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Abstract: The understanding of narrative stories by computer is an important task for their automatic
generation. To date, high-performance neural-network technologies such as BERT have been applied
to tasks such as the Story Cloze Test and Story Completion. In this study, we focus on the text
segmentation of novels into paragraphs, which is an important writing technique for readers to
deepen their understanding of the texts. This type of segmentation, which we call “paragraph
boundary recognition”, can be considered to be a binary classification problem in terms of the
presence or absence of a boundary, such as a paragraph between target sentences. However, in
this case, the data imbalance becomes a bottleneck because the number of paragraphs is generally
smaller than the number of sentences. To deal with this problem, we introduced several cost-sensitive
loss functions, namely. focal loss, dice loss, and anchor loss, which were robust for imbalanced
classification in BERT. In addition, introducing the threshold-moving technique into the model was
effective in estimating paragraph boundaries. As a result of the experiment on three newly created
datasets, BERT with dice loss and threshold moving obtained a higher F1 than the original BERT had
using cross-entropy loss as its loss function (76% to 80%, 50% to 54%, 59% to 63%).

Keywords: natural-language processing; story understanding; text segmentation; imbalanced classi-
fication; BERT; cost-sensitive loss

1. Introduction

With the improvement in natural-language processing, commercial expectations for
the automatic generation of scenarios in novels, movies, games, etc. have been increasing.
For example, in Japan, there is a literary award that explicitly allows for works written
by artificial intelligence (https://hoshiaward.nikkei.co.jp/, accessed on 18 June 2021).
Studies on story generation have been proposed since ancient times [1–3]; recently, various
approaches based on neural networks were proposed [4–8]. However, it is very difficult to
generate high-quality narrative sentences that satisfy readers. Therefore, it is important for
the computer to understand the special sentence structure of the novel as a step-by-step
study with the ultimate goal of the automatic generation of the novel by the computer.
A computer understanding a story such as a novel is generally a task of modeling the
consistency of sentences. Thus far, research has been conducted on the understanding and
generation of narrative sentences from various perspectives such as the Story Cloze Test
(SCT) [9,10] and Story Completion (SC) [11], ordering sentences into a story [12–14].

In relation to tasks aimed at story understanding by a computer as described above,
we focused on segmenting text from novels into paragraphs, which is an important tech-
nique used in sentence writing in novels. It is also an operation that divides a document
into paragraphs to improve readability. Seki et al. [15] discussed the importance of para-
graphs in texts. In their study, the effect of a paragraph display as a document layout on
the reader’s understanding of content was investigated. Specifically, they conducted an
experiment in which a collaborator read correctly paragraphed sentences, intentionally
incorrectly paragraphed sentences, and unparagraphedsentences, and then compared
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their comprehension of the contents. They concluded that a proper paragraph setting was
important for facilitating the reader’s understanding of the document.

The features of paragraphs are slightly different between descriptive or logical sen-
tences, such as academic treatises, and literary sentences, such as in novels and essays. This
is essential because logical texts focus on accurately and concisely disclosing information
to the reader, whereas literary texts focus on emotionally impressing on the reader [16]. In
the former, one paragraph focuses solely on one topic, centered on a core sentence, which
is called a topic sentence. It is necessary for the content and assertions in each sentence
composing a paragraph to be consistent, and studies numerically defined the consistency
of paragraphs for scientific and technological sentences [17]. By contrast, the latter is
based on the transition of topics and scenes over time, and generally does not apply a
topic sentence [16]. Therefore, there are no common rules that the writer should uniformly
follow in the text segmentation of a novel, and such segmentation is an extremely difficult
operation that requires a high level of skill. Although the demand for systems that assist in
text segmentation of novels into paragraphs is high, few studies have been conducted in
this area owing to the difficulty.

Placing new paragraphs in the appropriate positions on the basis of the transitions of
scenes and topics helps readers to fully understand the story. Therefore, the position where
a new paragraph starts contains important sensory information for people who write or
read novels. On the basis of this assumption, in this study, as a stepwise approach with the
automatic creation of a novel as the ultimate objective, we estimate paragraph boundaries
from the perspective of a computer’s understanding of the story in the novel. We regarded
this task as a binary classification problem regarding whether target sentences belong to
the same paragraph, which we call “paragraph-boundary recognition”. However, because
the number of paragraphs is small relative to the number of sentences, it is necessary
to consider the imbalance in the number of the data. Therefore, we used focal loss [18],
dice loss [19], and anchor loss [20], which were confirmed to be robust to imbalanced
classification, as a loss function of BERT, which is highly accurate in various natural-
language processing (NLP) tasks. Through experiments, we confirmed that the novel could
be divided into appropriate paragraphs by using our method. This result suggests that it is
possible to divide narrative sentences generated by humans or computers into appropriate
paragraphs and improve the readability of the texts. Our contributions are summarized
as follows:

• We regarded the text segmentation of novels into paragraphs as imbalanced classi-
fication regarding the presence or absence of a paragraph boundary between two
consecutive sentences, and applied BERT, which introduced multiple cost-sensitive
loss functions.

