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Abstract: The genus Vaccinium L. (Ericaceae) includes more than 450 species, which mainly grow in
cooler areas of the northern hemisphere. Vaccinium species have been used in traditional medicine
of different cultures and the berries are widely consumed as food. Indeed, Vaccinium supplement-
based herbal medicine and functional food, mainly from V. myrtillus and V. macrocarpon, are used in
Europe and North America. Biological studies support traditional uses since, for many Vaccinium
components, important biological functions have been described, including antioxidant, antitumor,
anti-inflammatory, antidiabetic and endothelium protective activities. Vaccinium components, such as
polyphenols, anthocyanins and flavonoids, are widely recognized as modulators of cellular pathways
involved in pathological conditions, thus indicating that Vaccinium may be an important source of
bioactive molecules. This review aims to better describe the bioactivity of Vaccinium species, focusing
on anti-inflammatory and endothelial protective cellular pathways, modulated by their components,
to better understand their importance for public health.

Keywords: Vaccinium species; phytochemicals; berry; leaf; anti-inflammatory pathways; endothe-
lial dysfunction

1. Introduction

In recent years, Vaccinium species, mainly their fruits, have gained great attention for
their potential health benefits. Vaccinium L. (Ericaceae) is a morphologically various genus
of terrestrial or epiphytic shrubs and sub-shrubs, comprising approximately 450 species
across Europe, North and Central America, South East and Central Africa, and Asia [1].
Deciduous or evergreen dwarf shrubs, shrubs or small trees characterize the genus, and the
fruits of each variety are edible. The European flora comprises V. corymbosum (blueberry),
V. oxycoccos (cranberry), V. microcarpum, V. macrocarpon, V. vitis-idaea, V. uliginosum, V. myr-
tillus, V. arctostaphylos, and V. cylindraceum. V. corymbosum was imported by North America,
and now is cultivated in Europe for its big edible fruits [2]. V. myrtillus (bilberry) is a
woody dwarf shrub, present in the forests of the Northern Hemisphere. It needs acid and
well-drained soils for its growth, and it is considered to be an indicator of the biodiversity
of forests due to its abundance.

Fruits of several Vaccinium species have been extensively investigated for their chem-
ical profile. They are described as being a rich source of polyphenols and carotenoids.
Nevertheless, especially due to their high content of anthocyanins, these fruits are rec-
ognized for their bioactive properties, such as prevention or treatment of cardiovascular
diseases, diabetes, obesity, cancer, urinary tract infections, and aging diseases [3,4].

Polyphenols are the subject of increasing interest because of their potential beneficial
effects on human health [5–9]. In fact, several epidemiological studies suggested that long
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term consumption of foods rich in polyphenols offered protection against the develop-
ment of cardiovascular diseases, diabetes, cancers, and neurodegenerative diseases [5,6].
Polyphenols have been recognized due to their potent antioxidant activity and ability to
modulate key signalling pathways of several inflammatory cytokines and enzymes [5].
Therefore, beyond these modulatory roles, their antioxidant activity related to the capacity
to scavenge reactive oxygen species (ROS), or to activate cellular endogenous antioxi-
dant systems, may be of importance in countering the oxidative stress in inflammatory
diseases [5,6].

The antioxidant and anti-inflammatory activities of Vaccinum species are also reflected
in a protective role for vascular endothelium against cardiovascular diseases linked to
endothelial dysfunction [10,11].

The present review is designed to report the current knowledge on the plant species
that belong to the Vaccinium genus, their phytochemicals, and their potential biological
properties, with particular emphasis on their cardiovascular protective effects. Attention is
focused on the ability of Vaccinium species to revert endothelial dysfunction promoted by
increased oxidative stress and inflammatory status. All collected data have been obtained
from different databases such as PubMed, Scopus, Sci Finder, Web of Science, Science
Direct, NCBI, and Google Scholar.

2. Traditional Uses of Vaccinium Species

Vaccinium species are extensively used in traditional medicine. As reported in Table 1,
the fruits of V. myrtillus are used in Europe for the treatment of stomatitis, renal stones,
intestinal and liver disorders, as a remedy for fevers and coughs, and for their astringent,
tonic, and antiseptic properties [12,13]. The decoction and infusion of leaves are used in
south-eastern Europe to treat diabetes [14].

Table 1. Traditional uses of Vaccinium species.

Vaccinium Traditional Uses Part Used References

V. myrtillus Fevers and coughs Fruits [12]
Antidiabetic and anti-inflammatory diabetic Leaves [13,14]
Respiratory inflammations Leaves and fruits [15]
Stomatitis Fruits [12]
Eye inflammation Fruits [15]
Intestinal and liver disorders Fruits [12]
Hepatitis Fruits [15]
Digestive and urinary tract disorders Fruits [15]
Renal stones Leaves and fruits [12,15]
Antiseptic, astringent, tonic Fruits [13]
Anti-anemic Leaves and fruits [15]

V. vitis idaea Antipyretic Leaves and fruits [15]
Sore eyes, abscesses, toothache, thrush and snow blindness Fruits [16]
Colds, coughs and sore throats Fruits [17]
Anti-inflammatory properties in urinary tract Leaves [15]
Respiratory system infections Stems and leaves [18]
Frequent urination Fruits [16]
Urinary tract infection properties Fruits [15]
Kidney stones Fruits [15]
Anti-inflammatory Stems and leaves [18]
Wound healing, anti-rheumatic, anti-convulsant, diuretic and
anti-diabetic Leaves and fruits [15]

