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Abstract: Partial updates (PU) of adaptive filters have been successfully applied in different contexts
to lower the computational costs of many control systems. In a PU adaptive algorithm, only a
fraction of the coefficients is updated per iteration. Particularly, this idea has been proved as a valid
strategy in the active control of periodic noise consisting of a sum of harmonics. The convergence
analysis carried out here is based on the periodic nature of the input signal, which makes it possible
to formulate the adaptive process with a matrix-based approach, the periodic least-mean-square
(P-LMS) algorithm In this paper, we obtain the upper bound that limits the step-size parameter of the
sequential PU P-LMS algorithm and compare it to the bound of the full-update P-LMS algorithm.
Thus, the limiting value for the step-size parameter is expressed in terms of the step-size gain of the
PU algorithm. This gain in step-size is the quotient between the upper bounds ensuring convergence
in the following two scenarios: first, when PU are carried out and, second, when every coefficient
is updated during every cycle. This step-size gain gives the factor by which the step-size can be
multiplied so as to compensate for the convergence speed reduction of the sequential PU algorithm,
which is an inherently slower strategy. Results are compared with previous results based on the
standard sequential PU LMS formulation. Frequency-dependent notches in the step-size gain are
not present with the matrix-based formulation of the P-LMS. Simulated results confirm the expected
behavior.

Keywords: active noise control; adaptive signal processing; periodic input signal; sequential partial
updates; gain in step-size

1. Introduction

The least mean-square (LMS) [1–3] is an adaptive algorithm where a simplification of
the gradient vector computation is carried out by means of an appropriate modification
of the goal function. The LMS algorithm is widely used in different applications due
to its computational simplicity. Very different fields of knowledge such as underwater
communications [4] or ultrawide bandwidth systems [5] make use of the LMS algorithm
to optimize an objective function by iteratively minimizing the error signal. Apart from
the classical performance analysis of the LMS algorithm, one may find recent relevant
references about stochastic analysis of the LMS algorithm for non-Gaussian [6], white
Gaussian [7], and colored Gaussian [8] cyclostationary input signals.

In this paper we analyze the convergence process of the LMS filter, under the assump-
tion of deterministic periodic input. The periodic nature of the reference (also referred to
as regressor or input) signal x(n) and the training signal d(n) allows us to use the matricial
approach of the LMS algorithm proposed by Parra et al. [9], periodic least-mean-square
(P-LMS) algorithm, in the following. The referenced paper is based on a previous work [10]
where a matrix-based approach is proposed to analyze the stability of adaptive algorithms.

Active noise control (ANC) is a well-known strategy widely used to attenuate acous-
tic disturbances by means of controllable secondary loudspeakers. The output of these
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secondary sound sources is arranged so as to destructively interfere with the acoustic noise
from the primary source. The basic idea behind ANC systems has been reported for the last
decades [11–14], and it still is a research field with continuous dissemination of interesting
results [15–19].

ANC systems’ efficiency has been demonstrated by many researchers who have
published complete references on the topic [20–22]. Active techniques, therefore, are
generally considered a valid strategy of overcoming passive systems’ performance in
certain cases.

Many applications of ANC have to deal with periodic disturbances consisting of
several harmonics [23,24]. The reader might take into account that narrowband active noise
control systems may attenuate a great variety of noises, e.g., those generated by compres-
sors, turbines, engines, or fans. In [25], Jafari et al. proposed a robust adaptive strategy for
the rejection of periodic components of a disturbance and analyzed its performance and
stability properties.

One may find in the literature numerous examples of adaptive algorithms derived
from the conventional LMS aimed at improving their performance by dealing with the
step-size parameter. For instance, Han-sol et al. proposed [26] a variable step-size LMS
strategy that achieves a fast convergence rate and low mis-adjustment by improvement of
the updating stage.

Besides, system identification is a common task in many application fields. If sys-
tems have to be estimated using sparse computation due to computational complexity
constraints, partial updates (PU) of the coefficients turn out to be an optimal option. Thus,
algorithms exploiting sparseness in the coefficient update domain, where most of the
weights are small and only a few are relevant, are often based on variations of the LMS
adaptive algorithm [27,28].

In this sense, gain in step-size [29] is a parameter defined in the context of periodic
primary noise attenuation when PU of the weights of the filter are used to lower the
computational cost of an adaptive algorithm [30–32].

