
applied
sciences

Article

Semantic Microservice Framework for Digital Twins

Gernot Steindl * and Wolfgang Kastner

����������
�������

Citation: Steindl, G.; Kastner, W.

Semantic Microservice Framework

for Digital Twins. Appl. Sci. 2021, 11,

5633. https://doi.org/10.3390/

app11125633

Academic Editor: Youngchul Bae

Received: 20 May 2021

Accepted: 15 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Computer Engineering, TU Wien, 1040 Vienna, Austria; wolfgang.kastner@tuwien.ac.at
* Correspondence: gernot.steindl@tuwien.ac.at

Abstract: Digital Twins (DT) in industrial cyber-physical systems are the key enabling technology
for Industry 4.0. Services are an essential part of almost every DT concept, but their interaction is
usually implementation-specific since no common guidelines are available. This work identifies
some fundamental requirements for a DT service framework based on applications identified in
corresponding literature. Based on these requirements, a service framework architecture is proposed.
The architecture utilizes Semantic Web technology and a workflow engine for service orchestration
to support the fulfilment of the identified requirements. As a case study for sensor data evaluation of
an industrial process, a proof-of-concept implementation is presented, showing the feasibility and
suitability of the proposed DT service framework architecture.

Keywords: Digital Twin; microservice; workflow engine; service architecture; knowlege graph;
cyber-physical system; Semantic Web

1. Introduction

The fourth industrial revolution or Industry 4.0 is changing business within the
industry, caused by the rapid development of Information and Communication Technology
(ICT) [1]. One of the most promising technologies that enables us to achieve the vision
of Industry 4.0 is the Digital Twin (DT) [2]. A DT can be defined as “a formal digital
representation of some asset, process or system that captures attributes and behaviors
of that entity suitable for communication, storage, interpretation or processing within a
certain context” [3]. DTs can be used within Industrial Cyber-Physical Systems (ICPS) for
monitoring, diagnostic, prediction, and control [4].

During the last few years, a number of research projects have addressed DT architec-
tures and frameworks [5–10]. A very interesting concept is the Five-Dimensional Digital
Twin (5D-DT) presented in [8], where five elements or dimensions for a DT are specified:
“Physical Entity”, “Virtual Entity”, “Connection”, “Data” and “Services”. In this conceptual
model, the aspect of services is emphasized as an important part of the DT. This 5D-DT
approach is used in [10] as the basis for the Generic Digital Twin Architecture (GDTA),
which is aligned with the six Information Technology (IT) layers of the Reference Archi-
tecture Model Industry 4.0 (RAMI 4.0) [11] to structure the elements of the GDTA model.
However, services are only considered in a more general and abstract way in the GDTA.

In ICT, the microservice architectural style has become more relevant for building
distributed software applications with improved scalability and maintainability in recent
years [12]. The idea is to build service-based applications by composing small, loosely
coupled software services [13]. The actual size of services depends on the application,
but the attribute “small” targets their functionality rather than the lines of code. The
service composition can be performed via orchestration or choreography. Orchestration
is a centralized approach, whereas choreography follows a decentralized method. Some-
times, it even can be beneficial to apply both of those two concepts, e.g., in automation
systems [14]. Another design decision that has to be made when utilizing microservices
is inter-service communication. The communication can be established using an asyn-
chronous or synchronous request–reply pattern or event-driven asynchronous message

Appl. Sci. 2021, 11, 5633. https://doi.org/10.3390/app11125633 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9035-9206
https://orcid.org/0000-0001-5420-404X
https://doi.org/10.3390/app11125633
https://doi.org/10.3390/app11125633
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125633
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125633?type=check_update&version=2

Appl. Sci. 2021, 11, 5633 2 of 19

exchange. In microservice architectures, event-driven communication is preferred as it
supports decoupling of services from each other [15]. A common technology for syn-
chronous request–reply communication is Hypertext Transfer Protocol (HTTP), which is
often used in combination with Representational State Transfer (REST). For event-driven
asynchronous communication, many message-oriented middleware solutions exist. One
such solution that is widely used is Apache Kafka, which provides fault-tolerant, scalable,
and stream-based messaging [16].

As described before, services play a key role in building DTs, but in most DT frame-
works or architectures, they are only mentioned or described at a high level of abstraction.
As most DT implementations are realized following a specific goal without any architec-
tural template [7], the same holds for the implemented services. There are many design
choices for how these services can be composed for later interaction. Their final design and
implementation should be based on distinct requirements. Still, there is a significant gap in
DT research, regarding how to offer a higher number of services in the same environment
to support complex decision making [17]. Missing architectural guidelines are resulting in
application-specific solutions which are barely reusable, and increase development time
and costs. Thus, our research focuses on the services infrastructure of a DT and explicitly
addresses requirements and a service framework architecture, which can later be applied
for various DT applications.

The main contributions of our work are the specification of functional and non-
functional requirements for a DT service framework derived from a literature review.
These requirements were clustered based on three RAMI 4.0 IT layers (Information Layer,
Functional Layer, and Business Layer) which are relevant for the proposed service frame-
work. Resting upon the identified requirements, a novel microservice architecture for DTs
is proposed. This architecture uses a federated knowledge graph to provide semantic
interoperability between services and enables both choreography and orchestration by
incorporating event-based messaging in combination with a workflow engine. A case study
for a DT of a thermal heating process is used to investigate and evaluate the proposed
service architecture. Therefore, microservices for an automatic sensor data evaluation were
implemented and the design artifacts are checked against the identified requirements.

The remainder of the paper is structured as follows: Section 2 gives a short overview
of related work in the area of DT service framework as well as DT architectures and
applications which are used to derive requirements for a DT service framework from.
Next, the identified requirements and the derived service framework are presented in
Section 3. The proposed service framework is implemented as a proof-of-concept for a
defined use-case in Section 4. In the end, the presented service framework and future
research directions are discussed.

2. Related Work

A short overview of available DT service frameworks is given, and literature that is
used to derive requirements for such a service framework is presented.

2.1. Digital Twin Service Frameworks

In this section, service framework architectures dedicated to DTs and related areas,
such as Internet of Things (IoT) applications and smart manufacturing, are presented to
find commonalities and shortcomings, which influence the design of our proposed DT
service framework.

The design and implementation of a DT in smart manufacturing is presented in [18].
The authors investigated available open-source tools and technology for the implementa-
tion of the DT. In this context, they proposed a DT concept in alignment with the Industrial
Internet Reference Architecture (IIRA) and the RAMI 4.0. They also introduced a microser-
vice framework and defined 36 services, clustered in groups related to their components in
their conceptual DT model, such as monitoring services, things and event management
services, simulation management services, decision-making and control services. The

Appl. Sci. 2021, 11, 5633 3 of 19

import role of semantic interoperability and a life cycle-oriented knowledge base of DTs is
also conceptually addressed by their architecture but not fully explored in their prototype.
A Service Manager component is responsible for the composition and orchestration of the
services, but further details of how this is performed are not given.

