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Abstract: Elasticity, lattice dynamics, and thermal expansion for uranium and U–6Nb alloy (elastic
moduli) are calculated from density functional theory that is extended to include orbital polarization
(DFT+OP). Introducing 12.5 at.% of niobium, substitutionally, in uranium softens all the cii elastic
moduli, resulting in a significantly softer shear modulus (G). Combined with a nearly invariant
bulk modulus (B), the quotient B/G increases dramatically for U–6Nb, suggesting a more ductile
material. Lattice dynamics from a harmonic model coupled with a DFT+OP electronic structure
is applied for α uranium, and the obtained phonon density of states compares well with inelastic
neutron-scattering measurements. The Debye temperature associated with the lattice dynamics
falls within the range of experimentally observed Debye temperatures and it also validates our
quasi-harmonic (QH) phonon model. The QH Debye–Grüneisen phonon method is combined with a
DFT+OP electronic structure and used to explore the anisotropic thermal expansion in α uranium.
The anomalous negative thermal expansion (contraction) of the b lattice parameter of the α-phase
orthorhombic cell is relatively well reproduced from a free-energy model consisting of QH-phonon
and DFT+OP electronic structure contributions.
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1. Introduction

Uranium is an essential metal that has many different applications. Of course, its
nuclear attributes are important, but its material properties are also very relevant. It is a
heavy (high-density) metal that is mechanically strong relative to other nuclear materials
but is prone to oxidation (corrosion). Uranium’s mechanical properties are to a degree a
consequence of its rather unusual crystal structure (orthorhombic) that induces greater
anisotropy than materials with higher symmetry structures, such as the d-transition metals.
The material properties and the anisotropy are reflected in the elastic moduli that represents
the character and strength of the atomic bonding, that in the case of uranium is dominated
by delocalized and bonding 5f electrons [1]. The anisotropy is also revealed in an anomalous
and poorly understood negative thermal expansion (contraction) of one of its orthorhombic
lattice constants.

Adding solid-solution elements from the series of d-transition metals has a beneficial
effect on corrosion resistance and improves the mechanical properties. Typically, these
alloying elements are soluble at higher temperatures in the body-centered cubic (bcc) phase,
γ-uranium, but they can be retained in other phases through quenching [2], as we will
discuss below. It has been shown that for U–Nb-specific alloys, the alloying improves the
mechanical properties, including ductility, relative to pure uranium [3,4]. Additionally,
the addition of niobium to uranium is particularly beneficial, as it significantly increases
oxidation resistance because the niobium metal is distributed uniformly in the uranium
matrix [5]. These uranium–niobium alloys furthermore exhibit a shape memory effect
(SME) that depends on temperature and strain conditions.
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Considerable numbers of studies have been conducted, particularly for the U–Nb
alloys, focused on the equilibrium phase diagram, metastable phases, phase transitions,
thermodynamics, microstructures, mechanical properties, equation of state, aging, and
corrosion [3–25]. The equilibrium U–Nb phase diagram has been presented and discussed
in numerous papers [6–11]. There is a complete solubility across the equilibrium U–
Nb phase diagram in the high-temperature γ phase but below the critical temperature,
Tc = 950 ± 20 ◦C, the uranium–niobium phase diagram displays a γ-phase miscibility
gap (γ(bcc) → γ1(bcc) + γ2(bcc)) with decomposition of the γ1-phase according to the
monotectoid reaction γ1 → γ2 + α at 647 ◦C, where the γ1 and γ2 phases contain 13.3 and
70 ± 2 at.% Nb, respectively, while the α phase has less than 1 at.% Nb in solution. Because
this scenario represents the equilibrium U–Nb phase diagram, the decomposition of γ1 is
diffusional, forming a two-phase structure with unalloyed α uranium and niobium-rich γ2-
phase. The resulting mixture suffers degraded corrosion resistance and ductility [3,4,11–15]
due to the lack of niobium in solid solution. It also promotes microscopic anodic and
cathodic regions [15].