The existence of a gain in step-size (that depends on the frequency, the number of
coefficients of the filter M, and the decimating factor N) was already proved—theoretically
and experimentally, in previous works [29] when sequential partial updates (Seq PU) were
applied to a filter controlled by the LMS algorithm.

In this paper, we want to verify if there is also a ratio between the step-size bounds
when N > 1 (Seq. PU P-LMS) and N = 1 (P-LMS), if the LMS is applied by the matrix-based
approach proposed by Parra el al. [9] for the case of periodic input signals that we refer to
as P-LMS. In this latter case, the convergence analysis in not based on the eigenvalues from
the autocorrelation matrix of the input signal, but on the so-called stability matrix.

2. Materials and Methods

In this second section, we show an overview of the algorithmic proposals. Theoretical
basis and convergence analysis are provided.

2.1. Matricial Formulation of the Periodic LMS Algorithm

We begin this subsection bringing the matrix-based algorithmic proposal of Parra
et al. [9] before reducing its computational complexity in Section 2.2 by means of PU.

Let w(n) be an LMS filter with periodic reference x(n) and training signal d(n), both
of period P.

Defining the corresponding M-length vectors, we have

w(n) = [w0(n) w1(n) · · · wM−1(n)]
T (1)

x(n) = [x(n) x(n− 1) · · · x(n−M + 1)]T (2)
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Here, the standard LMS updating process of the coefficients is given by the well-
known recursion

w(n + 1) = w(n) + µ e(n)x(n) (3)

with µ being the step-size parameter and e(n) being the error. The error is defined as the
difference between the training signal d(n) (often referred to as desired response) and the
output of the filter.

e(n) = d(n)−wT(n)x(n). (4)

Iterating in Equation (3) the LMS algorithm in the interval given by [l, l + 1, · · · , n− 1, n],
we have

w(n) = w(l) + µ
n−1

∑
j=l

e(j)x(j) (5)

and

d(n) = e(n) + wT(l)x(n) = w(l) + µ
n−1

∑
j=l

e(j) xT(j) x(n) (6)

Due to the P-periodicity of the input signals x(n) and d(n), one may consider sepa-
rately complete P-periods of the signals. Particularly, during the kth period (k = 0, 1, 2, . . .),
we have:

• the vector from the training signal: dk = [d(kP) · · · d((k + 1)P− 1)]T

• the vector from the error: ek = [e(kP) · · · e((k + 1)P− 1) ]T

• and, finally, the estimated response vector: rk = dk − ek

Additionally, because d(n) is periodic, the training signal vector remains invariant
during all periods, that is, dk = d0 = d, ∀k ∈ N.

Substituting l = kP into Equation (6), at every period, we have the following matrix
identity

dk = d = X w(kP) + Q ek (7)

and, we also have
w(n) = w(kP) + µ XT

(n−kP) ek (8)

that is valid in the interval kP ≤ n ≤ (k + 1)P.
X is a P-by-M matrix given by:

X =


x(0) x(P− 1) · · · x(P−M + 1)
x(1) x(0) · · · x(P−M + 2)

...
. . . . . .

...
x(P− 1) x(P− 2) · · · x(P−M)

 (9)

For each value of k, the related matrix X(n−kP) is the P-by-M matrix where its first
(n− kP) rows are equal to the first (n− kP) rows of X, whereas the remaining ones are
null.

The square matrix Q is defined as

Q = I + µT (10)

where I is the P-order identity matrix and T is the (strictly) lower triangular matrix given
by

T =


0 0 · · · 0

xT(0)x(1) 0 · · · 0
xT(0)x(2) xT(1)x(2) · · · 0

...
...

...
xT(0)x(P− 1) xT(1)x(P− 1) · · · 0

 (11)
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Q−1 is the sensitivity matrix. From dk = d = X w(kP) + Q ek we can obtain ek as

ek = Q−1(d−X w(kP)) (12)

and substituting into Equation (8), which is particularized for n = (k + 1)P, gives that a
block of P-iterations updates the LMS filter according to [9]

w((k + 1)P) = w(kP)− µ G w(kP) + µ t (13)

where
G = XTQ−1X (14)

and
t = XTQ−1d (15)

2.2. Sequential Partial Updates (PU) Applied to the Periodic LMS Algorithm

The sequential partial updates (Seq. PU) LMS algorithm updates a subset of M/N
coefficients per iteration, out of a total of M weights according to Equation (16).

wl(n + 1) =
{

wl(n) + µx(n− l + 1)e(n) i f (n− l + 1)modN = 0
wl(n) otherwise

(16)

for 1 ≤ l ≤ M, where wl(n) represents the l-th coefficient of the filter, N the decimation
factor of the PU strategy, µ the step-size parameter of the algorithm, x(n) the input (often
named regressor) signal, and e(n) the error signal. Thus, the computational complexity of
the Seq. PU algorithm is reduced directly as N increases [30].