A more concrete example of a service framework and the service interaction inside
a DT is provided in [19]. The authors proposed a microservice approach in combination
with an event-based architecture. They argue that a DT should follow an event-driven
architecture style to parallelize processing and provide near real-time capabilities. Their
solution to the problem is the use of Apache Kafka for state tracking, since most of the
stream processing in DT implies stateful operations, but microservices should be stateless
in principle. Thus, stateful stream processing can be supported in a DT. They carried out
performance analysis and showed that Apache Kafka is suitable for managing the states
with some restrictions. Such tracking of the current system state is relevant for stream data
and human–machine interaction.

Similar to the previously presented architecture, a service-oriented and event-driven
manufacturing information system architecture was proposed in [20]. The event-driven
architecture is used to avoid point-to-point device and service integration and ensures loose
coupling of the services. Apache ActiveMQ [21] is used as Enterprise Service Bus (ESB).
The presented use-case is targeting discrete manufacturing, in which the authors showed
the integration of devices and services on all hierarchy levels. The service composition in
this system is performed using choreography to avoid a central orchestrator. The benefit
they explored using their microservices in combination with event-based communication is
that services can be developed and tested in isolation, as mock-ups may serve as temporary
replacement for other applications.

A microservice architecture is also used in [22]. Rather than targeting a DT architec-
ture, the authors present a framework for predictive analytics of IoT applications. However,
some concepts are similar and helpful in the context of DTs. The authors used a container-
ized microservice architecture to build the data pipeline. Their implementation is based
on Docker [23] and Apache Kafka. A central orchestrator is used to combine multiple
operations provided by microservices. Additionally, data modeling is used, based on the
Web of Objects framework [24] to achieve semantic interoperability.

In most of the presented frameworks, microservices combined with event-based mes-
saging are used, as they can provide benefits regarding separation of concerns, flexibility
in choosing technology, scalability, etc. However, their underlying requirements are mostly
not stated. Therefore, the next section analyzes DT frameworks and applications to identify
some fundamental requirements regarding a DT framework.

2.2. Requirements for a Digital Twin Service Framework

Requirements found in the literature primarily target the overall concept of a DT,
rather than only focusing on the service infrastructure. Nevertheless, some general require-
ments are also relevant for the proposed service framework. Here, the main literature is
presented, which is used to derive the requirements presented in Section 3.1.

A requirements-driven DT framework for smart manufacturing or Industry 4.0 is
presented in [25]. Some requirements mentioned there are also specifically relevant for
a service framework, e.g., a DT’s capability should be modular with clear boundaries
(RN2). Services should also provide some form of narrow intelligence to solve some special
tasks in the application domain (RI3). Furthermore, expertise should be incorporated into
services to realize intelligence in solutions (RI4). Another aspect is the interoperability
with DT clients, which must be realized by providing an appropriate service interface (RI5).
DT should also be extensible, which means incorporating data or services from outside
(RN4). An important aspect is that a DT framework must support an evolution rather than
a revolution of capabilities, helping us to introduce and further develop the DT over its
whole life-cycle (RN3). New services are supporting the evolution of existing capabilities.

Appl. Sci. 2021, 11, 5633 4 of 19

As DT should provide an added value over lifetime, the DT services have to be integrated
into the business process at the enterprise level in some way (RB1).

In [26], a method for DT-driven product design, manufacturing, and service is in-
troduced. In this context, nine service categories are presented. Some of these service
categories demand some requirements regarding the service communication infrastruc-
ture. For instance, a service for real-time state monitoring requires a certain data acqui-
sition infrastructure (RF1) and certain communication patterns (RF2). The same holds
for a service within the category of energy consumption analysis and forecast, such as
processing heterogeneous data from various sources (RI1, RF3), dealing with historical
data (RI2) and supporting request–response communication with other services (RF4).
These two examples show that a service framework has to be able to support different
communication patterns.

A DT architecture reference model for the cloud-based CPS (C2PS) is presented in [27],
in which the key properties of computation, control, and communication are described.
The cloud-based approach seems reasonable, based on requirements such as computational
power and scalability. On the other hand, this can cause a problem, as the communication
over the Internet is critical, regarding availability [28] and the communication delay [29]
for real-time control applications. Thus, a combination of an edge, fog, and cloud-based
approach is feasible for a DT to provide services with their needed resources, as presented
in [30]. However, in some use-cases with a high demand for reliability, security, and
privacy, the hosting of the DT has to be done on-premise (RN1). To enable this flexibility, a
containerized solution for DT services, as proposed in [31], seems to be suitable.

Human–machine interaction is also essential in the context of DTs, which includes
social and technical aspects [32]. Maintenance scenarios are one example of such a human–
machine interaction. These scenarios can be quite complex, and their states have to be
stored during this process, as shown in [33] for gas turbine maintenance. Thus, the state
must also be stored at the involved services in such a human–machine interaction (RB2).

Services of a DT often have to process a large amount of data. Such data-intensive
applications have some basic non-functional requirements which should be met, such as
reliability (RN5), scalability (RN3), and maintainability (RN2, RN4) [34]. Unfortunately,
there are no easy solutions to meet these requirements, but specific architectural patterns
and techniques can be applied during implementation to fulfil them.

3. Microservice Framework Architecture

In this section, the identified functional and non-functional requirements are presented,
which are used to design the proposed DT service framework architecture. A detailed
description of this service framework architecture can be found in Section 3.2.

3.1. Identified Requirements

Based on the literature review, some essential fundamental requirements are identified
to implement a DT service framework. They are grouped into functional and non-functional
requirements. The functional requirements are again grouped by the IT layers of the
RAMI 4.0. The list is not comprehensive but gives a solid base for a service framework
architecture and its implementation.

3.1.1. Non-Functional Requirements

Table 1 shows the identified non-functional requirements. The possibility to host the
services on-premise is, in some use-cases, a prerequisite because of data ownership issues
or response time (RN1). The other requirements are mainly concerned with reliability
(RN5), scalability (RN3), and maintainability (RN2, RN4), which are relatively common for
data-intensive systems.

Appl. Sci. 2021, 11, 5633 5 of 19

Table 1. Non-functional requirements.

ID Requirement Origin

RN1 The DT and its services should be able to be hosted at the cloud as well as
on-premises for data ownership and performance reasons.

[27,31]

RN2 Services of a DT should be loosely coupled to add or remove new services
without influencing each other.

[25,26]

RN3 Services of a DT should be scalable to handle requests from a single machine
up to a whole factory.

[25,34]

RN4 Services of a DT should be maintainable by different development teams
(third party integration).

[34]

RN5 The service infrastructure of a DT should tolerate short down times of single
services to increase the reliability.

[34]

3.1.2. Functional Requirements

The following functional requirements are clustered by the Information Layer, Func-
tional Layer, and Business Layer defined in RAMI 4.0.

The requirements for the Information Layer are shown in Table 2. They are mainly
concerned with interoperability issues, e.g., how information is provided to other services
(RI3, RI4) and exchanged between services and other systems (RI5). Furthermore, how
heterogeneous data can be integrated (RI1) and how these data can be interlinked with
context information (RI2) to provide further semantics is targeted.

Table 2. Functional requirements for the Information Layer.

ID Requirement Origin

RI1 The DT should be able to process heterogeneous data from different sources. [26]

RI2 The DT should be able to interlink time series data with context information,
to make it interpretable for other services.

