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Abstract: The tunneling total load is one of the core control parameters for safe and efficient con-
struction using tunneling machines. However, because the tunneling process involves complex
coupling relationships between the equipment and the local geology, theoretical derivation is difficult.
The development of tunneling data detection and acquisition technology has led to extensive load
modeling based on data analysis and machine learning. However, it is difficult to obtain an explicit
interpretable model that satisfies certain physical rules. In this paper, a modeling method based
on symbolic regression is proposed. The method mainly includes three modules: construction of
π quantities, feature selection, and model training. Through dimensional analysis, the π quantities
are constructed so as to impose physical constraints on the training process. Feature selection based
on a nonlinear random forest model is used to improve the modeling efficiency. Finally, an explicit
nonlinear load model is obtained using symbolic regression, which satisfies the basic equilibrium
theory of mechanics and the dimensional rules of physics. The proposed approach is compared
with general linear regression and an artificial neural network. The results show that the proposed
method produces a load model that is interpretable and accurate, providing an excellent reference
for construction excavation.

Keywords: tunneling total loads; dimensional analysis; random forest; symbolic regression

1. Introduction

In recent years, tunnel boring machines (TBMs) have been widely used in the construc-
tion of urban subways and tunnels through mountains [1–5]. TBMs are a kind of large-scale
engineering equipment working under considerable loads, and often operate in complex
and changeable construction environments [6,7]. Safe and efficient tunneling is vital for the
equipment and the stability of the ground environment [8]. The TBM construction process
mainly involves the interaction between the machine and the local geology, in which the
tunneling total load, mainly composed of the total thrust and the total torque, is one of
the core control parameters [9,10]. During the construction process, the equipment must
overcome resistance to move forward under the action of the total thrust, and the cutter
installed on the cutter head penetrates into the stratum and remains spinning under the
action of the total torque. Therefore, modeling and predicting the tunneling total loads is
of great significance.

Modeling the tunneling load has long been a concern in this field. The classic ap-
proaches are Krause’s empirical formula model for shield tunneling in soft soil [11] and the
Colorado School of Mines (CSM) model for shield tunneling in hard rock [12,13]. Krause’s
empirical formula reflects the basic mechanical equilibrium information through the power
relationship between the load and the equipment diameter, with other influencing factors
such as geology covered by empirical coefficients. This empirical formula provides a
relatively broad range of predicted values, but the model is simple and easy to operate, and
so it has been widely used. The CSM model is based on force calculations and statistical
data fitting, mainly from indoor linear cutting experiments [14,15]. To obtain load models
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that are more suitable for actual complex construction environments, many scholars have
carried out further related studies. Analytical methods can be divided into two categories:
modeling based on theoretical derivation and modeling based on data analysis. Model-
ing based on theoretical derivation includes an improved version of Krause’s empirical
formula, in which the composition of the cutter head torque is analyzed for composite
geology [10]. In Ref. [16], considering the structure of the cutter head, the cutting principle,
and the interaction between the cutter head and soil, the composition of the cutter head
torque is divided into eight parts that are calculated to obtain the final load model. In
Ref. [17], the composition of the total thrust force is analyzed and divided into frontal resis-
tance, frictional resistance, penetration resistance, segmental ring friction, and auxiliary
facility resistance. The thrust model for a sandy geology is then obtained. In Refs. [18,19],
the coupling relationship between the cutter head and the local geology is analyzed and
theoretical load models are established by considering the influence of three key factors
on the load, namely the geological conditions, operating state, and equipment structure.
However, the complexity of tunneling construction means that load models constructed
based on theoretical analysis are often complicated and have limited consideration of
the actual geological conditions; for example, the classic CSM model does not consider
the influence of rock mass density and cohesion [2]. Therefore, many researchers have
attempted to build load models through data analysis methods. There are two types of
load modeling methods based on data analysis: traditional mathematical statistical meth-
ods and machine learning algorithms. The traditional mathematical statistical methods
include a cutter head torque model established with multivariate statistical analysis based
on orthogonal experiments [20]. In Ref. [21], an empirical estimation model of the cutter
head load is established by linear regression based on data from improved traditional
cutting experiments. In Ref. [22], based on in situ engineering data, the cutter torque is
modeled by statistical analysis of the function relationship among parameters, and the
coefficient is identified by multiple linear regression. In Ref. [9], data from a number of
TBMs are statistically analyzed, and an empirical model of the relationship between the
tunneling loads and the diameter of the cutter head is obtained. In Ref. [23], previous
studies on data analysis methods are reviewed, and polynomial exponential regression
is used to predict the TBM loads. In this kind of regression modeling, it is difficult to
determine the nonlinear relationship among the parameters. This is often determined
by analyzing the correlation among different elementary functions, but this may lead to
an insufficient description of the physical constraint relationship among the parameters.
With the increasing abundance of real-time monitoring data and the rapid development
of machine learning technology, machine learning modeling based on engineering data
is increasing, laying the foundation for determining the coupling relationship between
parameters and building load models that fully reflect the nonlinear mapping relationship.
Several researchers have modeled tunneling loads based on machine learning algorithms.
In Ref. [24], the long short-term memory algorithm is applied to predict the total thrust
and cutter head torque in the steady state using a 30-s data window in the rising stage. In
Ref. [25], a dynamic tunneling load forecasting method, based on heterogeneous data and
data-driven technology, is proposed. In this paper, the random forest algorithm is used
to construct a load prediction model based on integrated heterogeneous in situ data. In
Ref. [26], based on in situ data from a subway project, a tunneling total load model is estab-
lished based on particle swarm optimization and a support vector machine. In the above
work, various intelligent algorithms are used to model the tunneling load parameters,
allowing the influence of multiple factors on the target quantity, and the nonlinear coupling
relationship among the influencing factors to be considered. This approach gives good
prediction accuracy. The above works reflect the applicability and potential of data-driven
technology in the design and analysis of complex engineering systems. However, the
current load modeling based on machine learning using engineering data is still basically
an “end-to-end” black box training method [3,27], and explicit model functions with some
degree of interpretability have not yet been obtained [28]. If an explicit model could be
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obtained that reasonably describes the causal relationship between parameters under the
premise of certain prediction accuracy, it would help to improve the practicability of the
prediction model and provide a reference for construction excavation.