The Seq. PU strategy expressed by Equation (16) is summarized in Figure 1. Here,
the weights to be updated at every cycle are determined, as well as the related samples of
the regressor signal x(n). In this scheme, we assume that the first update is carried out at
the first cycle, and the current value of the input signal is x(n). From Equation (16) and
Figure 1, one can surmise that the current value given by x(n) is used to update the
first N filter’s taps during the upcoming N cycles. In general, in a full-update adaptive
algorithm, it is necessary to renew the input vector at every cycle with a new sample of
x(n). Nevertheless, according to Figure 1, the Seq. LMS adaptive algorithm makes use of
every N-th position of the input vector. Hence, it is enough to obtain a new sample at just
one out of N iterations.

Figure 1. Scheme of the Seq. PU adaptive algorithm; here, we point out the coefficients to be updated at every cycle as well
as the related samples of the regressor signal.
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Then, one can consider that the whole filter of M coefficients is made up of N logical
subfilters of (M/N) coefficients. These logical subfilters come from the process of sampling
uniformly the weights of the original M-length filter with a sampling factor of N positions.
To illustrate this idea, the weights of the first logical subfilter are marked with a circle in
Figure 1. The weights that are placed at the same relative position in every logical subfilter
are updated with the same value of the regressor signal x(n). This regressor signal is
renewed just in 1 out of N cycles. Then, after N cycles, a new value of x(n) is sampled
and taken to renew the first coefficient of each subfilter, whereas the oldest value of x(n) is
shifted out of its active range. Summarizing, during N consecutive cycles, N (M/N)-length
logical subfilters are updated with the same regressor vector. This regressor signal is an
N-decimated version of x(n). Therefore, we analyze the convergence of the M-length
filter on the basis of the parallel convergence of N (M/N)-length subfilters updated by an
N-decimated input x(n).

In order to use this PU strategy for the P-LMS algorithm, one should decimate the
input signal and use a shorter version of the matrices involved in the updating process,
because the active number of coefficients per iteration results in a filter of M′ coefficients.

M′ =
M
N

(17)

If x(n) is the P-periodic signal, then the N-decimated signal xd(n)

xd(n) = x(Nn) (18)

is also periodic, of period P′, with

P′ =
{ P

N i f P
N is integer

Pi f P
N is not integer

(19)

Xd is a P′-by-M′ matrix, obtained by substituting in Equation (9) x(n) by its N-
decimated version xd(n), the period P by P′, and the number of coefficients M by M′.

The square matrix Qd is defined as

Qd = Id + µTd (20)

with Id being the P’-order identity matrix and Td the lower triangular matrix obtained by
substituting in Equation (11) x(n) by its N-decimated version xd(n) and the period P by P′.
At every iteration, a logical M/N-length subfilter is updated from the whole set of taps
according to the following sampling process of the coefficients

for index = 1 to N − 1 wd = w( f rom index to end (M); step N) end. (21)

The M/N coefficients that form the iteration-dependent logical subfilter are shown in
Table 1.
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Table 1. Logical M/N-length subfilter updated at every iteration.

Iteration Index Coefficients from w to be Updated

1 1 wd = w1, wN+1, w2N+1, · · · , wM−m
2 2 wd = w2, wN+2, w2N+2, · · · , wM−m+1
3 3 wd = w3, wN+3, w2N+3, · · · , wM−m+2
...

...
...

N − 1 N − 1 wd = wN−1, w2N−1, w3N−1, · · · , wM−m+N−2
N N wd = wN , w2N , w3N , · · · , wM−m+N−1

N + 1
...

1
...

wd = w1, wN+1, w2N+1, · · · , wM−m

2N − 1 N − 1 wd = wN−1, w2N−1, w3N−1, · · · , wM−m+N−2
2N N wd = wN , w2N , w3N , · · · , wM−m+N−1

2N + 1 1 wd = w1, wN+1, w2N+1, · · · , wM−m
...