[26]

RI3 Services of a DT should have control about the information they provide to
other services.

[25]

RI4 The DT should have a service which provides access to the information
provided by all services of the DT.

[10,25]

RI5 Services of the DT should exchange information in a semantically meaning-
ful way.

[25]

Requirements for the Functional Layer are shown in Table 3. They define how the
continuous stream of data (e.g., sensor data) is handled (RF1) and which communication
patterns between the services are needed (RF2, RF3, RF4). The communication patterns are
manifold: providing sensor data to many services needs an event-based 1:n communication;
a monitoring service receiving data from many sources needs an n:1 communication;
prediction services would most likely need a request–reply communication pattern.

The requirements for the Business Layer are shown in Table 4. The integration of the
DT capabilities and services into the business processes at the enterprise level is essential to
support the value-added chain (RB1). Furthermore, human–machine interaction requires
holding the state for a certain period (RB2), e.g., a maintenance assignment to a service
technician triggered by a predictive maintenance service of the DT. The state of the involved
services has to be stored till the service technician confirms some action.

Appl. Sci. 2021, 11, 5633 6 of 19

Table 3. Functional requirements for the Functional Layer.

ID Requirement Origin

RF1 Services shall be able to access a continuous stream of (sensor) data to monitor
the system in real-time.

[26]

RF2 Data streams should be accessible by multiple services simultaneously to
process it in parallel and reduce reaction time of the system.

[26]

RF3 Services of the DT should be able to receive data streams from multiple
sources at the same time to fuse and process data.

[26]

RF4 Services of the DT should be able to respond to a specific service request to
enable a one-to-one communication for information retrieval.

[26]

Table 4. functional requirements for the Business Layer.

ID Requirement Origin

RB1 The functional services of the DT should be able to be integrated into the
business processes at enterprise level to support the value-added chain.

[25]

RB2 Service interaction states should be traceable to facilitate human–machine
interaction and the identification of service faults.

[32]

3.2. Proposed Service Framework Architecture

Based on the identified requirements presented in Section 3.1, design decisions for
the service framework architecture are made and explained in this section. The principal
architecture of the proposed service framework for a DT is shown in Figure 1. It is based
on the concepts of the GDTA presented in [10], which is also aligned with the RAMI 4.0
IT layers. Relevant for the proposed service framework are the Information Layer, the
Functional Layer, and the Business Layer, which are also depicted in Figure 1.

Figure 1. Proposed micorservice framework architecture, in alignment with the RAMI4.0 IT-layers.

One of the main components present in the GDTA is the shared knowledge as part
of the Smart Data Service on the Information Layer. This Smart Data Service provides
contextual information about data and resources, which can be facilitated by the services
of the DT. Its shared knowledge can be realized using Semantic Web technologies to
build a so-called knowledge graph. A knowledge graph is a knowledge-based system,
which consists of an ontology and reasoner, but also is capable of integrating external

Appl. Sci. 2021, 11, 5633 7 of 19

information sources [35]. In this context, an ontology means a formal, explicit specification
of a shared conceptualization [36]. Ontologies, based on Web Ontology Language (OWL)
can provide the semantics for the data processed by the DT and can be used to enable
automatic reasoning if needed. The data can be accessed via SPARQL Protocol and RDF
Query Language (SPARQL) endpoints. A SPARQL endpoint is a web service that is
capable of receiving and processing SPARQL protocol requests using HTTP. Fundamental
information about the physical entity of the DT, such as plant equipment, topology, and
the instrumentation, is directly stored in a triplestore, which is managed by the Smart Data
Service itself.

Services can add relevant information to the knowledge graph by facilitating a feder-
ated SPARQL query engine, within the Smart Data Service. A federated query engine is
able to integrate distributed data sources virtually. That means a query is sent to several
SPARQL endpoints, and the results are merged. This process is fully transparent for the
user, as it seems that only one triplestore is queried [37]. Services can include graphs from
their local triplestore that are managed by the services themselves. Thus, information can
stay private or can be included into the shared knowledge.

To provide access to historical data and add context and semantics to it, Ontology-
Based Data Access (OBDA) is used. Data from a relational database is mapped to ontologi-
cal concepts and can be accessed through the knowledge graph. The loading from the data
is only performed when the data is accessed. Thus, the data stay in their original database
and do not have to be copied into the shared knowledge graph, which usually enhances
the data access performance [38].

With the help of the presented concepts for building a Smart Data Service, existing
and also newly created ontologies can be used within a DT to provide a description in
terms of classes, properties, and their interrelation for a specific domain (TBox). Various
services can instantiate the individuals (ABox). As they can refer to TBox concepts, clear
semantics to the data is provided. This approach has the advantage that data integration
can be performed with less effort, as the knowledge graph acts as an abstract semantic
integration layer [39]. Thus, data from relational databases and also from other sources,
e.g., OPC Unified Architecture (OPC UA) can be included in the knowledge graph and
made accessible for all services. Furthermore, the interoperability between services is
enhanced, as the exchanged data can be referred to concepts defined in the TBox, providing
precise semantics to the data. This is additionally supported by formats such as JSON
for Linking Data (JSON-LD), which allow stating such references. Another advantage of
using a knowledge graph based on Semantic Web technology is the support for knowledge
discovery. Data from various services can be connected, and new insights into the DT can
be gained.

The Functional Layer contains the actual services of the DT. Thus, the requirements tar-
geting inter-service communication are relevant, but also the non-functional requirements
have influence on the design.

A microservice architecture facilitates maintainability because services can be realized
and deployed by independent development teams. Another advantage of microservices is
that they can be containerized. Thus, they can be deployed and orchestrated in a virtualized
environment hosted in the cloud or on-premise if needed.

For the inter-service communication, a Message-oriented Middleware (MOM) with
a message broker is used. This MOM allows the realization of various communication
patterns, such as a 1:n or an n:1 communication, which are useful for building data pipelines.
A typical request–reply communication is also often required for certain services, which
can be implemented on top of such an MOM. The use of an MOM can help to decouple
services and support reliability and scalability by operating a cluster of brokers. Suppose
the broker is able to store messages; the reliability can be further increased because, if a
service is not available for a short period, it can retrieve the message from the broker once
it is reconnected.

Appl. Sci. 2021, 11, 5633 8 of 19

Service composition is fundamental at the Business Layer to provide certain function-
ality of the DT. This composition can be implemented by choreography or by orchestration.
In some cases, choreography might have advantages because it is a more decentralized
approach. However, if states have to be handled, e.g., for error handling or user interaction,
this can be laborious [40]. Orchestration, on the other hand, uses a central component,
where the composition logic is located. This can lead to a tight coupling of services and
integrating service logic into the orchestrator [15]. The workflows in which a DT service
is involved can be located on the enterprise or production level [41]. At the enterprise
level, typically Business Process Model and Notation (BPMN) is used to describe these
workflows, and sometimes workflow engines are used to automate them. Such workflow
engines can also be used for microservice orchestration [42]. Using orchestration combined
with a workflow engine to manage the flow between various microservices can help to
visualize these flows and handle long-lived transactions. As workflow engines support
BPMN, this notation can be used to communicate with a non-software developer and
seamlessly integrate the DT capabilities into existing business processes on the enterprise
level. In Figure 1, only a central workflow engine is depicted, but it is also possible to use
multiple decentralized engines.