• We confirmed that the accuracy of paragraph-boundary recognition by our approach
can be improved by applying threshold moving, which is one of the methods for
dealing with imbalanced classification.

• Our experiment using multiple author-specific datasets, newly created for this study,
showed that the proposed method could recognize paragraph boundaries with higher
accuracy than that of a conventional text-segmentation method.

2. Related Works

The tasks in this study are strongly related to text segmentation and studies on
classification problems for imbalanced data. We describe the background of such research
in this section.

2.1. Story Understanding

Thus far, research has been conducted on the understanding and generation of narra-
tive sentences from various perspectives. For example, the Story Cloze Test (SCT) [9,10]
selects the optimal ending following the input sentences, and evaluates the performance
of the model on the basis of the correct answer rate. Various studies included a classifier
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using recurrent neural networks (RNN) and a model based on the transfer learning of
bidirectional encoder representations from transformers (BERT) [21–26].

Guan et al. [11] proposed Story Completion (SC), which is an extension of SCT,
and is the task of generating a sentence that is missing in a given sentence. In addition,
Gupta et al. [27] focused on the fact that the ending of a story is not uniquely determined
and that multiple endings are possible, and proposed a method for generating various story
endings. Mori et al. [28] added missing-position prediction, which is an operation used to
estimate a missing sentence, to a conventional SC where the position of the complementary
sentence is specified, assuming an actual writing-support scene.

Another task for understanding stories is ordering sentences of narrative stories.
Sentence ordering [29] is the task of rearranging sentences to maximize the evaluation
value for the consistency of a document. A method for obtaining context information at the
paragraph level using the Pointer Network [30] based on an RNN was also proposed [12,31].
Wang et al. [13], and Oh et al. [32] proposed models using the attention mechanism, and
Cui et al. [14] proposed a model that utilizes the dependency between sentences acquired
by BERT.

2.2. Text Segmentation

The operation of dividing a sentence into semantic groups based on topics is gen-
erally known as text segmentation [33–35]. This is an important task applied to various
aspects in the field of NLP, such as sentence summarization and question answering,
from the viewpoint of understanding the meaning of natural language by a computer.
Text-segmentation methods proposed thus far are roughly divided into unsupervised and
supervised algorithms.

TextTiling [33] is a type of unsupervised text segmentation that utilizes the fact that
specific words frequently appear in the same segment, and calculates the similarity of
each segment from such vectors. Glavaš et al. [36] proposed an unsupervised algorithm
for constructing semantic-relevance graphs of sentences using the word-embedding ex-
pression and a measure of semantic relevance of short sentences. The nodes in this graph
represent sentences, and the edges between the two sentences indicate that the sentences
are semantically similar. Segmentation is then determined by finding the maximal cliques
of adjacent sentences and heuristically completing the segmentation.

In addition, there is a model that uses long short-term memory (LSTM), which is a
type of RNN, as a method of supervised learning [37]. Such a model can efficiently model
the input sequence by controlling the flow of information over time. Badjatiya et al. [38]
proposed an attention-based convolutional neural network bidirectional LSTM model that
introduced the attention mechanism and learned the relative importance of each sentence
in the text to achieve segmentation. Glavaš et al. [39] proposed a multitask learning model
that couples the sentence-level segmentation objective with the coherence objective that
differentiates correct sequences of sentences from corrupt ones.

In our study, we treat text segmentation as an imbalanced classification that should
consider the imbalance in the number of segments and the number of sentences, as opposed
to the above-mentioned studies.

2.3. Imbalanced Classification

There are two main approaches to the classification problem, in which the number of
data in each class is imbalanced: a resampling method and cost-sensitive learning.