V. arctostaphylos Anti-hypertensive and anti-diabetic Leaves and fruits [19]

V. corymbosum Anti-diabetic, antioxidant, and anti-inflammatory Fruits [20,21]
Gastrointestinal disorders Fruits [22]
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In Macedonia and Kosovo, the juice of V. myrtillus fruits are employed as anti-anemic
agents, and to treat digestive and urinary tract infections, eye inflammations and hep-
atitis, while the infusions of leaves and fruits are used as lithontriptic and anti-anemic
treatments, and for respiratory inflammations [15]. V. vitis idaea berries are effective in
the traditional medicine of Cree Nation (Quebec) to treat frequent urination, sore eyes,
abscesses, toothache, thrush and snow blindness [16]. Among the Alaska Natives, berries
are also used to treat colds, coughs and sore throats [17]. From ancient times, stems and
leaves have shown anti-inflammatory properties and are known for treating respiratory
system infections in Chinese Traditional Medicine [18].

In Macedonia and Kosovo, an infusion of the leaves was used for their anti-rheumatic
properties, as well as anti-inflammatory effects in the urinary tract, while the fruit infu-
sion was useful for treating urinary tract infections and the presence of kidney stones.
Fruits and leaves are also used as diuretic, anti-rheumatic, antipyretic, anti-diabetic and
anti-convulsant medicines, as well as for wound healing [15]. V. arctostaphylos leaves
and fruits have been utilized as anti-hypertensive and anti-diabetic agents in Iranian
folk medicine [19]. In Quebec, V. corymbosum fruits have mainly been used to treat dia-
betes [20–22].

3. Phytochemicals of Vaccinium Fruits

Anthocyanins are present in the outer layer of fruits, together with polyphenolic
compounds, and a small content was found also in pulp and seeds. Environmental factors
can affect the content and composition of secondary metabolites in berries.

Growing conditions also affect the content of anthocyanins and other phenolic com-
pounds in the berries of wild and cultivated species [23]. Prior to berry ripening, proan-
thocyanidins, flavonols and hydroxycinnamic acids are the major phenolic compounds.
During the ripening process, flavonoid profiles vary, and anthocyanins accumulate in the
skin. High levels—and a wide variety—of anthocyanins provide the red, blue, and purple
colours that characterize berries of this genus.

Vaccinium berries have a well-deserved reputation as potential healthy products and
functional foods, supported by many studies, which have identified and quantified various
bioactive phytochemicals with known benefits for human health.

Many studies have demonstrated the benefits of anthocyanin-rich extracts of Vaccinium
species in the prevention of several diseases [24]. Nonetheless, it is important to note that
their efficacy is subject to their bioavailability. Once ingested, anthocyanins are metabolized
into various conjugates, which are metabolized into phenolic acid degradation products.
Accumulated evidence suggests synergistic effects between all possible metabolites to
explain their health-promoting properties.

An inter-individual and intra-individual variability in anthocyanins absorption, metabolism,
distribution, and excretion is also evident.

Six anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, petunidin, and
peonidin), which are also the most common anthocyanidin skeletons in higher plants, have
been isolated from Vaccinium species [25]. To date, more than 35 anthocyanin glycosides
have been isolated from the genus Vaccinium.

In Vaccinium berries, mono, di, or trisaccharide derivatives of delphinidin, cyanidin,
peonidin, petunidin, and malvidin are common (Figure 1) [25]. The principal sugars are
glucose, galactose, xylose, rhamnose, and arabinose.
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Figure 1. Anthocyanins from Vaccinium species [25–36].

The fruits of V. myrtillus are characterized by the presence of different types of an-
thocyanins. In particular, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-
O-arabinoside, delphinidin 3-O-galactoside, delphinidin 3-O-arabinoside, delphinidin 3-O-
glucoside, malvidin 3-O-galactoside, malvidin 3-O-arabinoside, malvidin 3-O-glucoside,
petunidin 3-O-galactoside, petunidin 3-O-arabinoside, petunidin 3-O-acetylglucoside, pe-
onidin 3-O-galactoside, and peonidin 3-O-arabinoside were identified [26–31].

In V. myrtillus, cyanidin 3-O-xyloside, cyanidin 5-O-glucoside, cyanidin 3,5-O-diglucoside,
cyanidin 3-O-(6”-O-2-rhamnopyranpsyl-2”-O-β-xylopranosyl-β-glucopyranoside), cyani-
din 3-O-sambubioside, delphinidin 3-O-sambuobiside, and peonidin-3-glycoside have also
been identified [31–34].

Malvidin and delphinidin derivatives represent about 75% of the total anthocyanins
content of V. corymbosum fruits [35,36]. Cho et al. [29] reported percentages of 27–40% for
delphinidin, 22–33% for malvidin, 19–26% for petunidin, 6–14% for cyanidin, and 1–5%
for peonidin. Petunidin 3-O-glucoside has been also identified in V. corymbosum and V.
myrtillus [27,31]. The 3-O-galactosides and 3-O-arabinosides of cyanidin and peonidin are
the most abundant recognised anthocyanins in the fruits of V. oxycoccos [27,37,38].