4. Proof-of-Concept: Automatic Sensor Data Evaluation

For evaluating the proposed service architecture, a proof-of-concept for a DT of a
thermal heating process is implemented. The service interaction is demonstrated with a
composite sensor data evaluation service, which analyzes sensor data from the plant and
detects anomalies. The anomaly is classified as a sensor fault or abnormal behavior of the
plant caused by a malfunction of the equipment.

For the presented use-case, three different services are implemented, which are or-
chestrated by the workflow engine Zeebe [43], as shown in Figure 2. The communication
between the services takes place over the stream-based MOM Apache Kafka [16]. Ev-
ery service holds its own database or triple store, which are connected by the federated
query engine FedX [44] to build a distributed knowledge graph as a shared knowledge
base for the services. The information exchange between the services is based on JSON-
LD. This format is used because it provides semantics by referencing specific contexts
with Uniform Resource Identifier (URI). Thus, ontological concepts defined in the shared
knowledge graph can be used to unambiguously specify the meaning of the data, which
facilitates interoperability.

The services are implemented in Python 3.9.1 and use several libraries to communicate
with Zeebe, Kafka, the triplestores, or the databases. Every service and its infrastructure
(database, triplestore, etc.) are virtualized in Docker containers.

Figure 2. Overview about implemented services for sensor data evaluation.

Appl. Sci. 2021, 11, 5633 9 of 19

After introducing the use-case, the implemented services are explained in more detail
in the following subsections. The source code and a Docker-compose file to set up the
service infrastructure can be found on GitHub [45].

4.1. Use-Case: Thermal Heating Process

As depicted in the pipe- and instrumentation diagram in Figure 3, a simple thermal
heating process is used to evaluate the proposed service architecture. The ventilation
unit “F1” blows ambient air through an electric heater “H1” into a vessel called “SiPro”
where a thermal process takes place. The temperature of the process is controlled by
modifying the power of the heater. The air is retrieved from the vessel by the ventilation
unit “F2”. The heat exchanger “HE1” is used for heat recovery of the exhaust air. Five
temperature and two mass flow sensors are placed in the supply and return ducts. The
ambient temperature surrounding the vessel causes heat loss of the vessel. The temperature
after the heat exchanger Thx, the supply temperature Tsup, and the process temperature
Tp are measured by sensors with the IDs 102, 105, 106.1. The mass flow into the process
is measured by the sensor min. Those are the most relevant data points for the presented
sensor evaluation showcase.

Figure 3. Use-case: Pipe and instrumentation diagram of the heating process.

The data for the service evaluation is generated by a simulation, and implemented in
Open Modelica [46]. The simulation was used to produce data for a sensor fault as well
as abnormal behavior of the plant caused by a clogged duct. During a regular operation,
the temperature inside the process Tp is controlled and is following the setpoint trajectory
shown in Figure 4. As shown, there are three operating points for Tp: 50 °C, 70 °C, and a
standby mode, in which the temperature is held at 30 °C. During standby, the pressure
setpoint of the ventilation unit “F1” is reduced. Thus, the mass flow min is also decreased.

Figure 4. Setpoint for the ventilation unit “Fan 1” and the process temperature Tp.

Appl. Sci. 2021, 11, 5633 10 of 19

To emulate the behaviour of real sensors, random noise is added to the simulated
values, which is modeled as a normal distribution with zero mean and a standard deviation
of 0.2 °C and 0.01 kg/s, respectively. The Open Modelica simulation model is available at
the GitHub repository [47].

4.2. Smart Data Service and Communication Infrastructure

Figure 5 shows more details of the Smart Data Service as well as the needed commu-
nication infrastructure. The separated processes that build the Smart Data Service, their
encapsulation into Docker containers, and the communication between them are shown.

Figure 5. Smart Data Service and Communication Infrastructure.

The Smart Data Service provides access to the knowledge graph formed by interlinking
various SPARQL endpoints. Essential plant information, such as equipment and topology
information, is directly stored at the Smart Data Service. For the presented proof-of-concept,
the Plant, Equipment, Topology and Instrumentation Ontology (PETIont) [48] was used to
describe the heating process use-case. Information provided by other services is stored and
managed by the services themselves but included in the knowledge graph by the federated
SPARQL engine FedX. Thus, this information is interlinked and accessible through the
Smart Data Service.

The time-series data from the sensors are stored in a PostgreSQL [49] database. To
make these data accessible through the Smart Data Service and interlink them with context
information, OBDA is utilized. The Ontop Framework [50] is used to map the data into the
Sensor, Observation, Sample, and Actuator (SOSA) ontology [51]. Therefore, mappings
are defined to populate the SOSA ontology with individuals based on the data stored
in the PostgreSQL database. As an advantage of this approach, the data remain in the
relational database and are only loaded in a virtual knowledge graph if needed by a
SPARQL query request.

The communication between the services is handled by the stream-based MOM
Apache Kafka. Kafka is designed as a distributed system, running on a server cluster.
Apache Zookeeper provides a centralized service to manage the nodes inside this cluster.
Kafka topics are used to send data to services inside the DT. The request–reply communi-
cation pattern is implemented on top of the Kafka infrastructure. The requesting service
can add a reply topic to its request, to which the reply will be sent. Such a pattern is
implemented to communicate with the Smart Data Service.

As the Smart Data Service communicates with SPARQL internally, a wrapper is
implemented to enable requests from other services over Kafka. Services can send queries
to the Kafka topic, to which the Smart Data Service is listing to. The answer is sent to the
reply-topic specified in the request formatted in JSON-LD

Appl. Sci. 2021, 11, 5633 11 of 19

4.3. Anomaly Detection Service

The Anomaly Detection Service is used to find deviation in the data of single sensors.
Therefore, a data-driven approach was chosen. A linear autoregressive with exogenous
input (ARX) model is trained based on data which is provided by the Smart Data Service.
Details about how these models can be derived and identified based on the information
stored in the knowledge graph can be found in [48].

The service infrastructure is shown in Figure 6. The “Data-driven Anomaly Detection
Process” listens to a specified Kafka topic and starts the anomaly detection if a request
arrives. The trained ARX models are executed in a serial–parallel fashion, which means
the models are used to predict certain time-steps, and the results are compared with the
actual measurements. If the error is larger than a certain threshold, which is three times
the standard deviation of the model error, the time is marked as an anomaly. Then, the
prediction window is shifted by one time step and actual measured values are used as
input for the next prediction.

Figure 6. Anomaly Detection Service.

If an anomaly for a sensor value is detected, OWL-Time [52] is used to store that
information in the knowledge graph. As depicted in Figure 7, an anomaly is defined in
PETIont and described as OWL-Time “time:Interval”. A relation is set between the sensor
and the anomaly with the property “peti:hasAnomaly”. This information is stored in the
local triplestore of the service. As the triplestore of this service is connected to the federated
query engine, the information is also instantly accessible through the Smart Data Service.

Figure 7. Anomaly modeled inside the knowledge graph.