To solve the above problems, this paper proposes a modeling method for determining
the tunneling total loads based on a symbolic regression algorithm. The method combines
dimensional analysis and nonlinear feature selection for the symbol regression modeling.
First, the physical constraint relationship between the parameters is analyzed from the
perspective of dimensions, and the dimensionless parameters (called π quantities) are
obtained. Feature selection and symbolic regression modeling is then performed based
on these π quantities, which enables the potential physical relationship to constrain the
data analysis and modeling process. These processes lay the foundation for obtaining
the load models satisfying certain physical rules. Considering the nonlinear coupling
relationship between the parameters, this paper selects the input parameters based on
the random forest model. Finally, the characteristic π quantities are input to the symbolic
regression algorithm for model training. Thus, explicit interpretable load models that
satisfy the basic equilibrium theory of mechanics and the dimensional rules of physics are
obtained. The proposed method is used to model the total thrust and total torque based
on in situ tunneling data from the Yin-Song Project in Jilin Province, China. Furthermore,
the predicted results are evaluated using an independent test dataset and compared with
those given by general linear regression and artificial neural network models.

The remainder of this paper is organized as follows. The modeling method of this
paper is introduced in Section 2. Sections 3 and 4 describe the modeling of the total loads
based on the proposed method and discuss the modeling results. Finally, the conclusions
to this study are given in Section 5.

2. Modeling Method Based on Symbolic Regression Algorithm

The modeling method for the tunneling load proposed in this paper mainly uses the
symbolic regression algorithm to obtain explicit models. In addition, the method combines
dimensional analysis and nonlinear feature selection into symbolic regression modeling,
which can realize total load modeling with interpretability and prediction accuracy by
constructing reasonable π quantities, applying suitable feature selection methods, and
setting appropriate hyperparameters. Eventually, the model also can satisfy the basic
equilibrium relations of mechanics and the dimensional rules of physics.

Figure 1 shows the overall block diagram of the proposed method, which consists of
two main stages: the construction of π quantities based on dimensional analysis, and the
quantitative identification of π quantities based on in situ tunneling data. The quantitative
identification of π quantities includes three parts: in situ data preprocessing, feature
selection, and model training. First, based on the basic idea of the dimensional analysis
Π theorem, the tunneling loads and the parameters affecting them are analyzed, and the
corresponding dimensionless quantities (π quantities) are calculated. The π quantities will
be used as the input parameters for subsequent analysis and calculations. Then, in the
second stage, the in situ tunneling data are preprocessed, and then the feature parameters
are selected based on the random forest algorithm. These parameters are used as the
input parameters for subsequent model training. In the last step, the symbolic regression
algorithm is applied to train the models based on the tunneling data.

In essence, the construction of π quantity is a nonlinear combination based on the
dimensional relationship between parameters, which can mine the potential physical
relationship to a certain extent and satisfy dimensional homogeneity. For any physical
relationship, dimensional homogeneity should be maintained. It is often difficult to sat-
isfy dimensional rules and physical laws if the original physical parameters are input
to a machine learning algorithm directly to train a model. Therefore, the dimensional
analysis of each parameter is carried out before the model training stage. In this process,
it is necessary to determine the fundamental quantities of all the parameters, based on
which, dimensionless operations are performed on other parameters. The fundamental
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quantities need to be determined by combining the characteristics of the specific problem.
Thus, this paper combines the concept of the dimension itself and the physical meaning
of tunneling loads. The advantage of using π quantities as the input parameters in subse-
quent calculations, compared with directly inputting the influential parameters, is that the
machine learning training process is constrained through certain physical relations. It is
these physical relationships that lay the foundation for obtaining load models that have a
certain physical connotation and satisfy the dimensional rules.
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Figure 1. Modeling process. 