...
...

kN − 1 N − 1 wd = wN−1, w2N−1, w3N−1, · · · , wM−m+N−2
kN N wd = wN , w2N , w3N , · · · , wM−m+N−1
...

...
...

The entire filter is applied to obtain the current error

ek = Q−1(d−X w(kP)) (22)

but only one out of every N coefficients is updated according to

wd((k + 1)P) = wd(kP) + µ Gd wd(kP) + µ td (23)

where
Gd = Xd

TQd
−1Xd (24)

and
td = Xd

TQd
−1dd (25)

where the N-decimated version dd of the training signal d is sampled as

for index = 1 to N − 1 dd = d( f rom index to end (M); step N) end (26)

2.3. Gain in Step-Size of the Periodic LMS Algorithm with Sequential Partial Updates

The approach followed in this part of the paper is in accordance with that of Parra
et al. [9], where the authors define a sensitivity matrix. The sensitivity matrix is built from
a matricial arrangement of a period of the regressor/input signal. From the sensitivity
matrix one may obtain the stability matrix S [10],

S = (I− µG) (27)

that controls the convergence of the LMS.
A simple criterion of the filter convergence is

0 < µ <
2cos(θ)

ρ
. (28)

where λM = ρejθ is the largest eigenvalue of matrix G minimizing the quotient cos(θ)/ρ,
with G related to the stability matrix S according to Equation (27).

Here, we have applied sequential PU of the coefficients of the M-length adaptive
filter to lower the computational complexity. In so doing, the decimating factor N of the
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sequential PU strategy reduces the number of operations because only M/N coefficients
are updated per cycle.

Then, the ratio between the bounds on the step-size parameter when N > 1 (Seq. PU
P-LMS) and N = 1 (P-LMS), that we name gain in step-size, is given by

Gµ =
bound

{
µSeqPU−P−LMS

}
bound{µP−LMS}

=

min
{

2cos(θSeqPU−P−LMS)
ρSeqPU−P−LMS

}
min

{
2cos(θP−LMS)

ρP−LMS

} . (29)

With the subindex P− LMS, we refer to the full-update periodic LMS proposed by
Parra et al. [9], whereas the SeqPU − P− LMS subindex is used to denote the sequential
PU strategy proposed in Section 2.2.

2.4. Gain in Step-Size of Standard Version of the Sequential PU LMS Algorithm

In previous works [29] we have carried out a similar analysis on the basis of the
eigenvalues of the autocorrelation matrix of the input signal. As we see, the shape of the
gain in step-size has nothing to do in both cases (LMS vs. P-LMS).

Eigenvalues of the Autocorrelation Matrix of a P-Periodic Signal Composed of K Pure
Harmonics

Let us assume that the input signal x(n) of an adaptive filter is defined as follows.

x(n) =
K

∑
k=1

Ckcos(2πk f0n + ϕk) (30)

where f0 is the fundamental frequency normalized by the sampling rate and {φk}k=1,...,K
are the initial random phases. Phases are uniformly distributed from 0 to 2π radians and
mutually independent. Finally, {Ck}k=1,...,K are the amplitudes of the harmonics. The
autocorrelation function of input signal x(n) can be expressed as

rxx(τ) =
K

∑
k=1

C2
k

2
cos(2πk f0τ) (31)

Therefore, the autocorrelation matrix of the input vector x(n) can be expressed as the
sum of K matrices Rk of size M ×M as follows.

R =
K

∑
k=1

C2
k Rk (32)

where

Rk =
1
2



1 cos(2πk f0) · · · · · · cos[2πk(M− 1) f ]

cos(2πk f0) 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . cos(2πk f0)

cos[2πk(M− 1) f ] · · · · · · cos(2πk f0) 1


(33)

The largest eigenvalue λk,max(k f0) of each matrix Rk is given by [33]

λk,max(k f0) = max
{

1
4

[
M± sin(M2πk f0)

sin(2πk f0)

]}
(34)

where the subscript k refers to the index of the submatrix Rk.
Let us consider a matrix made up of a sum of matrices of the same dimensions.

