed a numerical method for a quasi-incompressible Navier–Stokes–
Cahn–Hilliard (NSCH) system that satisfied the laws of thermodynamics [29]. Du et al. [30]
developed a numerical simulation method for the prediction of microstructural features of
aircraft icing based on the developed phase-field method.

In this paper, we propose a new ice accretion model for aircraft icing based on the
phase-field model. Different from previous icing models, in this study, we selected the
mixture of ice and water as the research object, not just the continuous water film on the
surface. Firstly, the icing problem of a two-dimensional wing is simplified. Then, based on
the phase-field model, the water and ice are treated as one fluid, and the phase equation
is established with the mass fraction of the mixture as the phase parameter. At the same
time, according to the mass conservation and energy balance of the mixture, the mass
conservation equation and energy conservation equation of the mixture are established and
improved on the basis of the Messinger model and Myers model. With the establishment
of the governing equations, the thickness and temperature of water film and ice layer can
be determined so as to achieve the purpose of this study, to predict the aircraft ice shape
under rime or glaze icing conditions.

The rest of the paper is organized as follows. In Section 2, we systematically establish
and complete the governing equations of the new ice accretion model based on the phase-
field method. In Section 3, the ice shapes are provided by the new ice accretion model
under a series of icing conditions and compared with the experimental ice shapes and
those provided by LEWICE. The findings are discussed and the future research directions
are highlighted in Section 4. Finally, the main conclusions of the present work are provided
in Section 5.

2. Materials and Methods

The numerical procedure of aircraft icing includes grid generation, flow field calcula-
tion, droplet trajectory calculation, ice accretion calculation, etc. The structured meshes
generated by solving elliptic partial differential equations are taken as background grids,
based on the given geometry. The Navier–Stokes equations based on the density pattern
are solved to obtain the flow field. In the solver, the finite volume method based on a
second-order central scheme with artificial viscosity by Jameson is applied for spacial
discretization, and an explicit fourth-order Runge–Kutta algorithm is used for the time
discretization. The S-A model is chosen for the turbulence model. In order to accelerate
the convergence, the local time step and residual smoothing methods are introduced. The
droplet motion equations based on Eulerian two-phase flow are solved to obtain the droplet
trajectories. The spatial and temporal discretization methods are the same as the flow field
equations. On this basis, the impingement characteristics of droplets can be calculated.
Then, according to the droplet impingement characteristics, the ice shape can be predicted
by the ice accretion model.

2.1. Simplification of Ice Accretion Model

In order to predict the ice shape under different ice conditions, it is necessary to
build the control bodies on the icing area, and then build a mathematical model. This is
different from the grid required for the calculation of airflow field and droplet trajectory,
which is shown in Figure 1a. The control volume used in icing calculation is composed of
nodes in a geometric shape. The control volume contains an ice layer and water film, as
shown in Figure 1b. In this study, the ice and water in the control volume are treated as a
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mixture, as shown in Figure 1c. h is the average height of the mixture in the control volume,
which is used as an unknown quantity in the icing calculation, but does not participate
in the composition of the control volume. The upper surface of the control volume is in
contact with the airflow, and the lower surface is the impact surface. The multi-layer grid
is constructed as shown in Figure 1b.

Figure 1. Diagram of ice model simplification: (a) the grid required for the calculation of airflow
field and droplet trajectory; (b) the control volume of ice layer and water film; (c) the control volume
of mixture.

As shown in Figure 1b, the chord length of mesh si is much larger than its normal
length sj, si � sj, and the normal velocity uj of the mixture can be neglected. Therefore, the
multi-layer grid containing a mixture can be simplified to a single-layer grid with normal
height of the mixture, which is shown in Figure 1c.

2.2. Two-Dimensional Form of Governing Equation

Aircraft icing is a special fluid–solid phase change phenomenon. However, both
the Messinger model and the shallow water film model only study the continuous water
film on the surface. In the phase-field icing model, the mixture of water and ice is taken
as the research object. Therefore, the phase equation, the mass equation and the energy
conservation equation of the mixture need to be established. By solving these governing
equations, the mixture thickness and the mass fraction of ice in each grid are predicted. On
this basis, the ice thickness and the ice shape can be obtained.