In essence, the construction of π quantity is a nonlinear combination based on the 
dimensional relationship between parameters, which can mine the potential physical re-
lationship to a certain extent and satisfy dimensional homogeneity. For any physical rela-
tionship, dimensional homogeneity should be maintained. It is often difficult to satisfy 
dimensional rules and physical laws if the original physical parameters are input to a ma-
chine learning algorithm directly to train a model. Therefore, the dimensional analysis of 
each parameter is carried out before the model training stage. In this process, it is neces-
sary to determine the fundamental quantities of all the parameters, based on which, di-
mensionless operations are performed on other parameters. The fundamental quantities 
need to be determined by combining the characteristics of the specific problem. Thus, this 
paper combines the concept of the dimension itself and the physical meaning of tunneling 
loads. The advantage of using π quantities as the input parameters in subsequent calcu-
lations, compared with directly inputting the influential parameters, is that the machine 
learning training process is constrained through certain physical relations. It is these phys-
ical relationships that lay the foundation for obtaining load models that have a certain 
physical connotation and satisfy the dimensional rules. 

As in situ tunneling data have outliers, the measured data are preprocessed in order 
to mine the common laws that affect the total loads from the tunneling data and avoid the 
interference of abnormal data in the model training. In the data preprocessing, an outlier 
identification technique based on the difference method combined with box diagrams is 
proposed, to retain as much information from the original data as possible. This technique 

Figure 1. Modeling process.

As in situ tunneling data have outliers, the measured data are preprocessed in order
to mine the common laws that affect the total loads from the tunneling data and avoid the
interference of abnormal data in the model training. In the data preprocessing, an outlier
identification technique based on the difference method combined with box diagrams is
proposed, to retain as much information from the original data as possible. This technique
does not make any prior assumptions about the data distribution. First, the difference
value of each data point is obtained by calculating the forward and backward difference
of the tunneling loads. The outliers of the difference values are then identified by the box
diagram method. Finally, the corresponding data points after the union of the difference
outliers are determined as abnormal data and removed.

As the modeling of tunneling loads is a multi-parameter engineering problem, con-
structing π quantities based on dimensional analysis can achieve some dimension reduction
effect, but the efficiency of the symbolic regression solution still needs to be improved.
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Therefore, it is necessary to eliminate unnecessary input parameters before model training.
This paper presents a feature selection algorithm based on the random forest nonlinear
model. The random forest method is an integrated algorithm based on decision trees [24]
and can be used to evaluate the importance of each parameter for feature selection. The
basic idea is illustrated in Figure 2. First, n samples are randomly extracted from the
original dataset to generate n training sets. Based on these training sets, n decision tree
models are then obtained. In each decision tree model, the parameters and samples are di-
vided according to the Gini coefficient, so that each tree is constantly divided into different
branches. Eventually, all the trees come together to form a random forest. When selecting
the feature parameters based on the random forest model, the Gini coefficients are the
calculation indices that determine the importance of each feature. In the regression decision
tree, the Gini coefficient (GINI) of each node is actually the sample variance, as shown
in Equation (1). Finally, the Gini index of each feature quantity in n trees is summarized
and calculated to obtain the variable importance measure (VIM), so as to realize feature
selection. Therefore, the feature selection method based on the random forest model has
good applicability to nonlinear regression models.

GINI =
1
n

n

∑
i=1

(yi − y)2 (1)

Appl. Sci. 2021, 11, 5671 5 of 17 
 

does not make any prior assumptions about the data distribution. First, the difference 
value of each data point is obtained by calculating the forward and backward difference 
of the tunneling loads. The outliers of the difference values are then identified by the box 
diagram method. Finally, the corresponding data points after the union of the difference 
outliers are determined as abnormal data and removed. 

As the modeling of tunneling loads is a multi-parameter engineering problem, con-
structing π quantities based on dimensional analysis can achieve some dimension reduc-
tion effect, but the efficiency of the symbolic regression solution still needs to be improved. 
Therefore, it is necessary to eliminate unnecessary input parameters before model train-
ing. This paper presents a feature selection algorithm based on the random forest nonlin-
ear model. The random forest method is an integrated algorithm based on decision trees 
[24] and can be used to evaluate the importance of each parameter for feature selection. 
The basic idea is illustrated in Figure 2. First, n samples are randomly extracted from the 
original dataset to generate n training sets. Based on these training sets, n decision tree 
models are then obtained. In each decision tree model, the parameters and samples are 
divided according to the Gini coefficient, so that each tree is constantly divided into dif-
ferent branches. Eventually, all the trees come together to form a random forest. When 
selecting the feature parameters based on the random forest model, the Gini coefficients 
are the calculation indices that determine the importance of each feature. In the regression 
decision tree, the Gini coefficient (GINI) of each node is actually the sample variance, as 
shown in Equation (1). Finally, the Gini index of each feature quantity in n trees is sum-
marized and calculated to obtain the variable importance measure (VIM), so as to realize 
feature selection. Therefore, the feature selection method based on the random forest 
model has good applicability to nonlinear regression models. 