4.4. Sensor Evaluation Service

The Sensor Evaluation Service receives detected anomalies and classifies these anoma-
lies as a sensor fault or abnormal behavior of the plant. Therefore, the service has infor-

Appl. Sci. 2021, 11, 5633 12 of 19

mation about the causal relations between sensors and actuators stored in its triplestore,
connected to the federated query engine (Figure 8). A detailed description of how such
relations can be automatically derived based on topology and equipment information
stored in the knowledge graph can be found in [48].

Figure 8. Smart Data Service and Communication Infrastructure.

The first step the service performs is clustering the anomalies based on their
timely occurrence. For a cluster of anomalies, the root sensor is detected based on
the causal relations retrieved from the knowledge graph. For every cluster of anoma-
lies, a “peti:Incident” is created in the knowledge graph related to the anomalies in
the cluster via the “peti:hasRelatedAnomaly” property. Implicit redundant sensors
are searched, starting at the identified root sensor. The implicit redundant sensors are
checked if they are also detected with an anomaly. If so, a simple majority voting is
performed to decide if it is a single sensor fault or an abnormal behavior of the plant is
detected. The classification is performed by specifying the “peti:Incident” as a subclass
of “peti:AbnormalBehavior” or “peti:SensorFault”, as shown in Figure 9. A sensor fault
is also related to the identified faulty sensor, which is a subtype of “peti:PCE-Request” in
PETIont. The result is stored at the local triplestore, which is connected to the federated
query engine. Thus, this information is also accessible by the Smart Data Service and
also sent to a Kafka reply-topic encoded as JSON-LD.

Figure 9. Incident classification.

4.5. Service Orchestration

The microservice orchestration is performed using the open-source workflow engine
Zeebe. This workflow engine allows defining the processes visually in BPMN version 2.0.
The communication between Zeebe and the services is based on gRPC Remote Procedure
Calls. It is also possible to react to messages from Kafka or other MOMs. For the presented
use-case, Kafka Connect is used to establish the connection between Zeebe and the services,
as shown in Figure 10. Elasticsearch [53] is used by the Zebee workflow engine to store the
execution states of the workflows with their internal messages. The Zebee Operate tool is
for user interaction, such as visualizing the workflow state of the current execution.

Appl. Sci. 2021, 11, 5633 13 of 19

Figure 10. Zeebe workflow engine infrastructure.

The workflow in BPMN for the sensor evaluation of the presented use-case is depicted
in Figure 11. The first “service task” is sending a Kafka message to the Anomaly Detection
Service, described in Section 4.3. Message parameters, such as a correlation ID, or a reply
topic, are defined. The “message catch event” is used afterwards to wait for the response
of the service. The results of the Anomaly Detection Service are encapsulated in the Zebee
message. If no anomalies are found, the process is finished. Otherwise, the results are
handed over to the Sensor Evaluation Service, described in Section 4.4. Again, the catch
message event is used to receive the response from Kafka. Depending on the result, a
faulty behavior is logged for further analysis, or the maintenance of the faulty sensor is
commissioned. Therefore, a service notification can be sent to a service technician. The
workflow engine holds the state for maintenance till the service technician confirms the
replacement of the sensor.

Figure 11. Service orchestration for sensor data evaluation.

For the implementation of the logging of abnormal behavior, a simple Zeebe Worker is
used. The same applies to the Sensor Service task. The confirmation by a service technician
is emulated via the command-line interface of Zeebe.

4.6. Results of the Sensor Evaluation Process

Two scenarios, “A” and “B”, are introduced for testing the sensor evaluation service.
In both scenarios the mass flow, which is measured by the sensor min, shows an anomaly.
The anomalies of min are depicted in Figure 12 and marked with “A” and “B”.

The first scenario (“A”) is caused by a clogged duct, which results in a reduced mass
flow. Therefore, an additional flow resistor is used in the simulation, which is rapidly
increased 220 min after the start. As the fan has no closed-loop control, the mass flow
decreases rapidly. After 17 min, the resistance is removed so that the mass flow can increase
to its normal value again.

The second scenario (“B”) is caused by a faulty mass flow sensor min, which delivers
the wrong values. To make things more difficult for the sensor evaluation service and show
its capability, the faulty sensor values for the mass flow sensor min are exactly the same
as for the anomaly “A”, but in that case, the mass flow is not reduced in the simulation.
Thus, the sensor evaluation service has to use context information to classify the occurred
anomalies correctly. The faulty sensor data starts about 600 min after the start.

Appl. Sci. 2021, 11, 5633 14 of 19

Figure 12. Scenarios: sensor fault (“A”) and clogged duct (“B”).

The workflow shown in Figure 10 is invoked with a unique correlation ID, to assign
messages to the workflow instance. With that correlation ID, the Data Anomaly Detection
service is started. The deviations between the internal ARX model results and the measured
values are visualized in Figure 13. The periods in time where the deviation is exceeding
the threshold are marked as red area. As the internal models are executed in a serial–
parallel manner, the unexpected values are propagating through the various models, as
shown for the anomaly “B”. The simulated values are used as input values within the
simulation window. Thus, a clogged duct, which results in a reduced mass flow, shown by
the discrepancy between the measured and simulated values of min, has also influence on
the simulated values of Thx, Tsup, and Tp during the parallel operation.

Figure 13. Anomalies detected by the Sensor Anomaly Detection Service.

The detected anomalies are encoded in JSON-LD, based on the parts of PETIont and
OWL-Time, as shown in Figure 7, and sent as response. The response is handed over to

Appl. Sci. 2021, 11, 5633 15 of 19

the Sensor Evaluation Service by the workflow engine. The service analyses the detected
anomalies based on causal relations derived from the topology information. The service
clusters all identified anomalies into two groups, based on their timely occurrence.

The first cluster or incidence contains only one anomaly (Scenario A). The other sensor
values which are influenced by min are in line with the simulated output of the ARX models.
Thus, the measurements are correct and the incident is classified as abnormal behavior of
the plant, causing a reduced mass flow min.

For scenario B, a deviation between the measurement and the simulation is visible
also at sensors which are influenced by min (Figure 13). This means there is a discrepancy
between the measurements and the simulated ARX model. The causality information from
the knowledge graph is used to identify the root cause of the deviations—in this case, a
faulty sensor value of min. A simplified visualization of the causal relations is shown in
Figure 14. Based on this information, the root sensor min is identified and the incident is
classified as a sensor fault.

Figure 14. Causal relations between sensors.

The identified incidences are classified based on the parts of PETIont, which is shown
in Figure 9. In the presented use-case scenario, “A” is correctly classified as abnormal
behavior and “B” as sensor fault. The result is encoded as JSON-LD and returned as a reply
to the workflow engine over Kafka.

As mentioned before, the other services for logging and interaction with a service
technician are only implemented as mock-up.

5. Discussion

The proposed DT service framework architecture was evaluated with the proof-of-
concept implementation for the presented use-case. The service interaction combined with
the shared and federated knowledge graph and the service orchestration with the workflow
engine has been shown.