In the control volume V(t), the mass of the mixture, water phase and ice phase are
denoted by M, Mw and Mi, respectively. Then, we obtain [25]:

M = Mw + Mi, ρV = ρwVw + ρiVi., (1)

Among them, V, Vw and Vi are the total volume of mixture, the volume of water phase
and the volume of ice phase in the control volume, respectively. Their expressions are
as follows:

V = s · h, Vw = s · hw, Vi = s · hi, (2)

where h is the average normal height of the mixture over the control volume, hw is the
average normal height of water phase and hi is the average normal height of ice phase,
h = hw + hi.

By combining Equations (1) and (2), we can obtain:

ρh = ρwhw + ρihi, (3)
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and
ρhU = ρwhwUw + ρihiUi, (4)

where U is the velocity of the mixture, Uw is the velocity of the water phase and Ui is the
velocity of the ice phase.

In this study, the ratio of ice mass to mixture mass is chosen to be the phase parameter
C, which means C = (ρihi)/(ρh), ρwhw = 1− C. We obtain:

U = (1− C)Uw + CUi. (5)

Assuming that the ice produced by freezing adheres to the surface without displace-
ment, the average velocity is as follows:

Ui = 0. (6)

Then, the velocity of the mixture can be described as:

U = (1− C)Uw. (7)

The conservative equation of phase parameter C can be written as:

∂ρhC
∂t

+∇ · (ρhCU) = ṁice. (8)

In the phase equation, mice is the amount of liquid water frozen into ice, which can be
described as:

mice = fice · (1− C)ρh, (9)

where fice is the freezing rate, and can be written as [31]:

fice =
Cpw

L f
· (Tw − T∞ −

u2
d

2Cpw
+

φ · htc
CpwV∞LWCβ

), (10)

φ = −T∞ − 0.89 ·
u2

d
2Cpw

+
λϑLe

Cpahtc
, (11)

ϑ = (
es(Tw)

T∞
− Ptotales(T∞)

P∞Ttotal
)/(

Ptotal
0.622Ttotal

− es(Tw)

T∞
), (12)

in which htc is the convective heat transfer coefficient. Tw is the temperature of the water
film. Cpw is the specific heat capacity and water. Tm is the the phase transition equilibrium
temperature of water, Tm = 273.15 K. Le and L f are the latent heat of water gasification
and ice condensation. ud is the velocity of a droplet impacting on the surface. λ is thermal
conductivity of air. T∞ and P∞ are the temperature and pressure of the incoming stream.
Ttotal is the total temperature of the incoming stream and Ptotal is the total pressure of the
incoming stream, which can be specified as follows [18]:

Ttotal = T∞ · (1 + 0.2 ·Ma2), (13)

Ptotal = P∞ · (1 + 0.2 ·Ma2)
γ

γ−1 . (14)

As shown in Figure 2, the conservation equation of mass for the mixture can be
described as:

∂ρh
∂t

+∇ · (ρhU) = ṁimp − ṁevp, (15)

in which ṁimp is the water droplet collection rate. ṁevp is the evaporation rate, which is
obtained by analogy with the convection heat transfer term [17],

ṁimp = LWC ·V∞ · β, ṁevp =
htc

CpaρaRvLew2/3 [
es(Tw)

Tw
− es(T∞)

T∞
]. (16)
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Among them, Cpa is the specific heat capacity of air at constant pressure, which can
be taken as 1003.5 J/(kg ·K); ρa is the air density; Rv is the gas constant of water vapor,
which can be taken as 461 J/(kg ·K); Lew is the analogy criterion number of heat and mass
transfer, which is related to the content of liquid water in the air, and can be taken as 1 in
general icing conditions; es(Tw) and es(T∞) are the saturated steam pressure corresponding
to the water temperature Tw of the control volume and the ambient temperature T∞,
respectively [20].

Figure 2. Diagram of mass and energy transfer in the control volume.