Resampling is a method of generating balanced distribution by making changes to
imbalanced data. Imbalance in the number of data is eliminated by undersampling the
majority class [40,41] or oversampling the minority class. The simplest oversampling
method is to randomly duplicate a minority-class instance, but can cause overfitting owing
to the redundant distribution of data. To solve this problem, Chawla et al. [42] proposed
SMOTE, which is a basic approach using data synthesis. SMOTE randomly selects seed
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samples to balance the dataset, and applies linear interpolation between the seed sample
and one of its neighbors to synthesize a new sample.

By contrast, cost-sensitive learning is a method for improving the classifier itself
through learning, which applies a loss function with different weights to each data sample,
instead of changing the distribution of training data. This method is often associated
with research dealing with object-detection problems, particularly in the field of image
processing. This is because the background occupies most of the image in an object-
detection problem, and it is necessary to eliminate the imbalance of the label to identify a
specific object in the minority class. Thus far, studies segmented medical images using a
loss function based on the Dice coefficient [43,44], and robust losses for imbalanced data,
such as focal loss [18], dice loss [19], and anchor loss [20] were proposed. We applied BERT,
adopting focal loss and dice loss as the loss functions, to the text segmentation of novels
into paragraphs, and demonstrated the effectiveness of the approach [45–47]. Furthermore,
Li et al. [48] also applied BERT, introducing dice loss to tasks such as part-of-speech tagging
and named-entity recognition as a classification problem of imbalanced classification in the
field of NLP, and clarified its effectiveness.

Threshold moving is an alternative technique that can deal with class imbalance. As
the main difference between resampling and threshold-based methods, the former relies on
data preprocessing before the learning phase, whereas the latter relies on manipulating the
model output. This technique is utilized using some popular learning methods, including
ensemble learning [49–52]. In this study, we apply BERT, which introduces a cost-sensitive
loss function, to the paragraph-boundary recognition of the novel, and adjust the decision
threshold as a hyperparameter to improve estimation accuracy.

3. Technical Background

In this section, we describe BERT in detail, which is the basis of our paragraph-
boundary recognition model, and the loss functions used in the classification.

3.1. BERT

BERT [22] is a general-purpose language model based on a multiple bidirectional
transformer [53] that outputs a distributed representation of an input sequence and words
included in the sequence. In this work, we used BERTBASE (L = 12, H = 768, A = 12, Total
Parameters = 110M), where L, H, and A are the number of transformer blocks, the hidden
size, and the number of self-attention heads, respectively. BERT improves the performance
of a language model by pretraining a large-scale corpus. For prelearning, masked word
prediction was applied to predict the original word of a sentence, in which a portion of the
input sentence had been replaced with a token [MASK], and the next sentence prediction
was used to correctly identify the continuity of the two sentences as the input.

BERT represents a single sentence or a pair of sentences (for example, pair < question,
answer >) as a sequence of tokens according to the following features: BERT uses WordPiece
embeddings [54]. To apply BERT in classification tasks, such as polarity determination
and document classification, the vector output for token [CLS] added to the head of the
input sentence was input into the classifier. In particular, when inputting two sentences
into the model, token [SEP] is inserted between the two sentences, which are combined
and treated as a single sequence. Embedding is added to every token indicating whether
it belongs to the first or the second sentence. For a given token, its input representation
is constructed by summing the corresponding token, position, and segment embeddings.
In BERT, after converting a sentence or sentence pair into a distributed representation,
it is used as an input to solve applied tasks such as classification and regression using a
multilayer perceptron. At this time, fine tuning using a pretrained model can be applied to
the tasks to be solved.
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3.2. Loss Functions

We detail some of the loss functions adopted to address the data imbalance, which
is the bottleneck of the tasks on which this study focuses. In the following, the shown
loss function assumes a binary-classification problem for convenience. Let X denote a
set of training instances, and each instance xi ∈ X be associated with a golden binary
label yi = [yi0, yi1] denotes the ground-truth class to which xi belongs, and pi = [pi0, pi1]
denote the predicted probabilities of the two classes, respectively, where yi0, yi1 ∈ {0, 1},
pi0, pi1 ∈ [0, 1] and pi1 + pi0 = 1.

3.2.1. Cross Entropy Loss

The original BERT uses cross-entropy (CE) loss to solve classification problems, which
is given as follows:

CE = − 1
N ∑

i
∑

j∈{0,1}
yij log(pij). (1)

In general, for classification problems that target imbalanced data, weights α ∈ [0, 1]
are introduced into the CE loss to adjust the balance, as shown in Equation (2), and the
importance is considered on the basis of the size of each class. In many cases, the reciprocal
of the number of data included in each class is adopted as a practical value of α.

weighted-CE = − 1
N ∑

i
∑

j∈{0,1}
αjyij log(pij). (2)

Madabushi et al. [55] showed the effectiveness of changing the loss function in a fully
connected layer, which is the final layer of BERT, into weighted CE loss for the classification
problem of imbalanced data in identifying propaganda.