Twelve anthocyanins, namely cyanidin 3-O-glucoside, delphinidin 3-O-glucoside
cyanidin 3-O-arabinoside, peonidin 3-O-arabinoside, peonidin 3-O-glucoside, peonidin
3-O-galactoside, delphinidin 3-O-arabinoside, delphinidin 3-O-galactoside, petunidin 3-
O-galactoside, petunidin 2-O-glucoside, malvidin 3-O-galactoside, and malvidin 3-O-
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glucoside, were isolated from the extract of the edible berries of V. vitis-idaea by a combina-
tion of chromatography techniques [39–44].

Delphinidin-3-O-xyloside, delphinidin-3-O-glucoside, malvidin-3-O-galactoside, malvidin-
3-O-glucoside petunidin-3-O-galactoside, petunidin-2-O-glucoside, malvidin-3-O-xyloside,
and petunidin-3-O-xyloside were isolated from V. arctostaphylos [45,46].

Except anthocyanins, to date, more than 50 other flavonoids (mainly flavanols and
proanthocyanidins) have been isolated and identified from the genus Vaccinium
(Figure 2) [25,28–31,40–44].
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Glycosides are usually O-glycosides, with the sugar moiety bound to the hydroxyl
group at the C-3 or C-7 position. The most common sugar moieties include D-glucose,
L-rhamnose, D-xylose, D-galactose, and L-arabinose [25].
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Quercetin is the most common flavonoid isolated from Vaccinium species [25]. It was
found in high quantities in V. uliginosum and V. myrtillus [29]; however, the richest source
of quercetin is V. oxycoccos with 20–40 mg/100 g fresh weight [38].

Several glycosides of myricetin and quercetin were identified in V. myrtillus. Different
studies reported the presence of myricetin 3-glucoside, myricetin 3-arabinoside, myricetin
3-O-rhamnoside, quercetin 3-O-arabinoside, quercetin 3-O-rhamnoside, quercetin 3-O-
galactoside, quercetin 3-O-glucoside, and quercetin 3-O-rutinoside [28–31]. Apigenin,
chrysoeriol, myricetin, myricetin-3-xyloside, quercetin 3-O-glucuronide, quercetin 3-O-
xyloside, isorhamnetin 3-O-glucoside [41], luteolin are other flavonoids described in V. myr-
tillus [47]. Kaempferol, isorhamnetin, laricitrin, syringetin, isorhamnetin 3-O-galactoside,
myricetin 3-O-glucuronide, laricitrin 3-O-glucoside, syringetin 3-O-glucoside [35,41,48],
kaempferol 3-O-glucoside, myricetin 3-O-galactoside, and isorhamnetin 3-O-xyloside are
also described [48].

The flavonoids identified in V. oxycoccos are mainly glycosides of quercetin and
myricetin, and to a lesser extent, of kaempferol [49]. Quercetin 3-O-galactoside is the
dominant compound, but at least 11 other glycosides are present in lower concentra-
tions [38].

Epicatechin is the dominant constitutive unit of V. oxycoccos, whereas catechin and
(epi)gallocatechins are present only in trace amounts [24,40].

The major flavonoids described in V. vitis idaea are kaempferol [41], quercetin [41,50],
myricetin, myricetin 3-O-glucoside [44], quercetin derivatives (bond to glucose, galactose,
glucuronide, rhamnose, arabinose, and xylose), kaempferol 3-O-rhamnoside, isorhamnetin
3-O-galactoside [40,51], isorhamnetin 3-O-glucoside, syringetin-3-O-glucoside, kaempferol
3-O-glucoside, and rutin [51].

The fruits of V. uliginosum are characterized by the presence of kaempferol, laric-
itrin [50], quercetin [50,52–54], myricetin [54], syringetin, quercetin 3-O-glucoside, quercetin
3-O-galactoside, quercetin 3-O-glucuronide, isorhamnetin 3-O-galactoside, isorhamnetin
3-O-glucoside, syringetin 3-O-glucoside, myricetin 3-O-galactoside, rutin [50,52], and
myricetin 3-O-glucuronide [48].

Sellappan et al. [55] described, in V. corymbosum, the presence of catechin, myricetin,
quercetin and kaempferol, but not the presence of epicatechin.

Seventeen phenolic acids were identified in some varieties of V. myrtillus (Figure 3) [56].
Sellappan et al. [55] found gallic, p-coumaric, ferulic, ellagic and caffeic acids as phenolic
acids in V. corymbosum produced in the state of Georgia (US). These results were confirmed
by Taruscio et al. [30] who analysed the phenolic acids composition of V. corymbosum and
V. oxycoccos. The two species have different compositions. In fact, V. corymbosum was
characterised by the presence of chlorogenic acid as a major phenolic acid, followed by
caffeic, ferulic, p-coumaric and traces of p-hydroxybenzoic acids, while p-coumaric acid
was the principal phenolic acid of V. oxycoccos, followed by ferulic, chlorogenic, caffeic and
p-hydroxybenzoic acids.