2

1

1GINI= ( )
n

i
i

y y
n =

−  (1)

All training sample set D

Sample set 
D1

Sample set 
D2

Sample set 
D3

Sample set 
Dn……

……

Tree 3 Tree nTree 2Tree 1 Tree i
 

Figure 2. Basic concept of the random forest algorithm. 

To output explicit load models that can describe the physical relationship between 
the parameters, a training model based on symbolic regression is proposed. After feature 
selection, the symbolic regression algorithm is applied to train the models. This is a non-
linear regression algorithm that automatically discovers rules and knowledge based on 
the data, without any prior assumptions about the functional form of the training model. 
Some fitness value (usually the mean absolute error) is taken as the optimization goal, and 
the optimal solution is discovered using a genetic algorithm [29]. Genetic algorithms are 
intelligent optimization algorithms that search for the optimal solution by simulating the 
natural evolution process [30]. Their basic operation process is shown in Figure 3. First, 

Figure 2. Basic concept of the random forest algorithm.

To output explicit load models that can describe the physical relationship between
the parameters, a training model based on symbolic regression is proposed. After feature
selection, the symbolic regression algorithm is applied to train the models. This is a
nonlinear regression algorithm that automatically discovers rules and knowledge based
on the data, without any prior assumptions about the functional form of the training
model. Some fitness value (usually the mean absolute error) is taken as the optimization
goal, and the optimal solution is discovered using a genetic algorithm [29]. Genetic
algorithms are intelligent optimization algorithms that search for the optimal solution by
simulating the natural evolution process [30]. Their basic operation process is shown in
Figure 3. First, the population is initialized. The initialization settings include the number
of individuals M, the number of superior individuals in each generation, and the maximum
number of evolution generations GEN. At this time, the system will randomly generate
M initial individuals, and then apply selection, crossover, and mutation operations based
on the fitness of different individuals, to form the next-generation population. Successive
generations continue to circulate and evolve until the maximum number of evolution
generations is reached. Finally, the individual with the maximum fitness value is output as
the optimal solution [31]. Compared with traditional optimization algorithms, which begin
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the iteration process from a single solution, the genetic algorithm starts searching from a
series of randomly generated solutions, which increases the coverage of the search and
reduces the risk of becoming trapped around a local optimal solution [31–33]. However,
a single application of the genetic algorithm cannot fully represent the constraints of the
optimization problem. In the symbolic regression algorithm, these constraints are reflected
in the operation symbol and the complexity of the function solution, which are set by two
parameters: “function” (operation symbol) and “parsimony_coefficient” (model simplicity
coefficient). Both of these settings directly affect the model morphology. The tuning of
the parameters will be discussed in detail in Section 4.3. In the process of modeling,
several regression symbols that accord with the theoretical relationship are tested by the
enumeration method, and then the symbol setting of the final modeling and load models
are determined according to the “simple and effective” principle, known as “Ockham’s
razor” [34]. The basic idea of this principle is: “Do not add an entity if it is not necessary.”
A large number of mathematical and scientific studies have confirmed that when two
models have the same effect, choosing the simpler one is more conducive to grasping the
fundamental law and reflecting the essential characteristics [35–37].
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3. Constructing π Quantities Based on Dimensional Analysis

Dimensions reflect the most essential attributes of physical parameters. Any physical
parameter can be traced back to its definition or derivation source through dimensions. The
parameters of tunneling loads typically fall into three categories: geological, operational,
and those based on the equipment structure. According to the relevant investigation and
mechanical analysis of the geological failure mechanism, and the statistical analysis of some
geological parameters, it is found that geological parameters have some linear correlation,
and the influence of some geological parameters on the tunneling loads can be considered
in some basic mechanical parameters. For example, the influence of rock joints on the
tunneling load can be reflected by the shear modulus of rock during exploration. Therefore,
six basic mechanical parameters are determined for analysis. The specific parameters and
their dimensions are presented in Table 1.



Appl. Sci. 2021, 11, 5671 7 of 16

Table 1. Parameters and their dimensions.

Physical Parameters Dimension

Machine Parameters Cutterhead diameter D (m) L

Operating Parameters Driving speed v (m/s) L T−1

Cutterhead rotation speed ω (r/min) T−1

Geologic Parameters

Rock density ρ (g/cm3) M L−3

Shear modulus G (MPa) M L−1 T−2

Poisson’s ratio µ —
Cohesive force c (kPa) M L−1 T−2

Compressive strength σc (MPa) M L−1 T−2

Tensile strength σt (MPa) M L−1 T−2

Target Parameters Total thrust F (kN) M L T−2

Total torque T (kN ·m) M L2 T−2

The Π theorem is an important theorem about dimensional analysis, which states that
every physical problem can be represented by several dimensionless powers of quanti-
ties [38], denoted by π. Based on the basic idea of the Π theorem, the relationship between
the tunneling loads and the parameters is as follows:

πF,T = g(π1, π2, · · · , πk) (2)

Here, k = (n− 3), n is the number of influencing parameters, and π1, π2, · · · , πk, πF,T
are the dimensionless π quantities composed of influencing parameters.