Djuric [16] mentioned, relating to Cahn’s theoretical argument [26], that during the
described eutectoid decomposition the equilibrium composition of the product phases
could only happen in the ideal case when the reaction rate approaches zero. Based on the
mechanism suggested by Djuric [16], Zhang et al. [18] and Duong et al. [11] concluded that
the phase transition from the high-temperature γ phase to the low-temperature equilibrium
α uranium- and niobium-rich γ2-phase occurs through metastable (quenched) phases: γ0

(tetragonal), α” (monoclinic), and α’ (orthorhombic). The reactions producing α” and
γ0 phases are generally regarded as martensitic (diffusionless) in nature, occurring by
shear and/or displacive mechanisms requiring only cooperative, short-range motions
of the atoms [4]. The Nb supersaturated metastable α”-phase solid solution exhibits far
better corrosion resistance than unalloyed uranium and it is amenable to subsequent
age hardening, permitting a wide range of mechanical properties [19–23] through the
selection of aging temperature and time [8,15]. Additionally, the equation of state, phase
stability, and phase transformations under high pressure and temperature, including shock
behaviors, of uranium-6 wt.% niobium and uranium-7.7 wt.% niobium alloys have been
studied recently [23,24].

From a modeling standpoint, there are fewer studies on the uranium–niobium system,
but there are some recent phenomenological works reported [25,27–29]. Uranium–niobium
has also been investigated from first-principles electronic structure theory [30–33]. How-
ever, no theoretical or experimental data on elastic properties are found in the literature,
even though they are central for understanding the mechanical behavior and the SME of
the U–Nb alloys. Constitutive modeling of the uranium–niobium alloys also depend on
the elasticity [27] and new data would be helpful for that purpose.

In this article, we compute first-principles elastic moduli for uranium metal and
uranium–niobium alloy (12.5 at.% Nb). We focus on two phases, namely the orthorhombic
ground-state α phase of uranium and the quenched monoclinic α” phase of the U–6Nb
alloy. The calculated elastic moduli will highlight the strong influence of niobium in the
alloy, resulting in softer elastic behavior and a corresponding increase and improvement
in ductility.

Many of the interesting properties of U–6Nb, including the shape memory effect,
originate from the characteristics of the 5f electrons on the uranium atom. Even though
the studies of uranium metal itself, experimental and theoretical, are too plentiful to list
here, we note that fundamental aspects of the metal remain unexplained. Specifically, the
anomalous negative thermal expansion of one of its lattice parameters is not understood
but is likely linked to the mechanical behaviors of uranium and the U–6Nb alloy. We
explain this phenomenon here by computing electronic structure and phonon density of
states and couple the results to an ab initio quasi-harmonic free-energy model.
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2. Computational Methods

All results presented in this article are derived from the calculated free energy of
uranium or niobium atoms and their geometrical arrangement. The theoretical framework
is established by DFT, which only fundamental approximation is that of the electron
exchange and correlation. There are many different alternatives for this approximation that
govern the quantum–mechanical interaction between the electrons. They make different
assumptions that are better or worse depending on the material in question. Fortunately,
the generalized gradient approximation (GGA) [34] is known [35] to be quite good for
actinide metals, including uranium. There are better variants for niobium (a 4d transition
metal) but the niobium content in the studied uranium–niobium alloy is relatively low (no
more than 12.5% of the atoms) and therefore the GGA remains a good choice.

Because the GGA depends on the spin-polarized electron density, the effects of mag-
netism and the relativistic spin–orbit interaction are included in the theory. However,
in the conventional DFT formulation, there are no electron currents, so orbital–orbital
interaction is ignored. Nonetheless, for the actinides and particularly plutonium [36], this
interaction is important and there are approximate ways to amend DFT to include it. The
“orbital polarization” (OP) scheme defines a parameter-free self-consistent procedure that
is computationally tractable [37] and we employ it here (DFT+OP), even though its effect
in uranium is less pronounced than in plutonium [38].