3.2.2. Focal Loss

Focal loss (FL) is a loss function proposed by Lin et al. [18] that dynamically scales
CE loss. The above-mentioned weighted CE loss makes it possible to consider importance
on the basis of the size of each class; however, it cannot distinguish the difficulty of
identification for each class. However, FL introduces a modulation factor that attenuates
the contribution of errors from easily identifiable examples and prevents overwhelming
loss functions. This allows for the model to effectively focus on examples that are difficult
to identify. Specifically, term (1− pt)γ containing γ ≥ 0 is introduced into CE loss, which
can be tuned as shown in Equation (3).

FL = − 1
N ∑

i
∑

j∈{0,1}
yij(1− pij)

γ log(pij). (3)

When γ = 0, the FL is equivalent to the CE loss.

3.2.3. Dice Loss

One of the indicators used to evaluate the classification model of imbalanced data is
F1. Dice coefficient (Sørensen-Dice coefficient: DSC) is the F1-oriented statistical index.
Although the DSC is generally an index for measuring similarity between two sets, it may
also be used in the segmentation of affected images in the medical field in connection with
the imbalanced classification problem [56]. Li et al. [48] showed the relationship between
the Dice coefficient and F1 as follows: First, given two sets A and B, the DSC is given as
follows:

DSC =
2|A ∩ B|
|A|+ |B| . (4)

In this study, set A is the set of samples determined to be positive by the model, and
B is the set of ground-truth samples. Here, using the true-positive (TP), false-positive
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(FP), and false-negative (FN) rates, the relationship between the Dice coefficient and F1 is
expressed as follows:

DSC =
2TP

2TP + FN + FP

=
2 TP

TP+FN
TP

TP+FP
TP

TP+FN + TP
TP+FP

=
2Precision× Recall
Precision + Recall

= F1.

(5)

On the basis of the above definition, the value of the DSC for each sample xi is given
as follows:

DSC =
∑i 2yi1 pi1 + ε

∑i yi1 + ∑i pi1 + ε
, (6)

where ε provides numerical stability to prevent division by zero.
Milletari et al. [19] proposed an objective function that squares each term of the

denominator in the Dice coefficient, and defined the dice loss as a loss function to maximize
it as follows:

DL =
1
N

(
1− ∑i 2yi1 pi1 + ε

∑i y2
i1 + ∑i p2

i1 + ε

)
. (7)

3.2.4. Anchor Loss

Motivated by focal loss, anchor loss (AL) [20] is a loss function that dynamically scales
CE loss on the basis of the difficulty of predicting the sample. Similar to focal loss, AL
was proposed for use in an object-detection task where the imbalance between the number
of pixels of the background and the target object is a bottleneck. Focal loss addresses the
class-imbalance issue by avoiding updating the main gradients for samples that are easy to
predict. AL, by contrast, takes advantage of the difference in probabilities for targeted and
nontargeted objects, and adjusts the scale of loss for the sample during training. At this
time, on the basis of the difficulty of the prediction defined using the reference value, called
anchor probability p∗, obtained from the network prediction, the loss value is dynamically
reweighted. Penalties larger than or equal to CE loss are imposed when the predicted
probabilities for nontargets are higher than anchor probabilities. We set the target class-
prediction score as the anchor probability on the basis of the report by Ryou et al. Anchor
loss is given as follows using hyperparameter γ ≥ 0:

AL = − 1
N ∑

i
yi0(1 + pi1 − p∗i )

γ log pi0 + yi1 log pi1. (8)

4. Evaluational Experiment

This section details the conducted experiments to confirm the effectiveness of the
proposed method.

4.1. Paragraph-Boundary Recognition Dataset

A paragraph is a unit of semantically divided sentences, as shown in Figure 1. We set
the task called “paragraph-boundary recognition” to identify whether any two consecutive
sentences in a novel belonged to the same paragraph, that is, whether there was a paragraph
boundary between any two consecutive sentences in a novel (Figure 2).
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Figure 1. An illustration of a paragraph extracted from a sample novel (The Great Gatsby by F. Scott Fitzgerald). The part
surrounded by the purple line is a paragraph. Conversational sentences were not counted as independent paragraphs.