According to the triangle inequality [34], appendix E, we have that the sum of the largest
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eigenvalues of every matrix from the sum of matrices establishes the bound for the largest
eigenvalue of the matrix defined as a sum of matrices. As a result of that, the bound of the
largest eigenvalue of R, which we refer to as λtot,max, is limited according to

λtot,max ≤
K

∑
k=1

C2
k λk,max(k f0) =

K

∑
k=1

C2
k max

{
1
4

[
M± sin(M2πk f0)

sin(2πk f0)

]}
(35)

where the subscript tot is used to refer to the autocorrelation matrix R [29].
As far as the Seq. PU LMS adaptive algorithm is concerned, the requirements for the

convergence that the entire filter has to meet can be translated to the joint convergence
of N logical (M/N)-length subfilters updated by an N-decimated input signal x(N)(n) [29].
Adjusting the above approach to the case of sequential PU LMS, where the length of the
autocorrelation matrix is M/N and the sampling rate is divided by N, we deal with K
matrices R(N)

k of dimension (M/N) × (M/N) obtained by substituting in Equation (33) the
number of coefficients M by M/N.

Thus, the largest eigenvalue λ
(N)
k,max (k f0) of each matrix R(N)

k can be expressed as
follows.

λ
(N)
k,max(k f0) = max

1
4

M
N
±

sin
(

M
N 2πkN f0

)
sin(2πkN f0)

 (36)

Considering the triangle inequality, the largest eigenvalue λ
(N)
tot,max of the (M/N) ×

(M/N) matrix R(N) = ∑K
k=1 C2

k R(N)
k is bounded by

λ
(N)
tot,max ≤

K

∑
k=1

C2
k λ

(N)
k,max(k f0) =

K

∑
k=1

C2
k max

1
4

M
N
±

sin
(

M
N 2πkN f0

)
sin(2πkN f0)

 (37)

It should be noticed that for N = 1 the sequential PU LMS algorithm reduces to the con-
ventional full-update LMS algorithm and Equations (36) and (37) reduce to
Equations (34) and (35), respectively.

The quotient between the limits of the step-sizes (µ) in two different cases (N > 1,
sequential PU LMS and N = 1, conventional LMS), defines the step-size gain Gµ as the
factor by which one can multiply the step-size meeting convergence requirements [29].

Gµ(K, f0, M, N) =
bound

{
µSeqPULMS

}
bound{µLMS}

=

2
max

{
λ
(N)
tot,max

}
2

max{λtot,max}
=

∑K
k=1 C2

k λk,max(k f0)

∑K
k=1 C2

k λ
(N)
k,max(k f0)

=
∑K

k=1 C2
k max

{
1
4

[
M± sin(M2πk f0)

sin(2πk f0)

]}
∑K

k=1 C2
k max

{
1
4

[
M
N ±

sin( M
N 2πkN f0)

sin(2πkN f0)

]} . (38)

The gain in step-size given by Equation (38) depends on the length of the filter M and
on the decimation factor N. In order to visualize this double dependence, we set to K = 1
the number of harmonics of the input signal. In so doing, the gain in step-size yields

Gµ(1, f0, M, N) =
bound

{
µSeqPU_LMS

}
bound{µLMS}

=
max

{
1
4

[
M± sin(M2π f0)

sin(2π f0)

]}
max

{
1
4

[
M
N ±

sin(M
N 2πN f0)

sin(2πN f0)

]} (39)

The step-size gain for a pure tone when different decimation factors N and dif-
ferent filter lengths M are considered, is shown in Figures 2 and 3 [29]. According to
Figures 2 and 3, one can infer that the step-size can be increased by a factor up to N if
certain frequencies are not present in the input signal. These frequencies are those that
exhibit notches in the gain in step-size. The location of these critical frequencies, as well as
the width and the number of the notches, can be analyzed as a function of the length of the
adaptive filter M, the decimating factor N, and the sampling rate Fs. Thus, the step-size
parameter can be multiplied by a factor of N in order to ensure that the sequential PU
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LMS algorithm convergence rate is as fast as the full-update LMS algorithm. To afford
that increase in convergence rate, the undesired disturbance must be free of significant
components placed at frequency notches in the step-size gain.

Figure 2. Gain in step-size for decimation factors, N = 1, 2, 4, and 8 for a single tone. The number of
coefficients of the filter is set to M = 256.

Figure 3. Gain in step-size with filter lengths, M = 8, 32, and 128 for a single tone. The decimating
factor is set to N = 2.
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3. Results
3.1. Dependence on the Frequency of the Gain in Step-Size for the Periodic LMS Algorithm with
Sequential Partial Updates

In order to figure out the dependence of gain in step-size on (a) the frequency, (b) the
decimating factor N, and (c) finally, the length of the filter M given by Equation (29), we
carried out two experiments described in the upcoming subsubsections.