For best accuracy, it is essential to minimize numerical or other approximations beyond
the GGA, and the all-electron technique is preferred over methods that rely on pseudopo-
tential or other approximations for core electrons not included in the valence. Here, we
utilize the all-electron full-potential linear muffin-tin orbitals (FPLMTO) method [39]. Basis
functions, electron densities, and potentials are calculated with no geometrical approx-
imation, and these are expanded in spherical harmonics (with a cutoff lmax = 8) inside
non-overlapping (muffin-tin) spheres around the atoms and in Fourier series in the space
outside these muffin-tin spheres. The muffin-tin sphere radius is fixed and close to 0.8 of
that of a sphere with a volume equal to the atomic volume. All calculations utilize semi-core
states and valence states with two fixed energy parameters each for the s semi-core state,
p semi-core state, and the valence states. The number of k points included in the electronic
structure calculations depends on the crystal structure, but we generally use ~2000 k points
or more for one atom/cell calculations, and less for structures with more atoms. Each
energy eigenvalue is broadened with a Fermi–Dirac function at room temperature (300 K)
unless free energies at higher temperatures are considered.

We introduce a 16-atom supercell approximation for the U–6Nb alloy by replacing
2 of the 16 uranium atoms with niobium in an ordered U14Nb2 compound, either in
the monoclinic α” phase or the orthorhombic α phase. This assumption is analogous to
the study by Wang et al. [32]. Geometrical energy optimization (structural relaxation) is
performed for the genuine phases (α for uranium and α” for the U–6Nb alloy). For α

uranium, the relaxation produces axial ratios b/a = 2.045, c/a = 1.755, an internal parameter,
y = 0.1009, and an atomic volume 20.67 Å3. Correspondingly, the uranium–niobium alloy
in the α” phase has axial ratios b/a = 2.022, c/a = 1.753, monoclinic angle 91.3◦, internal
parameters y1 = 5/6 and y2 = 1/3, and atomic volume 20.48 Å3.

Specifically, the α phase (Cmcm space group) has primitive vectors in cartesian coor-
dinates (cc): (a/2, −b/2, 0); (a/2, b/2, 0); (0, 0, c) with the two atomic positions in cc: (0, by,
c/4); (0, −by, −c/4). The α” phase (C1121/m space group) has primitive vectors in cc: (a,
0, 0); (bcosγ, bsinγ, 0); (0, 0, c) and the four atomic positions in cc: (0, 0, 0); (0, by1, c/2);
(a/2, by2, c/2); (a/2, b/2, 0).

The thirteen (nine) elastic constants for the monoclinic (orthorhombic) α” (α) structure
are calculated for the pure element as well as the uranium–niobium alloy. The procedure is
to apply about 20 strains (within ±1%) [40,41] corresponding to the various moduli, least-
square fit the free-energy response to a 4th order polynomial and extract the coefficient
for the 2nd order term [40,41]. No structural relaxations are considered during these
small strains. To calculate the shear (GV) and bulk (BV) moduli, we use standard Voigt
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expressions. The ratio BV/GV indicates a materials brittleness (small value) or ductility
(large value) [42].

The phonon density of states (DOS) is calculated in the harmonic approximation for α
uranium. We employ the small-displacement method, utilizing a 36-atom supercell and
two small atomic displacements, as implemented in the PHONOPY code [43]. To improve
on the accuracy of the phonons, we performed an additional supercell calculation without
displacements so that we could subtract any residuals in the force-matrix result. Technically,
the forces are determined numerically from an approach that relies on moving each atom
and calculating the energy response. This somewhat cumbersome procedure is robust
and generates reliable forces from an electronic structure that is significantly perturbed by
spin–orbit coupling and orbital polarization. Under these circumstances, the atomic forces
are not easily computed accurately using standard methods; see previous discussions [44].
The Debye temperature is obtained from integrating over the computed phonon density of
states in the conventional fashion.