The presented functional and non-functional requirements for a DT service frame-
work do not form a comprehensive list, but they can be used as a starting point for the
implementation. In particular, non-functional requirements depend on the concrete imple-
mentation and cannot be fulfilled by a general architecture. However, the architecture can
support their achievement. An essential non-functional requirement was not targeted by
the proposed architecture, as it has to be considered inherently—security. Nevertheless,
security has to be considered in DT applications during the whole life-cycle.

The proposed DT service framework architecture can be extended for particular use-
cases. The proof-of-concept implementation for the sensor data evaluation for a DT used
open-source tools to fulfill the identified requirements. Table 5 shows design artifacts and
the requirements which were supported to be met by the specific artifact.

The microservice architectural style supports the maintainability of the whole frame-
work (RN2, RN4), as they can be extended and developed by individual teams. Further-
more, microservice can be easily containerized, which facilitates the hosting in a cloud
infrastructure as well as on-premise (RN1).

Inter-service communication is a crucial part of the whole service framework. Using a
MOM with event-based messaging is also beneficial for decoupling microservices (RN2) as
well as enable 1:n and n:1 communication (RF2, RF3). Apache Kafka, used in the proof-
of-concept implementation, further supports the data streams (RF1), which are stored
persistently in Kafka (RN5). Thus, connecting services can also access previously sent

Appl. Sci. 2021, 11, 5633 16 of 19

data. Kafka topics are used to enable request–reply communication between services (RF4).
Furthermore, it supports scalability by running multiple brokers on a server cluster (RN3).

Table 5. Requirements supported by design artifacts.

Design Artifact Supported Requirements

Microservice Architecture RN2, RN4
Containerization RN2, RN4

MOM (Apache Kafka) RN2, RN3, RN5, RF1, RF2, RF3, RF4
Shared Knowledge graph RI1, RI5
Federated Query Engine RI4, RI3

OBDA RI2
Workflow Engine RB1, RB2

Semantic Web technology can be utilized to perform data integration (RI1) and build
up the shared knowledge graph. Based on the ontologies used in the knowledge graph,
data can be exchanged between services and external clients using JSON-LD (RI5). Using
standard ontological models is vital to provide interoperability. A hierarchical structure
of the used ontology, with an upper, a domain, and task ontology, can help to provide a
common understanding of concepts. Several ontology integration methods exist for such
cases as described in [54]. As there will be hardly a consensus about the ontologies to
be used, topics such as ontology alignment and mapping will become more important.
Additionally, proper ontology design methods, such as those presented in [55], facilitate
the reusability of these ontologies.

The federated query engine enables the distribution of the knowledge graph. Every
service of the DT manages its information and can decide which part should be shared
with other services by including it in the knowledge graph. The parts which are not
included are only available locally by the service itself (RI3, RI4). However, reasoning
on the shared knowledge graph can introduce problems because of inconsistency. As
services can add relevant information by themselves to the shared knowledge graph, this
problem becomes more likely. To avoid this problem, reasoning should only be applied
to private parts of the knowledge graph, where consistency can be guaranteed to some
extent. If reasoning should be performed on the whole graph, other techniques have to be
applied which can deal with uncertainty, e.g., fuzzy reasoning methods. Even if reasoning
capabilities can not be provided, the knowledge graph can still be used for data retrieval
and knowledge discovery.

Using a workflow engine for service orchestration is beneficial for holding states dur-
ing human–machine interaction. Using BPMN also facilitates the integration DT services
into workflows at enterprises level. For the production level planning, BPMN is not always
sufficient and other notations such as Coloured Petri Nets might be more suitable [56].
Extensions of the workflow engine could support this multi-level workflow execution in a
more convenient way.

Future work will investigate the real-time performance of the proposed service archi-
tecture for various use-cases. In this context, the integration of OPC UA is planned. How
OPC UA information can be included in the shared knowledge graph has already been
shown in [57]. Next, OPC UA integration into the service framework will be investigated.
In this context, the execution time of SPARQL endpoints can become relevant, which will
be further investigated.

Author Contributions: Conceptualization, G.S.; methodology, G.S.; software, G.S.; validation, G.S.;
writing—original draft preparation, G.S.; writing—review and editing, W.K.; visualization, G.S.;
supervision, W.K.; project administration, W.K. Both authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding, but was supported by the doctoral school
SIC!—Smart Industrial Concept! at the TU Wien.

Appl. Sci. 2021, 11, 5633 17 of 19

Acknowledgments: The authors acknowledge TU Wien Bibliothek for financial support through its
Open Access Funding Programme. Open Access Funding by TU Wien.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

5D-DT Five-Dimensional Digital Twin
ARX Autoregressive with exogenous input
BPMN Business Process Model and Notation
DT Digital Twin
ESB Enterprise Service Bus
GDTA Generic Digital Twin Architecture
HTTP Hypertext Transfer Protocol
ICPS Industrial Cyber-Physical Systems
ICT Information and Communication Technology
IIRA Industrial Internet Reference Architecture
IoT Internet of Things
IT Information Technology
JSON-LD JSON for Linking Data
MOM Message-oriented Middleware
OBDA Ontology-Based Data Access
OPC UA OPC Unified Architecture
OWL Web Ontology Language
RAMI 4.0 Reference Architecture Model Industry 4.0
REST Representational State Transfer
SPARQL SPARQL Protocol and RDF Query Language

References
1. Parida, V.; Sjödin, D.; Reim, W. Reviewing literature on digitalization, business model innovation, and sustainable industry: Past

achievements and future promises. Sustainability 2019, 11, 391. [CrossRef]
2. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415.

[CrossRef]
3. Malakuti, S.; van Schalkwyk, P.; Boss, B.; Ram Sastry, C.; Runkana, V.; Lin, S.W.; Rix, S.; Green, G.; Baechle, K.; Varan Nath, C.

Digital Twins for Industrial Applications. Definition, Business Values, Design Aspects, Standards and Use Cases; White Paper; Industrial
Internet Consortium: Milford, MA, USA, 2020; pp. 1–19.

4. Lu, Y.; Liu, C.; Wang, K.I.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications
and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [CrossRef]

5. Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication this paper Introduces the Concept of a A Whitepaper
by Dr. Michael Grieves; White Paper; Florida Institute of Technology: Melbourne, FL, USA, 2014.