When Tw ≥ Tm,

es(Tw) = 611.011 + 44.481(Tw − Tm) + 1.419(Tw − Tm)
2

= +0.0239(Tw − Tm)
3 + 1.744× 10−4(Tw − Tm)

4,
(17)

and when Tw < Tm,

es(Tw) = 609.603 + 49.495(Tw − Tm) + 1.739(Tw − Tm)
2

= +0.031(Tw − Tm)
3 + 2.292× 10−4(Tw − Tm)

4,
(18)

Tm is the the phase transition equilibrium temperature of water, Tm = 273.15 K.
The energy equation is given by:

∂(ρhH)

∂t
+∇ · (ρhHU) = Q̇rad + Q̇imp + Q̇evp + Q̇htc + Q̇cond. (19)

Among them, H is the internal energy of the mixture, which can be obtained as:

H = CpT + (1− C)L = (1− C)CpwTw + CCpiTm + (1− C)L f , (20)

where Cpi is the specific heat capacity of ice and water, respectively. Q̇rad is the radiation
heat flux of the water film. Q̇imp is the collected water energy and includes the internal
energy and kinetic energy of the droplet. Q̇evp is the energy density taken away by
evaporation or sublimation on the surface of the water film. Q̇htc is the convective heat
transfer density between the water film and the air flow. Q̇cond is the energy transmitted by
the aircraft skin. The unknown terms are specified in the form of [22]:

Q̇rad = σr(T4
w − T4

∞), (21)

Q̇imp = ṁimp[Cpw(Tw − T∞)−
u2

d
2
], (22)

Q̇evp = ṁevpLe, (23)

Q̇htc = htc(Tw − Trec). (24)



Appl. Sci. 2021, 11, 5693 7 of 14

As shown in Figure 3, the water film flow can be simplified as a Couette flow under the
action of air shear stress, and the velocity of the water film can be approximately described
in the form of a linear distribution [21]:

Uw(s, y) =
y

µw
τa(s), (25)

where s is the arc direction of the surface and y is the normal direction of the surface. Then,
the average flow rate of the water film can be defined as:

Uw(s, y) =
hw

µw
τa(s), (26)

in which τa(s) is the shear stress of airflow on the water film.

Figure 3. Diagram of water film and ice.

In icing simulations, the convective heat transfer process htc has a great influence on
the ice shape, and is the key to solving the convective heat transfer process. At present,
most icing simulations use the boundary layer integral functions proposed by LEWICE,
which consider surface roughness and velocity variation to solve the convection heat
transfer coefficient [11].

htc =

 0.296 · λs
ν0.5

a
(V−2.87

e
∫ s

0 V1.87
e ds)−0.5, Rek < Rec

C f /2
Prt+
√

C f /Stk
· ρa ·Ve · Cpa, Rek ≥ Rec

(27)

where λs is the thermal conductivity of air. νa is the kinematic viscosity of air. Ve is the
velocity of air at the outer boundary of the boundary layer. s is the surface distance. Prt is a
Prandtl number, which is approximated as a constant 0.9. Rek and Rec are, respectively, the
Reynolds number at the rough surface and the critical Reynolds number. C f is the friction
coefficient between the air flow and the wall surface. Stk is a rough Stanton number, which
can be obtained by

Stk = 0.8 · [
·Ve · ksC f

2νa
]−0.2Prt−0.44, (28)

where ks is the roughness height.
The solution process of the phase-field ice accretion model is as follows: the liquid

water temperature Tw is solved by the energy balance equation, and the freezing coefficient
is determined by the liquid water temperature Tw, so as to solve the phase equation and
the mass conservation equation. The final ice thickness and the mass fraction of ice are
obtained by iteration.
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3. Results

In order to compare the shapes and the ice shape characteristics chosen, provided by
experiments, LEWICE and the phase-field icing model, a total of eight ice shapes and the
icing conditions are selected from the literature [32,33], which are listed in Table 1. For the
purpose of comparison, the stagnation thickness and horn angle are chosen to be the ice
shape characteristics, which are determined for the reference and prediction ice shapes.
Through these characteristic values illustrated below in Figure 4, it is easy to calculate
the deviations between the experimental shapes and the prediction shapes provided by
different icing codes.