The thermal expansion for each of the a, b, and c lattice constants of α uranium
is derived from varying the b/a axial ratio and evaluating the free energy from 300 K
to 900 K. It is known [45,46] that the a and c lattice parameters have nearly identical
thermal expansions above 300 K, thus motivating us to simplify the problem and keep c/a
constant (1.755).

In our approach, the free energy consists of an electronic contribution, obtained
directly from our electronic structure, and a lattice-vibration term. The electron–phonon
coupling is not easily formulated, and because of the relatively low temperatures, this
interaction is assumed to be negligible. The phonon contribution is expressed within Debye–
Grüneisen (DG) quasi-harmonic (QH) theory and computed utilizing our own codes [47].
The DG approach is validated by comparing the Debye temperature (θD) with that obtained
independently from our first-principles phonon density of states (both θD = 240 K). From
the calculated free-energy minimum we determine the b/a axial ratio as a function of
temperature. The absolute thermal expansions for the a, b, and c lattice constants are then
established from the total-volume expansion acquired from the QH-DG model.

3. Results
3.1. Elastic Constants

Elastic constants reflect important material properties related to the strength and
character of the interatomic bonding. They directly connect to macroscopic measurables
such as ductility, brittleness, and resistance to shear and pressure. Furthermore, elasticity is
an essential ingredient in constitutive modeling and involved in the shape memory effect
that exists in the U–Nb materials. Elastic moduli can also be used to constrain interatomic
potentials that are developed and employed in molecular dynamics simulations.

Here, we focus on the uranium–niobium alloy with about 6 wt.% niobium (~14 at.% Nb),
often denoted U–6Nb (approximated here by an ordered U14Nb2 compound). Because we
are interested in the influence of niobium on the elastic properties, we explore unalloyed
uranium as well, and include its ground-state orthorhombic α phase in the study as a
reference in addition to the monoclinic α” (U–6Nb) phase.

The calculated elastic constants for uranium and U14Nb2 in the α” and α phases are
listed in Table 1. We are not aware of either calculations or measurements for the uranium–
niobium alloy, but for α uranium the data are consistent with others’ modeling [40,48–51]
and rather close to the experimental data [52], particularly when extrapolated to zero
temperature. The good comparison between experiment and modeling for α uranium
gives us confidence that the theoretical framework is also sound and appropriate for the
uranium–niobium alloy.
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Table 1. The independent elastic moduli (Mbar) for the α” and α phases of uranium and uranium–
niobium alloy. GV and BV are the corresponding shear- and bulk-modulus Voigt averages. The
quotient BV/GV (Pugh ratio) relates to malleability or ductility (high value) or brittleness (low value)
[42]. For α-U, experimental data [52] shown in parentheses are extrapolations to zero temperature.
Note, α” and α are hypothetical phases for uranium and uranium–niobium alloy, respectively, shown
here for comparison.

Elastic
Moduli α”-U α”-U14Nb2 α-U α-U-

Experiment α-U14Nb2

c11 2.91 2.50 2.88 2.15 (2.10) 2.66
c22 1.89 1.66 2.37 1.99 (2.15) 2.21
c33 3.63 3.19 3.18 2.67 (2.97) 2.73
c44 1.40 1.12 1.43 1.24 (1.45) 1.16
c55 1.08 0.58 1.06 0.734 (0.945) 0.56
c66 0.96 0.68 0.96 0.743 (0.871) 0.72
c12 0.465 0.585 0.445 0.465 0.64
c13 0.010 0.265 0.085 0.218 0.39
c23 1.46 1.315 1.10 1.08 1.16
c15 0.46 0.45
c25 0.475 0.395
c35 0.435 0.365
c46 0.015 0.015
GV 1.121 0.822 1.143 0.88 (1.017) 0.849
BV 1.367 1.298 1.299 1.149 (1.194) 1.33
BV/GV 1.219 1.579 1.136 1.305 (1.174) 1.567

The obtained elastic moduli are not dramatically different between U14Nb2 and ura-
nium in either the α or α” phase, and that is likely because only 12.5% of the uranium
atoms are replaced by niobium atoms. However, we find a general trend of substantial
elastic softening in both the α and α” phase. All cii moduli are significantly smaller for
the alloy containing niobium. The bulk modulus, however, is relatively uniform between
uranium and the uranium–niobium alloy in both phases. The shear modulus (GV), on the
other hand, is notably smaller for the alloy. Consequently, the Pugh ratio BV/GV increases
by an appreciable 30–40% for the alloy, suggesting a great improvement in ductility over
the pure element.