Other studies have reported p-coumaric, sinapic, caffeic, and ferulic acids as the main
hydroxycinnamic acids identified in V. oxycoccos [57–59]. Ellagic acid and ellagitannins
have not been detected in significant amounts [24].

Thirteen phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, m-hydroxybenzoic,
gentisic, chlorogenic, p-coumaric, caffeic, ferulic, syringic, sinapic, salicylic, and trans-
cinnamic acids) were identified in V. arctostaphylos.

The dominant phenolic acids were caffeic and p-coumaric acids. The phenolic acid
concentrations are mostly lower in V. arctostaphylos in comparison to the other berries of
the Vaccinium genus [60].
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Iridoids are a widespread group of monoterpenoids comprising a generally glycosy-
lated cyclopentan[c]pyran skeleton. They are specifically produced by several botanical
families and are a class of secondary metabolites that is characteristic of the Ericaceae.
Iridoids from the Vaccinium genus have been less studied than anthocyanins and other
phenolic compounds. However, iridoids have known human health benefits including
anti-inflammatory, anticancer, antimicrobial, antioxidant, antispasmodic, cardioprotec-
tive, choleretic, hepatoprotective, hypoglycaemic, hypolipidemic, neuroprotective, and
purgative activities [61–63].

The Figure 4 shows the main iridoids identified in Vaccinium species. These com-
pounds have often been identified in mixtures and have not always been isolated. The
stereochemistry of the asymmetric carbons of some of them has not been elucidated. Aspe-
ruloside, scandoside, and monotropein, and their derivatives, seem to be representative of
the genus [64,65].
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Heffels et al. [64] have tentatively identified, in V. uliginosum and V. myrtillus, 14 iridoid
glucosides, including vaccinoside, monotropein, p-coumaroyl-scandoside, deacetylaspe-
rulosidic acid (C6: (S)), scandoside (C6: (R)), p-coumaroyl-deacetylasperulosidic acid,
p-coumaroyl-monotropein, and p-coumaroyldihydromonotropein (C6-C7 hydrogenated).
V. oxycoccos juice showed the presence of two new coumaroyl iridoid glycosides, namely
10-p-trans- and 10-p-cis-coumaroyl-1S-dihydromonotropein [66].

Detection and isolation of iridoids from fruits is not straightforward. Surprisingly,
iridoid glycosides have not been identified in V. corymbosum [64,67,68], whereas scando-
side, geniposide, vaccinoside, and dihydromonotropein have recently been identified in
V. corymbosum extracts [65].

Ursolic acid, which showed to possess strong anti-inflammatory effects, is abun-
dant in V. oxycoccos, which also contains two rare derivatives of ursolic acid: cis-3-O-p-
hydroxycinnamoyl ursolic acid and trans-3-O-p-hydroxycinnamoyl ursolic acid [69].

Triterpenoids are the most predominant components in the cuticular wax of blueberry
fruits, together with the triterpene alcohols α-amyrin, β-amyrin, and lupeol [70].

Ursolic acid was the dominant triterpene in V. corymbosum (southern highbush blue-
berry) cultivars, whereas oleanolic acid was the most abundant in northern highbush
blueberry cultivars. Hentriacontan-10,12-dione was detected for the first time in V. corym-
bosum [70].

Malic, citric, and quinic acids are the non-volatile acids identified and quantified in V.
arctostaphylos and V. myrtillus species. It is interesting to note that the level of malic acid
in both berries increases gradually during maturation. In contrast, the level of citric and
quinic acids, as well as the total acid level, decreases towards ripening in both species [71].
Citric and malic acids are the main organic acids in V. oxycoccos [72]. In V. corymbosum, the
major acids (organic and phenolic) present are citric, malic, quinic, and chlorogenic acids.
The minor acids, acetic and shikimic acid are present and their contribution to the total
acid equivalents is 3.0% [73].

4. The Chemical Profile of Vaccinium Leaves

A body of scientific research studies proved the contribution of berries’ consumption
to the main targets of functional foods, such as health maintenance and reduced risk of
some chronic diseases. However, in addition to fruits, the leaves of the Vaccinium species
have also been used in traditional remedies (Table 1).

Leaves are considered to be by-products of berries’ cultivation. Their traditional use
against several diseases, such as inflammation, diabetes, and ocular dysfunction, has been
almost forgotten in recent times. The scientific interest regarding the leaves’ composition
and beneficial properties has grown, demonstrating that leaves may be considered to be
an alternative source of bioactive compounds. Analytical studies reveal that the chemical
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composition of leaves is similar to that of the fruits or even higher, indicating that they may
be used as an alternative source of bioactive compounds for the development of functional
foods, nutraceuticals, and/or food supplements.

Riihinen et al. [74] showed that red leaves of Vaccinium genus contain anthocyanins,
which are absent in green leaves. Both green and red leaves contain proanthocyanidins,
especially procyanidin. Teleszko and Wojdyło [75] analysed the phytochemical composition
of fruits and leaves of several Vaccinium species; among them, V. myrtillus leaves were the
first source of phenolic compounds, followed by V. oxycoccos leaves. The major polyphenolic
group was proanthocyanidins, followed by flavonols. Proanthocyanidins, flavan-3-ols,
phenolic acids and flavonols were in higher concentration than the respective fruits [76].