6. Ashtari Talkhestani, B.; Jung, T.; Lindemann, B.; Sahlab, N.; Jazdi, N.; Schloegl, W.; Weyrich, M. An architecture of an Intelligent
Digital Twin in a Cyber-Physical Production System. Automatisierungstechnik 2019, 67, 762–782. [CrossRef]

7. Josifovska, K.; Yigitbas, E.; Engels, G. Reference Framework for Digital Twins within Cyber-Physical Systems. In Proceedings
of the 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS 2019,
Montreal, QC, Canada, 28 May 2019; pp. 25–31. [CrossRef]

8. Tao, F.; Zhang, M.; Nee, A. Five-Dimension Digital Twin Modeling and Its Key Technologies. Digit. Twin Driven Smart Manuf.
2019, 63–81. [CrossRef]

9. Abburu, S.; Berre, A.J.; Jacoby, M.; Roman, D.; Stojanovic, L.; Stojanovic, N. COGNITWIN—Hybrid and Cognitive Digital Twins
for the Process Industry. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC), Cardiff, UK, 15–17 June 2020; pp. 1–8. [CrossRef]

10. Steindl, G.; Stagl, M.; Kasper, L.; Kastner, W.; Hofmann, R. Generic digital twin architecture for industrial energy systems. Appl.
Sci. 2020, 10, 8903. [CrossRef]

11. Adolphs, P.; Bedenbender, H.; Dirzus, D.; Martin, E. Reference Architecture Model Industrie 4.0 (RAMI4.0); Technical Report;
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik/ZVEI: Düsseldorf, Germany, July 2015. Available online: https:
//www.vdi.de/ueber-uns/presse/publikationen/details/reference-architecture-model-industrie-40-rami40-english-version
(accessed on 17 June 2021).

http://doi.org/10.3390/su11020391
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1016/j.rcim.2019.101837
http://dx.doi.org/10.1515/auto-2019-0039
http://dx.doi.org/10.1109/SEsCPS.2019.00012
http://dx.doi.org/10.1016/b978-0-12-817630-6.00003-5
http://dx.doi.org/10.1109/ICE/ITMC49519.2020.9198403
http://dx.doi.org/10.3390/app10248903
https://www.vdi.de/ueber-uns/presse/publikationen/details/reference-architecture-model-industrie-40-rami40-english-version
https://www.vdi.de/ueber-uns/presse/publikationen/details/reference-architecture-model-industrie-40-rami40-english-version

Appl. Sci. 2021, 11, 5633 18 of 19

12. De Lauretis, L. From monolithic architecture to microservices architecture. In Proceedings of the 2019 IEEE 30th International
Symposium on Software Reliability Engineering Workshops (ISSREW 2019), Berlin, German, 27–30 October 2019; pp. 93–96.
[CrossRef]

13. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L., Microservices: Yesterday, Today, and
Tomorrow. In Present and Ulterior Software Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 195–216.
[CrossRef]

14. Stutz, A.; Fay, A.; Barth, M.; Maurmaier, M. Orchestration vs. Choreography Functional Association for Future Automation
Systems. IFAC-PapersOnLine 2020, 53, 8268–8275. [CrossRef]

15. Newman, S. Building Microservices—Design Fine Grained Systems; O’Reilly Media, Inc.: Newton, MA, USA, 2021.
16. Foundation, A.S. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 12 May 2021).
17. Cimino, C.; Negri, E.; Fumagalli, L. Review of digital twin applications in manufacturing. Comput. Ind. 2019, 113, 103130.

[CrossRef]
18. Damjanovic-Behrendt, V.; Behrendt, W. An open source approach to the design and implementation of Digital Twins for Smart

Manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 366–384. [CrossRef]
19. Alaasam, A.B.; Radchenko, G.; Tchernykh, A. Stateful stream processing for digital twins: Microservice-based kafka stream dsl.

In Proceedings of the SIBIRCON 2019—International Multi-Conference on Engineering, Computer and Information Sciences,
Novosibirsk, Russia, 21–27 October 2019; pp. 804–809. [CrossRef]

20. Theorin, A.; Bengtsson, K.; Provost, J.; Lieder, M.; Johnsson, C.; Lundholm, T.; Lennartson, B. An event-driven manufacturing
information system architecture for Industry 4.0. Int. J. Prod. Res. 2017, 55, 1297–1311. [CrossRef]

21. Apache Software Foundation. Apache ActiveMQ—Flexible & Powerful Open Source Multi-Protocol Messaging. Available online:
https://activemq.apache.org/ (accessed on 19 May 2021).

22. Ali, S.; Jarwar, M.A.; Chong, I. Design methodology of microservices to support predictive analytics for IoT applications. Sensors
2018, 18, 4226. [CrossRef] [PubMed]

23. Docker. Docker—Accelerate How You Build, Share and Run Modern Applications. Available online: https://www.docker.com/
(accessed on 19 May 2021).

24. Fattah, S.; Sung, N.M.; Ahn, I.Y.; Ryu, M.; Yun, J. Building IoT services for aging in place using standard-based IoT platforms and
heterogeneous iot products. Sensors 2017, 17, 2311. [CrossRef]

25. Moyne, J.; Qamsane, Y.; Balta, E.C.; Kovalenko, I.; Faris, J.; Barton, K.; Tilbury, D.M. A Requirements Driven Digital Twin
Framework: Specification and Opportunities. IEEE Access 2020, 8, 107781–107801. [CrossRef]

26. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big
data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [CrossRef]

27. Alam, K.M.; El Saddik, A. C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE
Access 2017, 5, 2050–2062. [CrossRef]

28. Engelsberger, M.; Greiner, T. Software architecture for cyber-physical control systems with flexible application of the software-as-
a-service and on-premises model. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain,
17–19 March 2015; pp. 1544–1549. [CrossRef]

29. Ding, K.; Chan, F.T.; Zhang, X.; Zhou, G.; Zhang, F. Defining a Digital Twin-based Cyber-Physical Production System for
autonomous manufacturing in smart shop floors. Int. J. Prod. Res. 2019, 57, 6315–6334. [CrossRef]

30. Saad, A.; Faddel, S.; Mohammed, O. IoT-based digital twin for energy cyber-physical systems: Design and implementation.
Energies 2020, 13, 4762. [CrossRef]

31. Borodulin, K.; Sokolinsky, L.; Radchenko, G.; Tchernykh, A.; Shestakov, A.; Prodan, R. Towards digital twins cloud platform:
Microservices and computational workflows to rule a smart factory. In Proceedings of the 10th International Conference on
Utility and Cloud Computing—UCC 2017, Austin, TX, USA, 5–8 December 2017; pp. 205–206. [CrossRef]

32. Gorecky, D.; Schmitt, M.; Loskyll, M.; Zühlke, D. Human–machine-interaction in the industry 4.0 era. In Proceedings of the 2014
12th IEEE International Conference on Industrial Informatics (INDIN 2014), Porto Alegre, Brazil, 27–30 July 2014; pp. 289–294.
[CrossRef]

33. Panfilenko, D.; Poller, P.; Sonntag, D.; Zillner, S.; Schneider, M. BPMN for knowledge acquisition and anomaly handling in CPS
for smart factories. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA, Berlin, Germany, 6–9 September 2016; pp. 2–5. [CrossRef]

34. Kleppmann, M. Designing Data-Intensive Applications; O’Reilly Media, Inc.: Newton, MA, USA, 2017.
35. Ehrlinger, L.; Wöß, W. Towards a definition of knowledge graphs. In Proceedings of the CEUR Workshop, Leipzig, Germany,

13–14 September 2016; Volume 1695.
36. Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge Engineering: Principles and methods. Data Knowl. Eng. 1998, 25, 161–197.