We also performed reference calculations with 1/16 niobium (U15Nb) in the α phase
only, and in this case the ductility (in terms of the Pugh ratio) increased by about 17%
relative to elemental uranium. There is a proportionality between niobium content and
ductility, at least for smaller amounts of niobium. The reason for the better ductility is
directly traced to the softening of the cii single-crystal elastic constants that we compute for
the alloy (Table 1).

Another interesting observation in Table 1 is that c11, c22, and c33 are quite different
for the studied phases. These three moduli correspond to the energy cost to independently
strain along the a, b, and c axis, respectively. Consequently, there is a great deal of
anisotropy in the crystal both in the α and α” phases for uranium and the uranium–
niobium alloy. Particularly, c22 stands out and is smaller than the other two. This is
correlated with the anisotropic behavior of the b lattice constant with temperature, and we
shall return to this in Section 3.3.

Finally, the present U14Nb2 elastic constants in the α” and α phases have practical
value because they can help constrain interatomic potentials or guide constitutive modeling
for the shape memory U–6Nb alloy.

3.2. Lattice Dynamics

In addition to the elasticity, lattice vibrations or phonons provide important thermal
and structural information about the material. For example, soft phonons could signal struc-
tural phase transitions, while stiffer phonons usually imply greater elastic constants and
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strength. The phonons also contain temperature-dependent information and parameters
for thermodynamic modeling, such as the Debye temperature or the Grüneisen parameter.

By relating the theoretical phonons with experimental observations, one can assess
the accuracy and reliability of the model. If a material’s calculated atomic density, crystal
structure, elastic constants, and phonons all compare favorably with measurements, then
the chemical bonding predicted by the model must be rather accurate as well. Recently,
excellent phonons were calculated for a far more controversial material than α uranium,
namely α plutonium [53], thus validating the electronic structure model assumed for
plutonium [36].

Our approach for modeling the α-uranium phonon density of states is the same
as that recently performed for α plutonium [53]. One difference is that for plutonium,
non-negligible spin and orbital magnetic moments are formed [54], while for α uranium,
the electrons do not spontaneously spin polarize. Nonetheless, effects of both spin–orbit
interaction and orbital polarization are present and accounted for in our theory for uranium.

In Figure 1, we show our DFT+OP phonon density of states together with experimental
data [55] and least-square fits of force-constant models to experimental data [56]. In this
figure, the notations are repeated from [55], and for more details we refer to that publication.
The neutron-scattering data [55] show significant scatter, as do the force-constant models,
but present in all data is the two-peak feature with one peak at 10 meV and the other
around 12.5–14.5 meV. The DFT+OP model accurately reproduces this double-peak feature,
while at the highest energies there is a shift between DFT+OP on one hand and the neutron
data on the other, with the force-constant models in the middle.
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Figure 1. Measured (open squares and circles) [55] and force-constant models fitted to experiments
(colored full or dashed lines) [56], and present DFT+OP (black line) phonon density of states for α
uranium at 300 K. The DFT+OP result was smoothened by a Gaussian function with a 0.2 eV width.

The discrepancy at the highest energies may be due to the lack of explicit temperature
dependence of the phonons in the method, or that only harmonic lattice vibrations were
considered in the model. One must also acknowledge that the experimental data may have
rather large error bars, particularly at the highest energies (>12 meV) where the data points
are more scattered; see Figure 1.