3.1.1. Gain in Step-Size vs. Frequency for a Fixed Value of the Decimating Factor (N = 2)
and Variable Length of the Filter M

In this experiment, we worked with a single-tone discrete-time signal. Digital fre-
quency was set by normalizing analog frequency by a sampling frequency Fs = 8000 samples

s .

x(n) = A cos
(

2π
F0

Fs
n
)

. (40)

Because we want to deal with periodic signals (one may consider that a discrete-time
sinusoidal signal only shows a periodic—in samples—behavior under certain conditions),
we have considered a range of values for the period P from 512 down to 8 samples (step 8
samples), corresponding, respectively, to analog frequencies F0 from 15,6 to 1000 Hz. The
length of the filter has been set to M = {40, 80, 160, 240, 320} coefficients. The decimating
factor of the sequential partial updates strategy has been set to N = 2.

Thus, from signal x(n) and its decimated version xd(n) = x(Nn) we have derived
matrices G and Gd, respectively from Equations (14) and (24). These matrices are necessary
to implement the full updates and the partial-update adaptive strategies described, respec-
tively, in Sections 2.1 and 2.2. Then, the ratio between the bounds of the step-size given
by Equation (29) has been obtained and drawn. In so doing, we have the gain in step-size
affordable for every frequency, shown in Figure 4.

Figure 4. Gain in step-size for a single tone when using the matrix-based version (from Parra et al.)
of the periodic LMS algorithm with seq. partial updates. Decimation factor is set to N = 2. The length
of the filter M varies from 40 to 320 taps.
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3.1.2. Gain in Step-Size vs. Frequency for a Fixed Value of the Length of the Filter
(M = 160) Coefficients and Variable Decimating Factor N

In this experiment, whose results appear in Figure 5, we repeat the main idea of the
previous subsection but set the length of the filter to M = 160 coefficients, whereas the
decimating factor varies as N = {1, 2, 4, 8}.

Figure 5. Gain in step-size for a single tone when using the matrix-based version (from Parra et al.)
of the periodic LMS algorithm with seq. partial updates. The length of the filter is set to 160 taps.
The decimation factor takes values 1, 2, 4 and 8.

The signal used is the same single tone given by Equation (40), sampled at
Fs = 8000 samples

s . The range of values for period P varies from 512 down to 32 sam-
ples (in steps of 8 samples), corresponding, respectively, to analog frequencies F0 from 15,6
to 250 Hz.

From Figures 4 and 5 one may infer that the gain in step tends asymptotically toward
the squared decimating factor N2 as frequency increases. Moreover, the gain in step-size
shown in these figures does not present frequency-dependent notches with the matrix-
based formulation of the P-LMS.

3.2. Algorithms Comparison

This section is devoted to a comparison of the learning curves of four different strate-
gies dealing with active noise the control of periodic disturbances:

• Algorithm 1: standard LMS algorithm
• Algorithm 2: LMS algorithm with sequential PU, applying, optionally, the gain in

step-size.
• Algorithm 3: Periodic LMS algorithm, based on a matrix formulation.
• Algorithm 4: Periodic LMS algorithm, based on a matrix formulation. Sequential PU

(and gain in step-size) are applied again as in alternative 2.

In Figure 6 is shown the block diagram of the noise control problem addressed with
the four adaptive strategies. The sampling frequency is set to 8000 samples/s. We execute
1920 iterations of the adaptive algorithms, and the weights of the filters are reset to zero
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after 800 iterations so as to evaluate a second convergence process. The step-size chosen
for the experiment is set near its maximum value, which ensures convergence.

Figure 6. Block diagram of the noise attenuation experiment used to compare different adaptive
algorithms.

In the experiment, we deal with two different versions of the desired signal d(n). In
both cases, referred to in sub-indexes 1 and 2, the desired signal consists of three different
harmonics,

d1(n) = 2 cos
(

2π
1
8

n
)
+ 3 cos

(
2π

1
4

n
)
+ 4 cos

(
2π

3
8

n
)
+ awgn(n) (41)

d2(n) = 2 cos
(

2π
3

16
n
)
+ 3 cos

(
2π

5
16

n
)
+ 4 cos

(
2π

7
16

n
)
+ awgn(n) (42)

where awgn(n) is an additive white Gaussian noise that makes d(n) have a signal to noise
ratio of 45 dB.