Proanthocyanidins were detected in small quantities in the leaves of V. vitis-idaea [41].
Ferlemi et al. [76,77] have detected proanthocyanidin B1/B2 and cinchonain in the leaves
of V. corymbosum. In the same year, Wang et al. [78] identified the presence of cyanidin
3-O-glucoside, cyanidin 3-O-glucuronide, and cyanidin 3-O-arabinoside in the methanolic
leaf extract of V. corymbosum, confirming that V. corymbosum leaves possess a higher total
anthocyanins content compared to V. virgatum and V. formosum leaves.

After proanthocyanidins, flavonoids are the most important classes of constituents of
Vaccinium leaves. Quercetin-3-O-glucuronide is the most abundant flavonoid (70–93% of to-
tal flavonoids) [79]. Other identified flavonoids in the leaves are quercetin-3-O-galactoside,
quercetin-3-O-(4”-3-hydroxy-3-methylglutaroyl)-α-rhamnoside, quercetin-3-O-arabinoside,
quercetin-3-O-glucoside, quercitrin, and quercetin, as well as three kaempferol glyco-
sides [41,79]. In addition, Hokkanen et al. [41] have detected several other bioactive
compounds in the leaves, such as flavan-3-ols, six different isomers of cinchonain, three
proanthocyanidins, and two coumaroyl iridoids.

Sidorova et al. [80] investigated the flavonoids present in V. myrtillus, and found
flavonoid C-glycosides and O-derivatives of apigenin and luteolin; the main ones are
apigenin-7-glucuronide, vitexin-2-O-rhamnoside, and isoorientin. Flavonoid glycosides are
represented mainly in quercetin derivatives, particularly rutin and quercetin-3-glucoside-7-
rhamnoside. Isorhamnetin-3-glucoside and kaempferol-3-glucuronide were also found in
the extract. Additionally, free aglycones were also present (myricetin, quercetin, luteolin
and kaempferol).

The main flavonols detected in the V. oxycoccos leaves were hyperoside and quercetin-
3-O-rhamnoside, together with quercetin-3-O-xyloside, quercetin-3-O-arabinoside and
procyanidin A2 [66].

The green leaves of V. vitis-idaea have similar phytochemical profiles to those of
V. myrtillus [41,79]. Ieri et al. [79] and Hokkanen et al. [41] have quantified the phenolic
compounds in methanolic and hydroalcoholic leaf extracts of V. vitis-idaea. In general, hy-
droxycinnamic acids and flavonoids were the most abundant compounds. In the methano-
lic extract, the content of flavonoids was higher than that of hydroxycinnamic acids, but in
the hydroalcoholic extract, the opposite was observed. In both extracts, the main acid was
2-O-caffeoylarbutin, which is not present in other Vaccinium leaves.

Other phenolic acids detected in the methanolic extract were chlorogenic, caffeic, p-
coumaric and caffeoyl-shikimic acids, together with the coumaroyl quinic acid isomers [41].
Moreover, V. vitis-idaea leaves were characterised by coumaroyl- and caffeoyl-hexose hy-
droxyphenols.

The most abundant flavonoid was quercetin-3-O-(4”-3-hydroxy-3-methylglutaroyl)-α-
rhamnoside, which represents 5–6% of total phenols in the hydroalcoholic extract and 32%
of the methanolic extract.

Rutin, hyperoside, and quercitrin were also detected in significant amounts in the
methanolic extract, while traces of four quercetin glycosides and kaempferol glycosides
were also found. Proanthocyanidins and coumaroyl iridoids were also identified [41].

Quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-glucoside, and
kaempferol-3-O-rhamnoside were identified in the leaves of V. arctostaphylos [45,81].
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The main flavonoids detected in the leaves of V. corymbosum were hyperoside, iso-
quercetin and rutin. Other flavonoids found were: myricetin [54], quercetin-3-O-
glucoside, quercetine-3-O-galactoside, quercetine-3-O-arabinoside [82], quercetin-3-O-
rhamnoside [35,82,83], myricetin-3-O-glucoside, quercetin-3-O-rutinoside [83], syringetin-
3-O-glucoside, and kaempferol-3-O-glucoside [35,83].

Several studies have demonstrated the role of collection time of Vaccinium leaves
in influencing their phenolic content [79]. In fact, contrary to the fruits, the flavonoid
content increases during the development of the leaves, while hydroxycinnamic acid con-
tent strongly decreases [84]. Previously, Riihinen et al. [74] have indicated that the red
leaves of V. corymbosum have higher quantities of quercetin and kaempferol, as well as of
ferulic, caffeic and p-coumaric acid, than green leaves. The main bioactive compounds of V.
myrtillus leaves are hydroxycinnamic acids, especially chlorogenic acid [41,79]; its concen-
tration ranges from 59 to 74% of the total hydroxycinnamic acids [79]. Sidorova et al. [80]
also reported the presence of rosmarinic acid, caffeoylquinic acid, p-coumaric and ferulic
acid. Hokkanen et al. [41] analysed the methanolic extract of V. myrtillus leaves and iden-
tified thirty-five compounds. Other than the abundant chlorogenic acid and its isomers,
caffeoyl-shikimic acid, feruloylquinic acid isomer, and traces of caffeic acid were found.