To construct the dimensionless π quantities mentioned in Equation (1), analysis and
calculations are carried out through two steps: the selection of the basic quantities and the
construction of π quantities.

3.1. Selection of the Basic Quantities

Basic quantities should be the core parameters reflecting the physical relationship.
The selection of basic quantities directly determines the functional form of each π quantity.
However, their selection method has some degree of freedom. Therefore, the basic quanti-
ties need to be determined by combining the characteristics of the specific problem. The
basic quantity selection process in this paper is shown in Figure 4.
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As the number of basic quantities should be equal to the number of basic dimensions of
the research problem, and as there are three basic dimensions in a mechanical system (mass
dimension M, length dimension L, and time dimension T), all the influencing parameters
are divided into three groups according to their basic dimensions, as listed in Table 2.
One parameter is then selected from each group as the basic quantity. Finally, based on
the selected basic quantities, a dimensionless operation is performed on the remaining
parameters to construct the π quantities. For the selection of the basic quantities in each
dimensional group, this paper mainly considers three aspects: (i) whether it is the core
parameter that has a key influence on the target quantity; (ii) whether it is a constant
parameter that has a key influence on the target quantity, because it is difficult to identify the
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influence of constant parameters when exploring the physical laws among the parameters
through data analysis, and this could easily result in analysis blind spots; and (iii) whether
the dimensionality of a parameter is “concise,” because the construction of a π quantity
essentially uses the basic quantity as a unit system to measure each parameter [12], which is
a switch of measurement methods. It is found that choosing basic quantities with relatively
simple dimensions is beneficial for obtaining more characteristic information. Considering
the above principles, for the basic dimension M, the shear modulus G is selected as the
basic quantity, as it is the core influencing parameter of the machine tunneling. For the
basic dimension L, the cutter head diameter D is selected as the basic quantity. D is a
constant parameter that has a direct influence on the total driving load and its dimension
is very concise. For the basic dimension T, the cutter head speed ω is selected as the basic
quantity, as it has a relatively simple dimension.

Table 2. Grouping of the influencing parameters based on basic dimensions.

Basic Dimensions M Basic Dimensions L Basic Dimensions T

Physical
Parameters Dimension Physical

Parameters Dimension Physical
Parameters Dimension

ρ M L−3 D L v L T−1

G M L−1 T−2 v L T−1 G M L−1 T−2

c M L−1 T−2 ρ M L−3 c M L−1 T−2

σc M L−1 T−2 G M L−1 T−2 σc M L−1 T−2

σt M L−1 T−2 c M L−1 T−2 σt M L−1 T−2

σc M L−1 T−2

σt M L−1 T−2

ω T−1

3.2. Constructing π Quantities

Based on the selected fundamental quantities, the π quantities are constructed through
matrix operations. The independent variables xi and the target quantity y are expressed by
the basic dimensions M, L, and T in the form shown in Equation (2), where αi, βi, γi are the
basic dimensional indices of the parameter xi, and α, β, γ are the basic dimensional indices
of the target quantity y.

dim(xi) = Mαi Lβi Tγi , dim(y) = MαLβTγ (3)

The selected basic quantities are denoted as xr, xs, xt, and the exponents to be solved
are sir, sis, sit, respectively. The following operations are performed for each parameter: αr αs αt

βr βs βt
γr γs γt

 sir
sis
sit

 =

 αi
βi
γi

⇒ πi =
xi

xrsir xssis xtsit
, πy =

y
xrsnr xssns xtsnt

(4)

The π quantities corresponding to the parameters v, µ, c, ρ, σc, σt, F, T are as follows:

π1 =
v

Dω
, π2 = µ, π3 =

c
G

, π4 =
ρω2D2

G
, π5 =

σc

G
, π6 =

σt

G
, πF =

F
GD2 , πT =

T
GD3 (5)

4. Case Study

After obtaining the π quantities through dimensional analysis, they are trained on
engineering data. In this paper, the calculations are based on in situ tunneling data
from a construction section of the Yin-Song Project in Jilin Province, China, which is
being constructed using a TBM with a diameter of 8.03 m. The length of the researched
construction section is about 600 m. According to the geological exploration report, the
stratum which the tunnel passes through is mainly composed of granite, which is a massive
structure, and the mineral composition is mainly feldspar and quartz. The surrounding
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rocks are classified as granite II and III (according to China’s “engineering rock mass
classification standards”). The statistical characteristics of each parameter in the tunneling
data are shown in Table 3.

Table 3. The statistical characteristics of the parameters.