The reference signal x(n) is also considered in this example in two different versions,

x1(n) = cos
(

2π
1
8

n
)
+ cos

(
2π

1
4

n
)
+ cos

(
2π

3
8

n
)

(43)

x2(n) = cos
(

2π
3

16
n
)
+ cos

(
2π

5
16

n
)
+ cos

(
2π

7
16

n
)

(44)

being in both cases a set of three tones of unitary amplitude.
The two versions of the reference and the desired signals are designed in order to

explain the behavior of the adaptive algorithm with regard to the gain in step-size in
the second and fourth alternative. When the second algorithm (LMS with Seq. PU) is
applied, one may infer from Figure 7 that the gain in step-size can be taken at its full
strength Gµ = N for the second version of the reference signal, x2(n) (marked with green
circles), but not for the first version, x1(n) (marked with red circles) because some/all of its
harmonics are located in notches of the gain. More precisely, if the decimating factor N is
set to 2, the second harmonic of x1(n) appears in a frequency affected by a notch (around
0.25 normalized Hz). If the decimating factor N is set to 4, the three harmonics of x1(n)
appear in frequencies where notches in gain in step-size are present.
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Figure 7. Gain in step-size for a single tone when using sequential PU with LMS algorithm. The length
of the filter is set to 64 taps. The decimation factor takes values 2 and 4. Circles mark frequencies
where reference and desired signals have significant harmonics; red circles mark components of
x1(n) and green circles mark components of x2(n).

Nevertheless, if the fourth algorithm (periodic P-LMS with Seq. PU) is applied, we see
from Figure 8 that the gain in step-size does not present notches as long as frequencies are
above the very low frequency range. Then, in this fourth adaptive strategy, both versions
of the reference signal x1(n) and x2(n) are expected to provide similar results.

In the comparison of the four algorithms presented below (Figures 9–14), the per-
formance measure used is the instantaneous squared error in logarithmic scale (dB). All
simulation results are obtained by averaging 50 independent runs.

First, we work with x1(n) and d1(n), that is, the input signals whose frequencies are
marked in red in Figures 7 and 8.

In the first example, we compare the fourth adaptive algorithms previously listed,
making N = Gµ = 1. As we do not apply either PU or gain in step-size, the second and
fourth alternatives are identical, respectively, to the first and third algorithms. In Figure 9
we confirm that the learning curves of the four adaptive strategies are similar in terms of
convergence rate.

In the next step, we apply PU by setting a decimating factor N = 2. If we do not apply
gain in step-size to compensate for the inherent reduction in convergence rate, that is, we
make Gµ = 1, the second and fourth learning curves should reduce the convergence rate
by a factor of 2, as we can confirm in Figure 10.

Finally, we apply PU by setting N = 2 to reduce computational costs, but we also
make Gµ = 2 to compensate the reduction in convergence rate. As expected (and we can
confirm in Figure 11), the second strategy named (b) diverges because the gain in step-size
can not be applied at full strength Gµ = N due to the notch that appears at the second
harmonic of x1(n) (see Figure 7). On the other hand, the fourth strategy (d) works properly
because the theoretical limit of the gain in step-size is well above the value used.

Now, let us carry out the second version of the experiment dealing with x2(n) and
d2(n). Here, the input signals contains harmonics at frequencies marked in green in
Figures 7 and 8.
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Figure 8. Gain in step-size for a single tone when using sequential PU with periodic LMS algorithm
(matrix-based). The filter length is set to 64 taps. The decimation factor takes values 2 and 4.
Apart from the very low frequency range, the step-size gain can be approximated by N2. Circles
mark frequencies where reference and desired signals have significant harmonics; red circles mark
components of x1(n) and green circles mark components of x2(n).

Figure 9. Learning curves comparison. Version 1 of the experiment: desired signal d1(n) and
reference signal x1(n). (a) LMS, (b) LMS with Seq PU; N = 1 and Gµ = 1, (c) P-LMS, (d) P-LMS with
Seq. PU; N = 1 and Gµ = 1. Average of 50 runs. The performance measure used is the instantaneous
squared error in logarithmic scale (dB).
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Figure 10. Learning curves comparison. Version 1 of the experiment: desired signal d1(n) and
reference signal x1(n). (a) LMS, (b) LMS with Seq PU; N = 2 and Gµ = 1, (c) P-LMS, (d) P-LMS with
Seq. PU; N = 2 and Gµ = 1. Average of 50 runs. The performance measure used is the instantaneous
squared error in logarithmic scale (dB).