In addition, Neto et al. [85] have performed an HPLC-MS analysis of the phenolic
profile of V. oxycoccos leaves; the phenolic acids are mainly chlorogenic and neo-chlorogenic
acid, as well as 3-O- and 5-O-coumaroylquinic acids. Mzhavanadze et al. [86] reported the
isolation of caffeic, chlorogenic, neochlorogenic, 3- and 5-p-coumaroylquinic acids, and
3,5-dicaffeoylquinic acid from the leaves of V. arctostaphylos.

Continuing the investigation of the qualitative composition of the leaves, they have
isolated six phenolic substances: cryptochlorogenic (4-caffeoyl-quinic) acid, arbutin, ros-
marinic acid, caffeoylarbutin, 1-p-coumaroylgalactoglucose, and p-coumaroylarbutin.

Twenty different compounds, mainly phenolic acids and flavonols, were identi-
fied in the red dried leaves of V. corymbosum by Liquid Chromatography Electrospray
Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS) and High-Performance Liquid
Chromatography-Diode-Array Detection (HPLC-DAD) [76,77]. Interestingly, these two
groups were in almost equal concentration in the crude extract (chlorogenic acid and
quercetin-3-O-galactoside); as in V. myrtillus leaves, the most abundant compound was
chlorogenic acid. LC-MS analysis showed the presence of quinic and caffeic acid.

Even though the triperpenes in the leaves comprised only the 4–6% of those in the
respective fruits, several compounds were identified in the diethyl ether leaf extract. The
principal compound was β-amyrin, followed by oleanane- and ursane-type triterpenes.
The triterpene oleanolic and ursolic acids were also identified [87].

Two coumaroyl iridoid isomers (trans- and cis- form) previously documented in V.
oxycoccos fruits were also reported in the leaves [66]. In V. vitis ideae coumaroyl, iridoids
were quantified in small concentrations [41]. The three iridoids found in the leaf extracts of
V. corymbosum are identical to those found in the fruit. However, it should be noted that
a fourth iridoid, vaccinoside (monotropein-10-trans-p-coumarate), was detected in fresh
leaves but not in dried leaves [65].

5. Biological Properties of Vaccinium Species

Many biological properties have been reported for extracts and derivatives of different
Vaccinium species, and the anti-inflammatory, antioxidant, anti-carcinogenic, cardiovascular
and neurodegenerative protective effects have been extensively described [11,88–90]. High
antioxidant activity has been demonstrated for V. corymbosum [76,91], V. oxycoccos [92],
V. myrtillus [93], and many others. This activity appears to be linked to cultivar, genotype,
growing site, cultivation techniques and conditions, processing, and storage.

Similarly, in different anti-inflammatory tests, Vaccinium exhibited high anti-inflammatory
activity [11]. High concentrations of anthocyanins (such as cyanidin, delphinidin and
malvidin) and flavonoids (such as astragalin, hyperoside, isoquercitrin, and quercitrin)
appear to be related to the anti-inflammatory and antioxidant activities ascribed to these
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berries [94,95]. Considering that berries of Vaccinium are edible, their consumption may be
helpful for the treatment of inflammatory illnesses.

In this review, we will focus on the activity of Vaccinium extracts and derivatives in
cardiovascular diseases, closely associated with the inflammation processes and oxidative
stress. The vascular endothelium occupies a catalogue of functions that contribute to the
homeostasis of the cardiovascular system. Endothelial cells (ECs) play a variety of roles,
including the control of tone regulation, blood coagulation and vascular permeability, and
local regulation of coagulative, immune and inflammatory stimuli [96].

Indeed, many cardiovascular diseases are either a direct or indirect result of a dys-
function of the endothelium that fails to maintain body homeostasis [97,98]. Endothelial
dysfunction (ED) is considered as a predictor of cardiovascular events, and it is charac-
terized by alterations in vascular tone and endothelial production of procoagulant and
prothrombotic factors [97,98].

Several risk factors including smoking, obesity, insulin resistance, diabetes, hyperc-
holesterolemia, and physical inactivity have been described for ED. In addition, ED occurs
with aging, as a consequence of senescence processes [99,100]. Vaccinium extracts have long
been used in traditional medicine and appear to be promising nutraceuticals to prevent
endothelial dysfunction and cardiovascular diseases.

5.1. Vaccinium and Diabetes

Several reports indicate a potential role of Vaccinium in the control of diabetes, and it
has been used in traditional medicine for centuries to ameliorate its symptoms [101–103].
Approximately 90% of the diabetic patients have type 2 diabetes that is characterized by
peripheral insulin resistance and by a reduction in the number and the activity of pancreatic
β-cells [104]. Anthocyanins from Vaccinium have potential in terms of lowering the risk of
developing various chronic diseases due to their ability to regulate energy metabolism as
well as through their anti-inflammatory and anti-oxidative effects [11]. Furthermore, antho-
cyanins inhibit the activities of α-glucosidase and pancreatic α-amylase, important targets
for some antidiabetic drugs [105–107]. Phenolic compounds affect key pathways of carbo-
hydrate metabolism and hepatic glucose homeostasis including glycolysis, glycogenesis,
and gluconeogenesis, which are usually impaired in diabetes.