Figure 2. An illustration of paragraph-boundary recognition, which is a task to identify whether
a paragraph boundary exists between any two consecutive sentences in a novel. Let two target
sentences be Sentence1 and Sentence2.

For the experiments conducted in this study, we created new datasets from the novels
in Project Gutenberg (https://www.gutenberg.org/, accessed on 1 April 2021). The data
were divided into sentences using the PUNKT tokenizer from NLTK [57]. We defined a
set of sentences from an indentation at the beginning of a sentence to line breaks as a
paragraph. On the basis of the above definition, a conversational sentence was defined as a
single independent paragraph. Generally speaking, a conversational sentence starts with a
quotation mark; therefore, it is easier to discriminate on the basis of the surface or symbolic
grounds compared to a paragraph among descriptive sentences. Therefore, we did not
count conversational sentences as a single paragraph.

Table 1 shows examples in the datasets. The input format for the model is based on the
BERT prelearning format, that is, [CLS] Sentence1 [SEP] Sentence2 [SEP]. We used
samples where Sentence 1 and Sentence 2 were in different paragraphs, that is, samples
with paragraph boundaries between two target sentences as positive samples. On the other
hand, we used samples where Sentence 1 and Sentence 2 were in the same paragraphs,
that is, samples with NO paragraph boundaries between two target sentences as negative
samples. We constructed the datasets for our experiment using the following works:

Fitzgerald dataset: “Head and Shoulders,” “Dalyrimple Goes Wrong,” “Benediction,”
“The Cut-Glass Bowl,” “The Ice Palace,” “The Four Fists,” “This Side of Paradise,”
“The Beautiful and the Damned,” “The Jelly-Bean,” “Bernice Bobs Her Hair,” “The
Offshore Pirate,” “The Great Gatsby”

https://www.gutenberg.org/
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Stevenson dataset: “The Strange Case of Dr. Jekyll and Mr. Hyde,” “The Master of Bal-
lantrae,” “The Black Arrow,” “Kidnapped,” “Weir of Hermiston,” “Treasure Island”

Twain dataset: “The Man That Corrupted Hadleyburg and Other Stories,” “Tom Sawyer,
Detective,” “A Connecticut Yankee in King Arthur’s Court,” “The Mysterious Stranger
and Other Stories,” “Adventures of Huckleberry Finn,” “The Tragedy of Pudd’nhead
Wilson,” “The Adventures of Tom Sawyer”

Table 1. Examples of samples in the Fitzgerald dataset. Positive samples in which a paragraph boundary exists between
Sentence 1 and Sentence 2 are labeled ‘1’, and negative samples in which a paragraph boundary does not exist between
Sentence 1 and Sentence 2 are labeled ‘0’.

# Label Sentence 1 Sentence 2

1 0
In my younger and more vulnerable years my father
gave me some advice that I’ve been turning over in
my mind ever since.

“Whenever you feel like criticizing anyone,” he told me,
“just remember that all the people in this world haven’t had
the advantages that you’ve had.”

2 1
“Whenever you feel like criticizing anyone,” he told
me, “just remember that all the people in this world
haven’t had the advantages that you’ve had.

He did n’t say any more, but we’ve always been unusually
communicative in a reserved way, and I understood that he
meant a great deal more than that.

3 0
He didn’t say any more, but we’ve always been
unusually communicative in a reserved way, and I
understood that he meant a great deal more than that.

In consequence, I’m inclined to reserve all judgements, a
habit that has opened up many curious natures to me and
also made me the victim of not a few veteran bores.

4 0

In consequence, I’m inclined to reserve all judgements,
a habit that has opened up many curious natures to
me and also made me the victim of not a few
veteran bores.

The abnormal mind is quick to detect and attach itself to
this quality when it appears in a normal person, and so it
came about that in college I was unjustly accused of being a
politician, because I was privy to the secret griefs of wild,
unknown men.

Figure 3 shows how to split text for each novel into training, validation, and test data.
In this study, 90% of the text from the beginning of each work was used for the training
and validation data, and the last 10% of the text was used as the test data. This is based on
the assumption that, when actually writing a novel, part of the novel is manually divided
into paragraphs, and the rest of the text is automatically divided into paragraphs on the
basis of the tendency. Table 2 shows the statistical information on the number of labels for
each dataset.