Physical Parameters Maximum Minimum Average

Operating Parameters Driving speed v (mm/min) 81.00 1.00 18.04
Cutterhead rotation speed ω (r/min) 7.00 0.24 5.75

Geologic Parameters

Rock density ρ (g/cm3) 2.70 2.64 2.65
Shear modulus G (MPa) 7.15 3.75 4.04

Poisson’s ratio µ 0.27 0.23 0.26
Cohesive force c (kPa) 1.91 1.45 1.50

Compressive strength σc (MPa) 106.57 74.99 78.82
Tensile strength σt (MPa) 6.59 4.75 4.96

Target Parameters Total thrust F (kN) 18,458.00 151.00 16,843.48
Total torque T (kN ·m) 2712.00 12.00 1408.90

The calculation mainly includes three parts: data preprocessing, feature selection of
the parameters, and model training.

4.1. Preprocessing of In Situ Tunneling Data

There are some outliers in the original tunneling data files of the Yin-Song Project,
as shown in Figure 5a,b. These outliers mainly include null push data and abnormal
data. When any of the operating parameters, such as the tunneling speed, cutter head
speed, total thrust, and total torque, is 0 or close to 0, they are assumed to be “null push”
data [28,39]. Such data are eliminated directly through numerical screening. Outliers
usually exhibit the characteristics of mutation relative to their surrounding data points.
However, although some of these abrupt data are outliers, others may be caused by
geological changes. Therefore, it is necessary to combine professional knowledge with
statistical methods to eliminate abnormal data effectively and maximize the retention of
the regular characteristics of data. Load mutations caused by geological changes often
affect more than one data point, so the difference method combined with box diagrams is
proposed to distinguish the abnormal data. First, the forward and backward differences
of all total thrust and torque data are calculated, and then the outliers in the difference
results are identified by the box diagram method. Finally, the intersection of the forward
and backward difference outliers is noted, and the corresponding load data points are
identified as abnormal values. The union of the total thrust and torque abnormal values
constitutes the abnormal data of the project. Compared with a direct statistical method for
identifying the outliers of the tunneling load, this approach has the advantage that it, not
only deals with anomalies effectively, but also avoids the mistake of deleting maximum
or minimum values that deviate from the overall data mean, but exhibit regular changes.
The box diagram method is a statistical technique for outlier detection when processing
data. Unlike the 3σ rule, Z-score method, and so on, it does not presuppose the data
distribution and follows the original characteristics of the data [40]. Its structure and outlier
identification method are shown in Figure 6. A total of five statistics are calculated based
on the data to be identified: median, lower quartile (Q1), upper quartile (Q3), lower limit
(Q1 − 1.5IQR), and upper limit (Q3 + 1.5IQR), where IQR is the difference between the
upper quartile and the lower quartile. Data sample points with values less than the lower
limit or greater than the upper limit are considered to be outliers. The load data from the
Yin-Song Project after outlier processing are shown in Figure 5c,d.



Appl. Sci. 2021, 11, 5671 10 of 16

Appl. Sci. 2021, 11, 5671 10 of 17 
 

to distinguish the abnormal data. First, the forward and backward differences of all total 
thrust and torque data are calculated, and then the outliers in the difference results are 
identified by the box diagram method. Finally, the intersection of the forward and back-
ward difference outliers is noted, and the corresponding load data points are identified as 
abnormal values. The union of the total thrust and torque abnormal values constitutes the 
abnormal data of the project. Compared with a direct statistical method for identifying 
the outliers of the tunneling load, this approach has the advantage that it, not only deals 
with anomalies effectively, but also avoids the mistake of deleting maximum or minimum 
values that deviate from the overall data mean, but exhibit regular changes. The box dia-
gram method is a statistical technique for outlier detection when processing data. Unlike 
the 3σ rule, Z-score method, and so on, it does not presuppose the data distribution and 
follows the original characteristics of the data [40]. Its structure and outlier identification 
method are shown in Figure 6. A total of five statistics are calculated based on the data to 
be identified: median, lower quartile (Q1), upper quartile (Q3), lower limit (Q1 − 1.5IQR), 
and upper limit (Q3 + 1.5IQR), where IQR is the difference between the upper quartile 
and the lower quartile. Data sample points with values less than the lower limit or greater 
than the upper limit are considered to be outliers. The load data from the Yin-Song Project 
after outlier processing are shown in Figure 5c,d. 

 
Figure 5. Data of tunneling loads in the Yin-Song Project: (a) total thrust before outlier processing, 
(b) total torque before outlier processing, (c) total thrust after outlier processing, (d) total torque 
after outlier processing. 

IQR=Q3-Q1

Q3+1.5IQR

Q1-1.5IQR

Q3

    25% ~ 75%

  Median

 Mean

 Outlier

Q1

 
Figure 6. Box diagram structure. 