In addition, Vaccinium extracts and derivatives protect pancreatic β-cells from glucose-
induced oxidative stress, increase insulin secretion, possess glucose-lowering effects, restore
glutathione concentration, inhibit DPP-4, enhance insulin response, and attenuate the
secretion of glucose-dependent insulinotropic polypeptide and GLP-1 [80,106,108,109].
Blueberry metabolites reduce the expression of inflammatory markers and restore the
glycosaminoglycan levels increased by high glucose in in vitro models of diabetic ECs [110].
Moreover, malvidin, a major anthocyanin present in blueberries, decreases reactive oxygen
species levels, increases the enzyme activity of catalase and superoxide dismutase, and
downregulates NADPH oxidase 4 (NOX4) expression in ECs exposed to high glucose
levels [111], indicating a protective role against diabetes-induced oxidative stress. In
similar models, this compound also reduces vascular endothelial growth factor (VEGF)
up-regulation, ICAM-1 expression, and NF-κB (p65) levels [112]. In addition, malvidin
has been shown to be able to restore PI3K and Akt levels, which are reduced by high
glucose [113].

These observations are also confirmed in the retina of diabetic rats, where blue-
berry anthocyanins reduce oxidative stress, vascular endothelial growth factor (VEGF)
and interleukin 1β (IL-1β) expression, and activate the Nrf2-related/heme oxygenase 1
(Nrf2/HO-1) signalling pathway [114], suggesting that Vaccinium anthocyanin may be help-
ful in inhibiting diabetes-induced retinal abnormalities and preventing the development of
diabetic retinopathy.
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5.2. Vaccinium and Atherosclerosis

Atherosclerosis is one of the major causes of cardiovascular diseases and is charac-
terized by the accumulation of lipids and fibrous plaques in the large arteries, which may
lead to heart attacks, strokes, and peripheral vascular diseases [115].

Cignarella et al. [116] tested a dried hydroalcoholic extract of V. myrtillus leaves show-
ing a lipid-lowering activity with decrease of 39% of the triglycerides in the blood of
dyslipidemic animals. Similarly, V. corymbosum berries decreased blood cholesterol lev-
els, thus reducing cardiovascular risk and promoting atherosclerosis prevention [117,118].
In addition, consumption of cranberry anthocyanins improved lipid profiles, increasing
HDL and decreasing LDL in rats, hamsters fed a high-fat diet and hypercholesterolemic
swine [119–121]. Wu et al. [122] showed that blueberries induce a regression of atheroscle-
rotic plaques in arteries. In this manuscript, the apolipoprotein-E deficient (apoE−/−)
mice were fed either a control diet or an enriched diet supplemented with 1% freeze-dried
wild blueberries for 20 weeks. The plaques, measured at two sites, were 39 and 58% smaller
in the mice fed blueberries compared to those fed the control diet, and these effects were
associated with the reduction in biomarkers of lipid peroxidation in the liver, such as F2-
isoprostane [122]. Similarly, Matziouridou et al. [123] showed that in Apoe−/− mice fed
either a low-fat diet or high-fat diet, with or without lingonberries, the size of the atheroscle-
rotic plaques, the total, HDL and LDL-VLDL blood cholesterol, and triglycerides, as well
as the hepatic gene expression of bile acid synthesis genes (cholesterol 7 α-hydroxylase
(Cyp7a1), sterol 12α-hydroxylase (Cyp8b1)) were reduced.

Although published animal studies primarily focused on the specific cardiovascular
disease risk factors or biomarkers, and the antioxidant and anti-inflammatory effects, of
Vaccinium and its derivatives, clinical data have also been published [10]. Indeed, good
results were also observed with cranberry juice in obese men, and hyper-triglyceridemic or
diabetic patients [24].

The molecular mechanisms of atheroprotective effects of Vaccinium are not completely
understood and are often associated with antioxidant and anti-inflammatory activities.
In fact, the protective activity in atherosclerosis development have been associated with
the reduction in oxidative stress, inhibition of inflammation, and regulation of cholesterol
accumulation and trafficking [10].

In apoE−/− mice, the treatment with 1% wild blueberries for 20 weeks modulated
gene expression and protein levels of scavenger receptors CD36 and SR-A, the principal
receptors responsible for the binding and uptake of modified LDL in macrophages [124].

CD36 and SR-A were found to be lower in peritoneal macrophages of blueberry-fed
mice, and fewer ox-LDL-induced foam cells were formed, probably through a mechanism
involving PPARγ [124]. In addition, Xie et al. [125] demonstrated that blueberry consump-
tion increased the levels of the cholesterol transporter ABCA1, indicating that blueberries
may facilitate cholesterol efflux and lowering cholesterol accumulation. Overall, it has
been shown that blueberry consumption increased PPARα, PPARγ, ABCA1 and fatty acid
synthase expression, while reducing SREBP-1 levels [10].

Although several sources of experimental evidence support the atheroprotective
effects of Vaccinium, further and more in-depth studies are needed to completely elucidate
the molecular mechanisms underlying this activity.

5.3. Vaccinium and Endothelial Dysfunction

Endothelial dysfunction is an early predictor of cardiovascular diseases, and it is well
known that oxidative stress and low grade of inflammation contributes to endothelial cell
activation, priming it for adhesion, infiltration, and immune cell activation [126].