Table 2. Statistics of each dataset showing the number of positive and negative samples, and their ratios in each dataset.
Numbers of tokens per each sample were also included.

Dataset #Negative #Positive Ratio #Token/Sample #Token/Negative #Token/Positive

Fitzgerald

Training 14,115 3596 3.93 34.46 33.29 39.07

Validation 1815 398 4.56 36.61 35.41 42.15

Test 1816 404 4.50 33.98 32.83 39.24

Stevenson

Training 13,879 2550 5.44 45.35 43.34 56.34

Validation 1734 319 5.44 46.64 44.23 59.87

Test 1596 462 3.45 44.72 46.17 39.81

Twain

Training 19,215 2478 7.75 41.77 40.53 51.39

Validation 2349 364 6.45 40.09 39.35 45.02

Test 2277 437 5.21 38.19 38.89 34.66



Appl. Sci. 2021, 11, 5632 9 of 15

Figure 3. How to split text for each novel into training, validation, and test data.

4.2. Setup

We set the BERT parameters in the proposed model as follows: a maximal sequence
length of 256, training batch size of 32, learning rate of 5× 10−6, and 5 training epochs.
We used a standard three-layer perceptron as the final classifier to compare the estimation
accuracy of the task owing to the difference in the loss function used for classification.
We used a pretrained model (uncased_L-24_H-1024_A-16) publicly available from Google
Research (https://github.com/google-research/bert, accessed on 1st October 2020). The
compared models in the experiment are as follows:

TextTiling [33]: Baseline model. This is one of the first unsupervised algorithms for linear-
text segmentation that uses the fact that words tend to be repeated in coherent
segments, and measures the similarity between paragraphs by comparing their
sparse term vectors.

Koshorek et al. Model [37]: Baseline model. This is a text-segmentation method based
on LSTM. The distributed expression for words contained in a sentence obtained
by Word2Vec [58] is input using bidirectional LSTM, and the output is used as the
distributed expression of the sentence. For word embeddings, we used the Google
News word2vec pretrained model (https://code.google.com/archive/p/word2vec/,
accessed on 25 November 2020).

BERT + CE, BERT + FL, BERT + DL, BERT + AL: This model adopts cross entropy loss,
focal loss, dice loss, and anchor loss as the loss functions of BERT, respectively. The
values of the γ hyperparameters of focal loss and anchor loss were determined
through a grid search on the verification data.

BERT + CE + TM, BERT + FL + TM, BERT + DL + TM, BERT + AL + TM: This is a model
in which threshold moving is applied to the above-mentioned BERT + CE, BERT + FL,
BERT + DL, and BERT + AL. Decision threshold τ was determined through a grid
search on the verification data.

We used F1 and Pk as evaluation metrics. Pk is an evaluation metric for text segmen-
tation proposed by Beeferman et al. [59]. This metric calculates whether two sentences
separated by a distance of k belong to the same segment from both the system-output result
and the correct-answer data. The unmatched ratio of both is the score of Pk; the smaller the
value is, the better the model performance. According to Koshorek et al. [37], k was set to
half the average size of the correct segment.

4.3. Results and Analysis

We adjusted the γ hyperparameters of the loss function in BERT + FL and BERT + AL,
and the decision threshold through the experiment for the validation data. Hyperparameter

https://github.com/google-research/bert
https://code.google.com/archive/p/word2vec/
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values shown in Table 3 were set in the models and evaluated on the test data. Table 4
shows the experiment results for each model. The model based on BERT outperformed the
estimation accuracy of TextTiling and of the model of Koshorek et al., which is the baseline
model.

Table 3. Hyperparameters tuned through grid search on validation data. Value of γ is a hyperparam-
eter for focal loss and anchor loss. Value of τ is the decision threshold. Value of τ for models with
threshold moving could be tuned between 0 and 0.5 in 0.01 increments. However, values for BERT +
FL and BERT + AL were fixed at 0.5 because threshold moving was not introduced in these models.

Fitzgerald Stevenson Twain

Model τ γ τ γ τ γ

BERT + FL 0.5 3.0 0.5 2.0 0.5 5.0
BERT + AL 0.5 2.0 0.5 0.5 0.5 1.0

BERT + CE + TM 0.13 - 0.44 - 0.42 -
BERT + DL + TM 0.20 - 0.29 - 0.33 -
BERT + FL + TM 0.14 0.5 0.42 2.0 0.43 5.0
BERT + AL + TM 0.14 2.0 0.39 2.0 0.24 1.0

Table 4. Experiment results for each model. The higher F1 is, the better the outcome. By contrast, the
lower Pk is, the better the results. Bold values represent the best evaluation results for each dataset.