0 600 1200 1800 2400 3000

6000

9000

12,000

15,000

18,000

21,000

0

5000

10,000

15,000

20,000

(d)(c)

(a)

T
o
ta
l 
T
h
ru

s
t(
k
N
)

Number of the sample points

25,000

0 500 1000 1500 2000 2500 3000

0

800

1600

2400

3200

T
o
ta
l 
T
o
rq

u
e
(k
N
m
)

Number of the sample points

0 600 1200 1800 2400 3000

(b)

T
o
ta
l 
T
h
ru

s
t(
k
N
)

Number of the sample points
0 600 1200 1800 2400 3000

500

1000

1500

2000

2500

3000

T
o
ta
l 
T
o
rq

u
e
(k
N
m
)

Number of the sample points

Figure 5. Data of tunneling loads in the Yin-Song Project: (a) total thrust before outlier processing,
(b) total torque before outlier processing, (c) total thrust after outlier processing, (d) total torque after
outlier processing.
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Considering the large differences in the magnitude of each π quantity, the dataset
should be normalized before the machine learning algorithm is used to train the model.
This prevents the magnitude from affecting the weight of different features. In this paper,
decimal scaling normalization is used to restrict the data to the range 0–10. The calculation
method is as follows:

x′i =
xi

10j (6)

where j is the smallest integer that makes max
(
x′i
)
< 10.

4.2. Feature Selection of Input Parameters

In the process of feature selection, to reduce the risk of becoming trapped around
local optimal solutions, the union of 10 calculation results is selected as the final feature pa-
rameter. The dimensionless input parameters π1, π2, π3, π4, π5, π6 calculated in Section 3.2
are trained with πF and πT as target quantities, respectively. When πT is used as the
target quantity for feature selection, there is a very high correlation between π1 and the
target quantity, which leads to other more important feature parameters being neglected
in the automatic calculation process; that is, a local optimal solution appears. Therefore,
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π2, π3, π4, π5, π6 are further used as the input parameters for feature screening, and the
union of two calculations is taken as the final result. The calculation results are as follows:{

πF = f (π2, π3, π4, π5, π6)
πT = g(π1, π2, π3, π5, π6)

(7)

4.3. Modeling Based on Symbolic Regression Algorithm

In this study, the initial population number is set to 1000, the evolutionary algebra
is set to 20, and the dominant number of each generation is set to 20. The data we are
using have been normalized, so the range of constants is set as 0–10. The constraints on the
complexity of the training model and the operation symbols are critical. When the model
complexity is too high or there are too many operation symbols, the model will be very
complex and cumbersome, whereas when the model setting is too simple, the risk of invalid
solutions increases. In this algorithm, the rationality of the model is controlled by setting
the parsimony_coefficient and function. Trial calculations show that, for training the tunneling
load models in this paper, setting the parsimony_coefficient to be less than the default value
of 0.001 increases the model complexity, but does not change R2 significantly. Therefore,
the parsimony_coefficient is set to 0.001 in the modeling process. As for the setting of function,
considering the theoretical relationship between the parameters and the target quantity, the
five symbol setting schemes shown in Figure 7 are used to train the model. Five random
sampling calculations are then carried out for each scheme and the R2 values are recorded.
Through comparative analysis, reasonable model symbols are then determined according
to the principle of Ockham’s razor.
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Figure 8 shows how R2 changes under different regression symbol settings. In the
thrust modeling, when the regression symbol is “add, mul”, R2 is higher than for other
symbols and the fluctuation range is small, that is, the model recognition is relatively stable.
Therefore, the regression symbol for thrust modeling is set to “add, mul”. For torque
modeling, the regression symbol “add, mul” gives a significantly higher R2 value than
“add” and “add, mul, div, sqrt, log”, but a similar value to “add, mul, div” and “add, mul,
div, sqrt”. However, the model complexity of the latter two symbols is significantly higher,
and the model becomes unstable. Therefore, following the principle of Ockham’s razor, it
is more reasonable to use the “add, mul” regression symbol for torque modeling.
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Based on the above settings, the tunneling data from the Yin-Song Project are randomly
divided into a training set and a test set at a ratio of 7:3. The total thrust and total torque
are modeled based on the training dataset, and the calculated results are given by Equation
(8). The R2 of the thrust and torque models in the independent test dataset are 0.95 and
0.81, respectively. The measured and predicted values in the test set are compared in
Figure 9. The serial number of the sample points in the figure is the number of sample
points according to the construction sequence.

F
GD2 = (c + σt + σc · 10−2) c

G2 · 10
−2

T
GD3 = ( v

Dω + σc
G · 10−6) σt

G

(8)
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Figure 9. Comparison between the predicted values and the measured values of the dimensionless load models: (a) the
total thrust, (b) the total torque.

After dimension reduction, the load models are as shown in Equation (9). The statisti-
cal results of the prediction error of the model in the total dataset are shown in Figure 10.
The thrust prediction error is less than 6% for 95% of the data, and the torque prediction
error is less than 20% for 92% of the data. This indicates that the prediction model for
tunneling total loads accurately reflects the tunneling total load values in actual engineering
projects.
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{
F = (c + σt + σc · 10−2) · cD2

G · 10−2

T= ( v
ωD G + σc · 10−6) σtD3

G

(9)
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Figure 10. Statistical results of prediction error on the total set: (a) the total thrust, (b) the total torque.