The Debye temperature (θD) can be expressed in terms of a Brillouin zone average of
the phonon frequencies [57], and from the DFT+OP phonon DOS we determine θD = 240 K.
Experimentally, there is a wide range (183–259 K) of room-temperature Debye temperatures
reported and listed in [55] and [58], with the 11 data-point average being θD = 217 K. The
Debye temperature is also known to be rather temperature dependent and decreases
significantly with temperature [55].
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We mention that another theoretical (DFT) study of α uranium produced lattice
dynamics in good agreement with neutron-scattering data as well [48]. In that study, the
focus was on the low-temperature properties of α uranium and specifically the distortions
associated with the charge-density wave.

3.3. Thermal Expansion

The thermal expansion of α uranium is strongly anisotropic [45,46]. Above room
temperature, two (a and c) of the three lattice constants display a normal (and quite similar)
positive expansion with temperature, while b anomalously shrinks or contracts with a
negative thermal expansion. The volumetric thermal expansion, however, remains positive
above room temperature. Negative thermal expansion is unusual in general, and among
the actinides the δ-phase of plutonium is probably best known for this exceptional behavior.
For δ plutonium, its origin has been proposed to be thermally excited longitudinal spin fluc-
tuations [36]. For α uranium, the formation of magnetic moments has been suggested [59]
as an explanation for the anisotropic behavior. To our knowledge, a fundamental and
detailed understanding of this phenomenon in α uranium has not yet been provided.
Regardless of cause, the expansion behavior of uranium is important since it relates to
the thermal dependency of the mechanical properties and the shape memory effect in the
uranium–niobium alloy.

Because magnetic moments do not survive (collapse) in α uranium in our first-
principles model, any negative thermal expansion needs to have a different explanation
than magnetism for the model to be correct. To explore a more straightforward origin,
namely, a combination of conventional electronic and lattice-vibration thermal effects on
the crystal structure (axial ratios), we study the free energy as a function of the b/a axial
ratio and temperature. We simplify the model by keeping the c/a axial ratio constant at
1.755 and the internal parameter y at 0.1009. This is a reasonable simplification because
the y parameter is rather insensitive to small changes in the lattice constants (not shown)
and the a and c lattice constant expansions are nearly identical [45,46] not too far above
room temperature.

Quasi-harmonic theory in the framework of the Debye–Grüneisen model is employed
for the lattice-vibrational contribution to the free energy, and the electronic contribution
is computed within the DFT+OP approach. The calculated quasi-harmonic Debye tem-
perature is identical (240 K) to that obtained independently from our DFT+OP phonon
calculation, and that reassures us of the appropriateness of the Debye–Grüneisen model
for the vibrational contribution.

In Figure 2, we show free energies, relative to the ground-state α-uranium phase
(b/a = 2.045, c/a = 1.755, and y = 0.1009), for structures with different b/a axial ratios as
functions of temperature. The top and middle panel display the lattice and electronic free-
energy contributions, respectively. We note that increasing temperature favors a decrease
in the b/a axial ratio for both the lattice and electronic contributions to the free energy.
These quantities are similar in magnitude and equally important for the net result. The
electronic term at T = 0 K reflects the structural energetics at zero temperature and shows a
weak energy dependence on the b/a axial ratio (~0.25 mRy/atom between b/a = 2.045 and
b/a = 1.995). This weak energy dependence is essential because otherwise the b/a ratio
would be insensitive to an increase in temperature (and it obviously is not).
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Figure 2. (Top) Free-energy contribution from lattice vibrations (Flattice) within the QH-DG model.
(Middle) Free-energy contribution (Felectronic) from DFT+OP electronic structure. (Bottom) Total free
energy (Ftotal = Flattice + Felectronic). The letters a, b, c, d, and e denote b/a axial ratios; 2.035, 2.025,
2.015, 2.005, and 1.995. All energies are relative to that of a calculation with b/a = 2.045 and where
the c/a axial ratio and internal parameter y are kept fixed at 1.755 and 0.1009, respectively.