Fitzgerald Stevenson Twain

Model F1(↑) Pk(↓) F1(↑) Pk(↓) F1(↑) Pk(↓)
TextTiling 0.494 0.452 0.484 0.441 0.490 0.495
Koshorek et al. model 0.598 0.234 0.420 0.275 0.275 0.315

BERT + CE 0.759 0.158 0.498 0.226 0.591 0.186
BERT + DL 0.783 0.144 0.518 0.219 0.613 0.173
BERT + FL 0.767 0.153 0.519 0.219 0.614 0.170
BERT + AL 0.752 0.161 0.508 0.220 0.607 0.176

BERT + CE + TM 0.773 0.132 0.504 0.223 0.605 0.178
BERT + DL + TM 0.797 0.125 0.536 0.217 0.627 0.164
BERT + FL + TM 0.780 0.133 0.521 0.219 0.627 0.165
BERT + AL + TM 0.786 0.128 0.521 0.217 0.622 0.164

We confirmed that each model using dice loss, focal loss, and anchor loss as the loss
functions estimates paragraph boundaries with higher accuracy than that of BERT + CE,
which is used in conventional BERT classification tasks. In particular, BERT + DL marked
the highest F1 and Pk in all datasets. Introducing threshold moving to the models also
improved their performance in each dataset. This may have been because the properties
of the validation data and test data were similar, and the determination threshold as a
hyperparameter adjusted using validation data could identify paragraph boundaries with
higher accuracy, even in the test data. These results suggest that the introduction of the
cost-sensitive loss function and threshold moving into BERT improves the accuracy of
paragraph-boundary estimation as an imbalanced-classification problem.

Figure 4 shows the probability of being a positive example (positive probability) of
each sample output by BERT + CE and BERT + DL for the part of the Fitzgerald test dataset.
Samples that sunk at the bottom of the figure were predicted to be negative samples, while
samples located at the top of the figure were predicted to be positive samples. If the positive
probability for a sample was higher than threshold τ, then the sample was determined
to be a positive sample. Therefore, the positive probability output for the sample on the
red vertical line, which is the actual position of the paragraph boundary, should exceed
the threshold, whereas that for the sample not on the red vertical line should not. Since
the number of samples judged as positive samples by threshold moving increases, the
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number of samples that are correctly identified as positive samples increases, but the
number of actually negative samples that are mistakenly identified as positive samples
also increases. However, the negative sample, which was mistakenly judged as a positive
sample, accounted for a small proportion of the total negative sample. As a result, the
value of each evaluation metric indicating the performance of the model improved.

Figure 4. Positive probability in paragraph-boundary recognition for BERT + CE and BERT + DL in the Fitzgerald dataset.
Samples are from test data based on the novel “The Great Gatsby”. Vertical axis represents the positive probability for
each sample xi : pi = p(yi = 1|xi). Vertical red lines represent golden paragraph boundaries that were actual positions of
paragraph breaks. Each dotted line represents the threshold positive probability. Blue points are BERT + CE predictions,
and lime green points are BERT + DL predictions.

Table 5 shows examples of the test samples and outputs of BERT + CE and BERT + DL
for the samples. Example 1 is a sample in which both BERT + CE and BERT + DL were
judged as positive with high probability. In this sample, Sentence1 and Sentence2 be-
longed to different sections, and it is clear that the scenes and topics were different; thus,
they could easily be identified as positive examples. By contrast, Examples 2 and 3 are
samples in which BERT + CE and BERT + DL were both presumed to differ from the
correct label with high probability. The dataset also included samples that were difficult
for humans to discriminate because the sentences that they contained were short, and little
information was given. Example 4 is a sample that was correctly identified as a positive
sample by introducing threshold moving. On the other hand, Example 5 is an actually
negative sample mistakenly identified as a positive sample by BERT + CE + TM and
BERT + DL + TM. Example 6 was correctly determined to be a positive sample by BERT +
DL + TM, but was determined to be a negative sample by BERT + CE, BERT + CE + TM,
and BERT + DL.
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Table 5. Examples of samples in the Fitzgerald dataset, and positive probability of BERT + CE and BERT + DL for these
samples. If the positive probability was higher than the threshold, the sample was recognized as a paragraph boundary.