Figure 11. Learning curves comparison. Version 1 of the experiment: desired signal d1(n) and
reference signal x1(n). (a) LMS, (b) LMS with Seq PU; N = 2 and Gµ = 2, (c) P-LMS, (d) P-LMS with
Seq. PU; N = 2 and Gµ = 2. Average of 50 runs. The performance measure used is the instantaneous
squared error in logarithmic scale (dB).
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Figure 12. Learning curves comparison. Version 2 of the experiment: desired signal d2(n) and
reference signal x2(n). (a) LMS, (b) LMS with Seq PU; N = 1 and Gµ = 1, (c) P-LMS, (d) P-LMS with
Seq. PU; N = 1 and Gµ = 1. Average of 50 runs. The performance measure used is the instantaneous
squared error in logarithmic scale (dB).

Figure 13. Learning curves comparison. Version 2 of the experiment: desired signal d2(n) and
reference signal x2(n). (a) LMS, (b) LMS with Seq PU; N = 2 and Gµ = 1, (c) P-LMS, (d) P-LMS with
Seq. PU; N = 2 and Gµ = 1. Average of 50 runs. The performance measure used is the instantaneous
squared error in logarithmic scale (dB).
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Figure 14. Learning curves comparison. Version 2 of the experiment: desired signal d2(n) and
reference signal x2(n). (a) LMS, (b) LMS with Seq PU; N = 2 and Gµ = 2, (c) P-LMS, (d) P-LMS with
Seq. PU; N = 2 and Gµ = 2. Average of 50 runs. The performance measure used is the instantaneous
squared error in logarithmic scale (dB).

In Figure 12, the comparison of the four adaptive algorithms is carried out by making
N = Gµ = 1. We obtain results similar to those shown in Figure 9 with the first version of
the experiment.

In Figure 13, we show the results achieved with a decimating factor N = 2 and a gain
in step-size set to Gµ = 1; as expected, the second and fourth learning curves reduce the
convergence rate by a factor of 2, as happened in Figure 10.

The difference of the two versions of the experiments arises if we apply PU by setting
N = 2 and we also make Gµ = 2 to compensate for the reduction in convergence rate.
Here, both PU strategies—denoted as (b) and (d)—in Figure 14 converge and succeed in
the compensation of the inherent reduction of convergence rate due to PU.

4. Discussion

First of all, it is important to note the fact that active noise control of periodic distur-
bances is a common task that many control systems have to deal with. As already said,
narrowband active noise control is a current-day topic of great importance because the
attenuation of noises from engines, compressors, turbines, fans, or propellers is a problem
worldwide addressed by many researchers.

The gain in step-size is a concept addressed in previous works in the context of the
sequential PU LMS algorithm leading to the convergence of a standard FIR filter. The main
idea behind this topic is that the inherent reduction of convergence speed due to partial
updates can be compensated for by increasing the step-size parameter µ, because the µ
bound seems to be increased by a factor of up to the decimating factor N. Nevertheless, the
gain in step-size is not a constant of value N, but exhibits notches whose number, width,
and location can be predicted and, consequently, avoided.

Then, we have considered the alternative matrix-based approach of the LMS formu-
lation proposed by Parra et al. [9], that we refer to as periodic LMS (P-LMA). In order to
reduce its computational complexity by a decimating factor N, sequential PU have been
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proposed in the framework of the P-LMS algorithm. As expected, PU reduce operations
per cycle but, as a drawback, the convergence rate slows down proportionally by N.

On this point, we have looked into the gain in step-size when sequential PU are
considered in the P-LMS. We conducted a study of the theoretical framework of the
adaptive strategy as well as several experiments to conclude that the gain in step-size
does not exhibit notches. The frequency-dependent shape of the gain in step-size of the
P-LMS tends to N2 for high frequencies but shows a lower value in the low frequency
range. Nevertheless, there is no evidence of the presence of the notches that were visible
when the standard (and not the periodic LMS) was considered.

To sum up, research results show that a reduction in the computational costs associated
with PU is not achieved at the expense of a reduction of the convergence rate. This
statement is justified by the existence of a gain in step-size, when PU are considered, and,
more importantly, thanks to the matrix-based formulation of the LMS algorithm that we
have referred to as P-LMS. This gain in step-size does not show notches in the frequency
domain as it does in the case of a standard LMS formulation but just a poor behavior in the
low frequency range. Thus, paying attention to the low frequency components, one may
take full advantage of the application of the step-size gain.
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