The bottom panel of Figure 2 shows the total free energy (Ftotal = Felectronic + Flattice)
and one finds that the lowest energies are predicted to occur for different b/a ratios at
different temperatures. First, we have b/a = 2.045 at zero temperature, and then we see
transitions to (a) 2.035, (b) 2.025, (c) 2.015, (d) 2.005, and finally (e) 1.995 values of b/a
with increasing temperatures. These transitions occur only because of the delicate balance
between the structural energetics at zero temperature and the temperature-dependent
lattice and electronic free-energy terms. The net effect of these contributions is a decrease
in the b/a axial ratio with temperature for α uranium. Because we know the total volumet-
ric thermal expansion from the Debye–Grüneisen model, that incidentally agrees rather
well with the experiment [47], we can deduce the separate a, b, and c lattice constants’
temperature dependence.

In Figure 3, we plot the a, b, and c lattice constants as functions of temperature together
with experimental data [45]. At room temperature, these lattice parameters are about 1% or
less in error relative to the experiment, and the thermal dependence for all three, including
the anomalous behavior for the b parameter, is also reproduced quite well.
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Figure 3. The temperature dependence of the a (top panel), b (middle panel), and c (bottom panel)
lattice parameters (Å) in α uranium (solid circles). The dashed lines are guides to the eye only. The
experimental behaviors [45] are shown as solid lines.

While the trend is good, we notice there is some scatter in the low-temperature results,
and we attribute that to the constraint of using discrete axial b/a ratios. Only at the
highest temperatures is the predicted trend exaggerated. This may not be surprising
because the quasi-harmonic model is expected to be less accurate at higher temperatures,
where anharmonic lattice vibrations may become non-negligible. In addition, upon closer
inspection of the experiments, we see that the c lattice constant has a somewhat greater
thermal expansion than a at high temperatures. This behavior is ignored in the model
because we assume a frozen c/a axial ratio. In a more advanced treatment, where c/a
is allowed to change with temperature, we expect an even better agreement with the
experiment for the b/a ratio, because at high temperatures, the a lattice constant is slightly
underestimated, resulting in an excessive decrease in the b lattice constant.

4. Discussion

We have studied uranium metal and U–6Nb alloy from the first-principles theory.
For the uranium–niobium alloy, we focus on elastic moduli, and the essential information
on its elasticity has not been reported until now. The elastic properties are important in
terms of modeling, i.e., they can constrain interatomic potentials for molecular dynamics
simulations, or they can explicitly be used in constitutive modeling. The elastic constants
also explain the appreciated fact that the uranium–niobium alloys are more ductile than
the pure metal because of a significant alloy-driven softening of the cii moduli. For both
the metal and the alloy (α or α” phase), we find that c11, c22, and c33 are very different. In
particular, c22, that correlates with a change in the b lattice parameter, is significantly smaller
than the other two. This crystal anisotropy shows up dramatically in the thermal-expansion
behavior as well.
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The phonon density of states is calculated for α uranium and compares well with
neutron scattering. This fact, and that theoretical elastic moduli are in good agreement
with measured data (particularly when compared at the same 0 K temperature), gives
us confidence in the DFT+OP model used here for uranium and the uranium–niobium
alloy. The Debye temperature obtained from the DFT+OP phonon DOS is consistent with
that of the quasi-harmonic model, thus validating the latter as a sound approach for the
thermal-expansion study.

For α uranium, we investigate the unusual thermal-expansion behavior. We show
that the anisotropic and negative thermal expansion does not need to originate from exotic
(magnetic) electronic structure. Instead, a delicate balance between zero-temperature ener-
getic and temperature-dependent electronic and lattice-vibration contributions to the free
energy fully explains the anomaly. In this approach, the electronic term is determined from
DFT+OP electronic structure with a Fermi–Dirac broadening associated with the electronic
density of states, and the phonon term is based on the Debye–Grüneisen quasi-harmonic
scheme. The agreement between the observed anomalous lattice-constant anisotropy and
that predicted by the model is satisfactory, at least below the highest temperatures.
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