Sample Information Positive Probability pi

# Label Sentence 1 Sentence 2 BERT + CE BERT + DL

1 1
Then he went into the jewellery store to buy a pearl
necklace—or perhaps only a pair of cuff buttons—rid
of my provincial squeamishness forever.

Gatsby’s house was still empty when I left—the grass
on his lawn had grown as long as mine. 0.924 0.898

2 0 A puzzled look passed across her face.
Back aft the negroes had begun to sing, and the cool
lake, fresh with dawn, echoed serenely to their low
voices.

0.955 0.943

3 1
It was the man with owl-eyed glasses whom I had
found marvelling over Gatsby’s books in the library
one night three months before.

I’d never seen him since then. 0.0338 0.0239

4 1

At first I was surprised and confused; then, as he lay
in his house and didn’t move or breathe or speak,
hour upon hour, it grew upon me that I was respon-
sible, because no one else was interested—interested,
I mean, with that intense personal interest to which
everyone has some vague right at the end.

I called up Daisy half an hour after we found him,
called her instinctively and without hesitation.

0.169 0.298

5 0

I was sure he’d start when he saw the newspapers,
just as I was sure there’d be a wire from Daisy be-
fore noon—but neither a wire nor Mr. Wolfshiem
arrived; no one arrived except more police and pho-
tographers and newspaper men.

When the butler brought back Wolfshiem’s answer
I began to have a feeling of defiance, of scornful
solidarity between Gatsby and me against them all. 0.270 0.447

6 1

He did not know that it was already behind him,
somewhere back in that vast obscurity beyond the
city, where the dark fields of the republic rolled on
under the night.

So we beat on, boats against the current, borne back
ceaselessly into the past. 0.0538 0.294

5. Discussion and Conclusions

In this study, we proposed a method for paragraph-boundary recognition to divide an
existing novel into paragraphs from the viewpoint of story understanding by a computer.
We regarded paragraph-boundary recognition as a binary classification problem of whether
a paragraph boundary existed between two consecutive targeted sentences. However,
in this case, the number of paragraphs was extremely small compared to the number of
sentences; thus, the data imbalance became a bottleneck. Therefore, we improved the
estimation accuracy of the model by introducing cost-sensitive loss functions, namely, focal
loss, dice loss, and anchor loss, which are robust against imbalanced classification, into
BERT as a loss function. We experimentally confirmed that our approach showed high
estimation accuracy compared to that of the conventional text-segmentation method and
the original BERT.

Furthermore, we improved estimation accuracy by introducing threshold moving,
which adjusts the threshold value when the model determines the presence or absence of
paragraph boundaries. It was also experimentally confirmed that paragraph boundaries
can be recognized with higher accuracy by setting the determination threshold value
as a hyperparameter to a value smaller than the conventional 0.5 using validation data.
Threshold moving is a simple idea, but it is expected to improve the performance of the
classifier in cases where it is assumed that the properties of validation data and test data
are similar, such as the task dealt with in this work.

From the above results, t our work brings to the community of story understanding a
new perspective of solving the operation of dividing the text of a novel into paragraphs as
an imbalanced classification problem. Our work is also related to the research of creation
support. As related research on creative support, there is a plot-creating support system
that considers the reader’s preference for the transition of happiness in the story [60], and a
system that supports efficient story generation using the similarity between sentences and
templates [61]. The results obtained in this work could be applied as a system to support
the creation of novels by humans in the technique of paragraph division. Specifically, we
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envision a system in which a model that learns the paragraph division of existing novels
recommends the appropriate paragraph-division position to the writer.

In this study, the effectiveness of the method was confirmed for works written by
multiple writers. However, it is necessary to confirm the difference in model performance
depending on the characteristics of the work. Therefore, we aim to evaluate the model by
cross-validation with each novel used as training or validation data in further work.

Future studies also include the adoption of approaches utilizing the time-series nature
of sentences, such as anomaly detection with paragraph breaks as outliers. This method
has the advantage of being able to consider not only the information of the preceding and
following sentences, but also the information of past sentences.

We evaluated the performance of the paragraph-boundary recognition model by
focusing on quantitative indicators. However, in discussing readability as a novel, it is
also necessary to qualitatively evaluate the output results. Therefore, in the future, we
would like to evaluate the model from both the quantitative evaluation described in this
study and qualitative evaluation, such as a questionnaire-based experiment regarding the
impression of the collaborator after reading the sentences divided into paragraphs when
applying the proposed model.
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