In this context, data from the literature indicate that Vaccinium extracts and derivatives
may prevent or delay cardiovascular diseases due to their capability to revert endothelial
dysfunction. Very recently, Curtis et al. [127] showed that one cup of blueberries/day, for
six months, promotes 12–15% reductions in cardiovascular disease risk, demonstrating that
higher intakes of blueberries improve markers of vascular function and ameliorate lipid
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status. Similarly, the intake of blueberry acutely improved peripheral arterial dysfunction
in smoker and in non-smoker subjects [128,129], improved endothelial function over six
weeks in subjects with metabolic syndrome [130], and improved endothelium-dependent
vasodilation in hypercholesterolemic individuals through the induction of the NO-cGMP
signaling pathway [131].

In animal models, blueberry anthocyanin-enriched extracts were shown to be able to
increase Bcl-2 protein expression, as well as to decrease interleukin 6, malondialdehyde,
endothelin 1, and angiotensin II levels and to reduce Bax protein expression after rat
exposure to fine particulate matter [132]. Blueberry consumption was also able to protect
endothelial function in obese Zucker rats, through the attenuation of local inflammation in
perivascular adipose tissue (PVAT) [133]. In diabetic rats, the Vaccinium treatment decreased
markers of diabetic retinopathy, such as retinal VEGF expression and degradation of
zonula occludens-1, occludin and claudin-5 [134]. Finally, in experiments of hypoperfusion-
reperfusion in rats, the administration of the extract of Vaccinium myrtillus protected pial
microcirculation by preventing vasoconstriction, microvascular permeability, and leukocyte
adhesion [135].

The endothelium protective role of Vaccinium has also been reported in in vitro experi-
mental models. Human aortic endothelial cell (HAECs) treated with palmitate exhibited
elevated ROS levels, and increased expression of several markers of endothelial dysfunction
including NOX4, chemokines, adhesion molecules, and IκBα.

The effects of palmitate were ameliorated in HAECs previously treated with blueberry
metabolites [136]. In human umbilical vein endothelial cells (HUVEC), pterostilbene,
an active constituent of blueberries, is able to induce a concentration-dependent nitric
oxide release via endothelial nitric oxide synthase (eNOS) phosphorylation, mediated by
activation of the PI3K/Akt signaling pathway [137]. Similarly, blueberry anthocyanins
protect endothelial cells from oxidative deterioration by decreasing the levels of ROS
and Xanthine Oxidase -1 (XO-1) and increasing the levels of superoxide dismutase and
HO-1 [138].

6. Conclusions and Future Perspectives

The fruits and leaves of different Vaccinium species have been used for a long time
in the traditional medicine of different cultures to treat several diseases including renal,
gastrointestinal and liver disorders, respiratory system infections, cough, fever, diabetes,
and convulsions. Biological studies support traditional uses since many Vaccinium com-
ponents exhibit important biological properties, including antioxidant, antitumor, anti-
inflammatory, antidiabetic and endothelium protective activities. In particular, the high
antioxidant and anti-inflammatory activity of Vaccinium has been related to the high content
in polyphenols, anthocyanins, and flavonoids.

In addition, Vaccinium extracts appear to be safe and mostly lacking in side effects,
with the exception of a few case reports, without statistical significance, describing an
aspirin-like effect (increased bleeding) [139,140].

Herein, we reported the chemical composition of fruits and leaves of Vaccinium species
and provided an overview of their biological properties, focusing on the activity of Vac-
cinium extracts and derivatives in cardiovascular diseases and endothelial dysfunctions,
closely associated with inflammation processes and oxidative stress.

Many studies indicate that Vaccinium is an important source of bioactive molecules
that appear to satisfy all the requirements to develop drugs and nutraceuticals against
endothelial dysfunction, thus preventing cardiovascular disease onset and progression.
Well-designed and specific clinical trials are necessary in order to explore the intriguing po-
tential of Vaccinium in the treatment of metabolic syndrome and in cardiovascular protection.

In conclusion, as fruits and leaves of Vaccinium species represent a rich source of
phenolic compounds with a high biological potential, they can serve as commercial sources
of specific compounds or fractions for pharmaceutics, cosmetics and natural product
markets. However, because of the wide variety of constituents that characterizes the
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chemical profile of Vaccinium species, their possible interactions with other constituents,
and the complexity of their metabolism, further and more in-depth studies will be necessary
to better define and characterize the contribution of each single active component, possible
synergisms between the different compounds, and the molecular mechanisms underlying
their biological effects.

Author Contributions: Conceptualization, R.T. and F.F.; writing—original draft preparation, investi-
gation, resources, data curation, M.C.T., F.F., M.B., R.T., M.R.L., L.T. and B.D.; writing—review and
editing, R.T., M.R.L., F.F., L.T. and B.D.; supervision, B.D., R.T. and L.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by MIUR (Progetto Dipartimento di Eccellenza 2018–2022) to
L.T. and F.F.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data related to the review manuscript are presented in the manuscript
in the form of tables and figures.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kloet, V.E. Manual of the flowering plants of Hawaii. Bishop Museum Spec. Publ. 1990, 83, 591–595.
2. Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europea; Cambridge University Press:

Cambridge, UK, 1972; Volume 3, pp. 12–13.
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