Before comparing the ice shapes and the ice shape characteristics, a study on grid
independence is needed first. In this study, Case 1 and Case 4 are selected as icing condi-
tions, and 80 nodes, 120 nodes and 200 nodes are arranged in the icing area of the wing
leading edge. Wing leading edge icing and its node arrangement are shown in Figure 5.
The calculation results are shown in Figure 6. As can be seen from the figures, Case 1 is
a typical rime ice and Case 4 is a typical glaze ice. The results show that in the case of
rime ice, the results of the three node layout schemes are similar. While in the case of
glaze ice, the ice shapes provided by 120 nodes and 200 nodes are similar, 80 nodes cannot
accurately describe the glaze ice shape. Therefore, for the sake of accuracy and efficiency,
the verification calculation in this paper adopts the 120-node layout method.

Figure 4. Ice shape characterization metrics.

Figure 5. Wing leading edge icing and its node arrangement.
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Table 1. Icing conditions for verification cases.

Verification Pressure MVD Chord AOA Mach LWC Temperature Time
Case Pa µm m deg Number g/m3 K s

Case 1 101,325 20 0.5334 4 0.197 1.0 244.8 360
Case 2 101,325 20 0.5334 4 0.197 0.5 260 360
Case 3 101,325 20 0.5334 4 0.197 1.0 262.05 360
Case 4 101,325 20 0.5334 4 0.197 1.0 267.55 360
Case 5 101,325 19 0.3531 0 0.292 0.75 263.25 600
Case 6 101,325 30 0.5334 4 0.313 1.8 263.07 360
Case 7 101,325 20 0.5334 4 0.207 1.0 259.85 360
Case 8 101,325 20 0.5334 0 0.178 2.1 263.45 300
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Figure 6. Grid independence test.

Figure 7 shows the distribution of water film thickness under four cases, from Case 1
to Case 4, calculated by the phase-field model. It can be seen that when the ambient
temperature is relatively low, the icing type is rime ice. At this time, the water film
thickness is almost 0, and the droplets freeze immediately when hitting the surface. When
the icing temperature is high, there will be water film distribution on the surface. The
water film thickness at the leading edge is larger, and the more it flows downstream, the
thinner the water film is. This is due to the large amount of water droplets collected at
the leading edge and the small surface convective heat transfer coefficient. With the flow
of the water film, the liquid water gradually freezes into ice, so the water film gradually
decreases. At the same time, it can be seen from the figure that with the increase in freezing
temperature, the water film thickness increases gradually. This is because the higher the
temperature is, the lower the freezing coefficient of water drops is, and more liquid water
forms on the surface, resulting in the increase in water film thickness.

Figure 8a shows the comparison of icing shapes in the case of rime ice. It can be seen
that the ice shapes can be well simulated by both LEWICE and the phase-field model in
this study. The freezing temperature is relatively low at this time, and the droplet freezes
immediately after impacting on the surface. The liquid water on the surface does not flow,
so the simulation accuracy is relatively high. Meanwhile, the stagnation thickness from the
phase-field model is closer to that of the experiment than that from LEWICE.
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Figure 7. Distribution of water film thickness on the surface.
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Figure 8. Comparison of the ice shapes under different verification cases.

Figure 8b,c show the comparison of ice shapes when the incoming temperature is
between −11 ◦C and −15 ◦C, which can be considered as mixed ice. It can be seen from
the figures that the ice shapes simulated by LEWICE still have a large deviation. The
simulation results of the phase-field model are closer to the experimental values, especially
the prediction of the top ice horn. Therefore, the accuracy of the phase-field model is higher
than that of LEWICE under this freezing weather condition.

The ice shape provided in Figure 8d is a typical glaze ice. It can be seen that the
simulation accuracy of the ice shape from LEWICE is relatively poor, and the shapes of the
upper and lower surfaces are very different from the experimental values. Meanwhile,the
ice shape predicted by the phase-field model is more similar to the experimental ice shape
than the other icing code.
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As shown in Table 2, the deviation of stagnation thickness provided by the phase-field
model and the experiment is smaller than that by LEWICE.

The above comparison verifies the effectiveness and accuracy of the phase-field icing
model under different temperatures. Then, the accuracy and effectiveness of the phase-field
icing model under other icing weather conditions are verified, including different incoming
flow velocity, different LWC and different MVD.

Table 2. Stagnation thickness of ice shapes provided by different icing codes and experiment.