4.4. Discussion

Analyze the load model Formula (9) and convert it into the form shown in Formula
(10). It is found that the thrust and torque models have quadratic and cubic power function
relations, with the diameter of the cutter head D, respectively, which conforms to the basic
theory of mechanical equilibrium. In addition, the parametric relations given by the models
indicate that the ratios of cohesion c, compressive strength σc, and tensile strength σt to
shear modulus G are the important factors affecting the total loads under similar hard rock
geological conditions. The rock cohesion c and compressive strength σt have key influences
on the total thrust and the total torque, respectively. In the torque model, v/ω is actually
the penetration degree of the cutter head. Therefore, the penetration degree of the cutter
head is also an important factor affecting the total tunneling torque.{

F= ( c
G + σt

G + σc
G · 10−2) · 10−2 · cD2

T = σt ·
( v

ω D2 + 10−6 · σc
G · D3)

(10)

To further evaluate the tunneling load prediction model, general linear regression and
artificial neural network algorithms are used to model and predict the tunneling total loads
based on the same engineering data samples. The input parameters are the same as for the
symbolic regression. The R2 and MAPE (mean absolute percentage error) of five random
samples in the independent test set are selected and averaged. The results are presented in
Table 4, and the linear regression model is described by Equations (11) and (12). Analysis
shows that the prediction effect of the linear regression model is slightly better than that of
the other two algorithms. However, according to Equations (11) and (12), the relationship
between certain parameters in the model and the target quantity is obviously inconsistent
with the theoretical laws. For example, in Equation (11) there is a negative correlation
between the compressive strength σc of the rock and the total thrust F, and in Equation
(12) there is a negative correlation between the cutter head speed ω and the total torque T.
There is no significant difference in the prediction effect between the symbolic regression
model and the neural network model. However, as can be seen from Equation (10) and
its analysis, the advantage of the symbolic regression model is that it provides an explicit
physical relationship model, which not only conforms to the basic theoretical relationship,
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but also satisfies the physical rules of dimensional uniformity. In conclusion, based on the
modeling method proposed in this paper, load models with both prediction accuracy and
interpretability can be obtained through the training of engineering data.

F
GD2 = 2.67 · 10−2 v

Dω − 23.9µ + 9.56 c
G + 27.4 ρω2D2

G − 0.193 σc
G + 1.77 σt

G + 4.33
⇒ F = 2.67 · 10−2 v

ω GD− 23.9µGD2 + 9.56cD2 + 27.4ρω2D4 − 0.193σcD2 + 1.77σtD2 + 4.33GD2
(11)

T
GD3 = 1.28 v

Dω + 0.257µ− 0.152 c
G − 0.102 ρω2D2

G + 3.67 · 10−4 σc
G + 2.53 · 10−2 σt

G − 4.85 · 10−2

⇒ T = 1.28 v
ω GD2 + 0.257µGD3 − 0.152cD3 − 0.102ρω2D5 + 3.67 · 10−4σcD3 + 2.53 · 10−2σtD3 − 4.85 · 10−2GD3

(12)

Table 4. Comparison of tunneling total load models under different modeling methods.

Total Thrust Total Torque

R2 MAPE Model Theoretical
Relationship R2 MAPE Model Theoretical

Relationship

SR 0.95 1.82% Explicit reasonable 0.81 8.83% explicit reasonable
LR 0.96 1.55% Explicit unreasonable 0.84 8.13% explicit unreasonable

ANN 0.95 1.71% hidden layer unknown 0.81 8.33% hidden layer unknown

5. Conclusions

Aiming at the problem of modeling tunneling loads, a modeling method based on
symbolic regression has been proposed in this paper. In this method, dimensionless
processing is carried out on the original parameters through dimensional analysis, allowing
the nonlinear combination relationship between the parameters to be constructed and the
dimensionless parameters (π quantities) to be obtained in accordance with some potential
physical connotations. Taking the π quantities as the input parameters for the subsequent
calculations and model training is equivalent to providing physical constraints on the
training process, and ensures that the modeling process satisfies the relevant dimensional
rules, which helps the symbolic regression training to obtain a more efficient and reasonable
load model. In addition, the dimensionless processing of the parameters also achieves the
effect of dimensionality reduction, reducing the initial nine parameters to six. To further
improve the efficiency of the symbolic regression modeling, feature selection is applied
before model training to eliminate unnecessary input parameters. To avoid the constraint
of a priori assumptions on the function relationship between π quantities, feature selection
is based on a random forest model. Finally, the principle of Ockham’s razor is applied
to complete the symbolic regression modeling. The results show that the method can
obtain explicable load models based on the potential physical relationship between the
parameters, while guaranteeing the accuracy of the predictions. The model also satisfies
the basic mechanical theoretical relations and physical dimensional rules, and the form
is simple. This improves the practicability of machine learning modeling, and provides
a reference for construction excavation. The modeling method described in this paper
provides a new concept for obtaining training models that are interpretable and conform
to the relevant physical rules.

It is important to emphasize that the modeling method combining dimensional analy-
sis, feature selection, and symbolic regression algorithm in this paper can be applied to
other projects. Moreover, the models in Equation (9) based on the engineering case of Jilin
Project can provide a reference for similar working conditions if needed.
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