[CrossRef]
37. Schwarte, A.; Haase, P.; Hose, K.; Schenkel, R.; Schmidt, M. FedX: Optimization techniques for federated query processing on

linked data. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer, Berlin/Heidelberg, Germany, 2011. [CrossRef]

http://dx.doi.org/10.1109/ISSREW.2019.00050
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1016/j.ifacol.2020.12.1961
https://kafka.apache.org/
http://dx.doi.org/10.1016/j.compind.2019.103130
http://dx.doi.org/10.1080/0951192X.2019.1599436
http://dx.doi.org/10.1109/SIBIRCON48586.2019.8958367
http://dx.doi.org/10.1080/00207543.2016.1201604
https://activemq.apache.org/
http://dx.doi.org/10.3390/s18124226
http://www.ncbi.nlm.nih.gov/pubmed/30513822
https://www.docker.com/
http://dx.doi.org/10.3390/s17102311
http://dx.doi.org/10.1109/ACCESS.2020.3000437
http://dx.doi.org/10.1007/s00170-017-0233-1
http://dx.doi.org/10.1109/ACCESS.2017.2657006
http://dx.doi.org/10.1109/ICIT.2015.7125316
http://dx.doi.org/10.1080/00207543.2019.1566661
http://dx.doi.org/10.3390/en13184762
http://dx.doi.org/10.1145/3147213.3149234
http://dx.doi.org/10.1109/INDIN.2014.6945523
http://dx.doi.org/10.1109/ETFA.2016.7733686
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
http://dx.doi.org/10.1007/978-3-642-25073-6_38.

Appl. Sci. 2021, 11, 5633 19 of 19

38. Steindl, G.; Kastner, W. Query Performance Evaluation of Sensor Data Integration Methods for Knowledge Graphs. In Proceedings
of the 6th IEEE International Conference on Big Data, Knowledge and Control Systems Engineering, Sofia, Bulgaria, 21–22
November 2019.

39. Schachinger, D.; Kastner, W.; Gaida, S. Ontology-based abstraction layer for smart grid interaction in building energy management
systems. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON 2016), Leuven, Belgium, 4–8 April 2016;
[CrossRef]

40. Richardson, C. Microservices Patterns; Manning Publications: Shelter Island, NY, USA, 2018; p. 520.
41. Kozma, D.; Varga, P.; Larrinaga, F. Dynamic Multilevel Workflow Management Concept for Industrial IoT Systems. IEEE Trans.

Autom. Sci. Eng. 2020, 1–13. [CrossRef]
42. Gutiérrez–Fernández, A.M.; Resinas, M.; Ruiz–Cortés, A. Redefining a process engine as a microservice platform. Lect. Notes Bus.

Inf. Process. 2017, 281, 252–263. [CrossRef]
43. Camunda. Zeebe Workflow Engine for Microservices Orchestration. Available online: https://github.com/camunda-cloud/

zeebe (accessed on 12 May 2021).
44. RDF4J. Federation with FedX. Available online: https://rdf4j.org/documentation/programming/federation/ (accessed on

12 May 2021).
45. Steindl, G. Digital Twin Service Framework. Available online: https://github.com/Smart-Industrial-Concept/

DigitalTwinServiceFramework (accessed on 19 May 2021).
46. Fritzson, P.; Pop, A.; Abdelhak, K.; Ashgar, A.; Bachmann, B.; Braun, W.; Bouskela, D.; Braun, R.; Buffoni, L.; Casella, F.; et al. The

OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development. Model. Identif. Control 2020,
41, 241–295. [CrossRef]

47. Steindl, G. Heating Process Simulation. Available online: https://github.com/Smart-Industrial-Concept/HeatingProcessSimulation
(accessed on 19 May 2021).

48. Steindl, G.; Kastner, W. Ontology-Based Model Identification of Industrial Energy Systems. IEEE Int. Symp. Ind. Electron.
2020, 1217–1223. [CrossRef]

49. The PostgreSQL Global Development Group. PostgreSQL: The World’s Most Advanced Open Source Relational Database.
Available online: https://www.postgresql.org/ (accessed on 12 May 2021).

50. Xiao, G.; Lanti, D.; Kontchakov, R.; Komla-Ebri, S.; Güzel-Kalaycı, E.; Ding, L.; Corman, J.; Cogrel, B.; Calvanese, D.; Botoeva, E.
The virtual knowledge graph system ontop. CEUR Workshop Proc. 2020, 2663, 1–16.

51. World Wide Web Consortium. Semantic Sensor Network Ontology. W3C Recommendation. Available online: https://www.w3
.org/TR/vocab-ssn/ (accessed on 19 May 2021).

52. Hobbs, J.R.; Little, C. Time Ontology in OWL. W3C Candidate Recommendation. Technical Report, World Wide Web Consortium
(W3C). 2020. Available online: https://www.w3.org/TR/owl-time/ (accessed on 17 June 2021).

53. Elastic. Elasticsearch—Distributed, Multitenant-Capable Full-Text Search Engine. Available online: https://www.elastic.co/
elasticsearch/ (accessed on 19 May 2021).

54. Ekaputra, F.J.; Sabou, M.; Serral, E.; Kiesling, E.; Biffl, S. Ontology-Based Data Integration in Multi-Disciplinary Engineering
Environments: A Review. Open J. Inf. Systms 2017, 4, 1–26.

55. Frühwirth, T.; Kastner, W.; Krammer, L. A methodology for creating reusable ontologies. In Proceedings of the 2018 IEEE
Industrial Cyber-Physical Systems (ICPS 2018), St. Petersburg, Russia, 15–18 May 2018; pp. 65–70. [CrossRef]

56. Kozma, D.; Varga, P.; Larrinaga, F. Data-driven Workflow Management by utilising BPMN and CPN in IIoT Systems with the
Arrowhead Framework. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA, Zaragoza, Spain, 10–13 September 2019; pp. 385–392. [CrossRef]

57. Steindl, G.; Früwirth, T.; Kastner, W. Ontology-Based OPC UA Data Access via Custom Property Functions. In Proceedings of
the 24th Interantional Conference on Emerging Technologies and Factory Automation, Zaragoza, Spain, 10–13 September 2019.

http://dx.doi.org/10.1109/ENERGYCON.2016.7513991
http://dx.doi.org/10.1109/TASE.2020.3004313
http://dx.doi.org/10.1007/978-3-319-58457-7_19
https://github.com/camunda-cloud/zeebe
https://github.com/camunda-cloud/zeebe
https://rdf4j.org/documentation/programming/federation/
https://github.com/Smart-Industrial-Concept/DigitalTwinServiceFramework
https://github.com/Smart-Industrial-Concept/DigitalTwinServiceFramework
http://dx.doi.org/10.4173/mic.2020.4.1
https://github.com/Smart-Industrial-Concept/HeatingProcessSimulation
http://dx.doi.org/10.1109/ISIE45063.2020.9152386
https://www.postgresql.org/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/owl-time/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
http://dx.doi.org/10.1109/ICPHYS.2018.8387639
http://dx.doi.org/10.1109/ETFA.2019.8869501

	Introduction
	Related Work
	Digital Twin Service Frameworks
	Requirements for a Digital Twin Service Framework

	Microservice Framework Architecture
	Identified Requirements
	Non-Functional Requirements
	Functional Requirements

	Proposed Service Framework Architecture

	Proof-of-Concept: Automatic Sensor Data Evaluation
	Use-Case: Thermal Heating Process
	Smart Data Service and Communication Infrastructure
	Anomaly Detection Service
	Sensor Evaluation Service
	Service Orchestration
	Results of the Sensor Evaluation Process

	Discussion
	References