Case 1 Case 2 Case 3 Case 4

Experiment 0.02518 0.0155 0.0223 0.01319
Phase field 0.02717 7.9% 0.01579 1.9% 0.02493 11..8% 0.01246 −5.5%
LEWICE 0.03148 24.8% 0.02092 35.0% 0.03419 53.3% 0.01813 37.5%

Figure 9 show the comparison of ice shapes from the experiment, phase-field model
and LEWICE under different icing conditions. Table 3 shows that the deviation of stagna-
tion thickness provided by the phase-field model and the experiment is also smaller than
LEWICE. This set of data and figures demonstrate that the ice shapes from the phase-field
model are closer to the experimental shapes than those from LEWICE.
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Figure 9. Comparison of the ice shapes in verification cases from Case 5 to Case 8.

Table 3. Stagnation thickness of ice shapes provided from Case 5 to Case 8.

Case 5 Case 6 Case 7 Case 8

Experiment 0.03571 0.255 0.02256 0.01667
Phase field 0.02501 −30.0% 0.02632 3.2% 0.02679 18.8% 0.01536 −7.9%
LEWICE 0.02302 −35.5% 0.02709 6.2% 0.01402 −37.9% 0.0125 −25.0%

From the simulation of the above eight states, it can be seen that the phase-field icing
model proposed in this paper can simulate the icing shape under various conditions, and
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the simulation results are closer to the experimental values, which better demonstrate the
correctness of the model.

4. Discussion

Within the framework of this study, the ability of the phase-field method in aircraft
icing calculation was confirmed, and a phase-field icing model and its icing code was
developed. Like normal phase-field models, the phase-field icing model treats multi-phase
fluids as one fluid with variable material properties.

At present, ice accretion models are mainly divided into the Messinger icing model
and shallow water film icing model. In the Messinger icing model, the mass and energy
conservation equations of the control volume are established based on the surface liquid
water to solve the equilibrium temperature of the control volume, and then the amount of
ice accretion is calculated. The shallow water film icing model is based on the distribution
of liquid water on the surface, and the ice accretion model is established based on the
movement of the water film. The ice shape predicted for glaze ice and mixed ice needs to
be improved. Compared with the two kinds of ice accretion models above, the phase-field
icing model takes an ice–water mixture as the research object, and establishes the ice
accretion model based on the phase-field method.

The flight state and weather conditions of the aircraft will affect the ice shape and
the freezing level. The flight state includes flight speed and angle of attack (AOA). The
meteorological conditions include the ambient temperature, liquid water content (LWC),
mean volumetric diameters (MVD) and ice time. In order to verify the accuracy and
applicability of the phase-field icing model, eight different icing conditions are selected,
in which the incoming Mach number is from 0.197 to 0.313, the LWC is from 0.5 g/m3 to
2.1 g/m3, the incoming temperature is from 244.8 K to 267.55 K, the icing time is from 300 s
to 600 s, the AOA is from 0◦ to 4◦ and the MVD is from 19 µm to 30 µm. The predicted
ice types include rime ice, glaze ice and mixed ice. For any icing condition, the ice shape
and its characteristic points are more consistent with the experimental ice shape than those
provided by LEWICE.

Although the correctness and effectiveness of the phase-field icing model to predict
the two-dimensional icing ice shape under different icing conditions have been verified,
the correctness of the model when predicting the three-dimensional icing shape needs
to be developed further. At the same time, the current phase-field icing model is only a
two-dimensional phase-field problem, which can be developed into a three-phase problem
of ice water and air in the future.

5. Conclusions

In this paper, a new numerical simulation method for predicting ice shape is proposed.
The ice and water in this study are regarded as one fluid, and the method is implemented
based on the phase-field model. The main advantage of the phase-field model is predicting
the ice shapes under glaze ice or mixed ice conditions, which mean the ambient temperature
is high. By comparing three node layout schemes under different icing conditions, the
sensitivity of the mesh was verified. Then, comparing the simulation results, the ice
shapes predicted by the phase-field icing model are found to be more consistent with the
experimental ice shapes than those predicted by LEWICE, especially the mixed ice and
the glaze ice. Taking the stagnation thickness as the ice shape characteristic, the deviation
between the ice shape provided by the phase-field model and experimental ice shape is
the smallest. Therefore, the validity and accuracy of the ice accretion model based on field
phase method is verified.
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