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Abstract: The resolution-priority holographic stereogram uses spherical waves focusing on the
central depth plane (CDP) to reconstruct 3D images. The image resolution near the CDP can be easily
enhanced by modifying three parameters: the capturing depth, the pixel size of elemental image and
the focal length of lens array. However, the depth range may decrease as a result. In this paper, the
resolution characteristics were analyzed in a geometrical imaging model, and three corresponding
methods were proposed: a numerical method was proposed to find the proper capturing depth; a
partial aperture filtering technique was proposed after reducing pixel size; the moving array lenslet
technique was introduced after increasing focal length and partial aperture filtering. Each method can
enhance resolution within the total depth range. Simulation and optical experiments were performed
to verify the proposed methods.

Keywords: holographic stereogram; spherical wave; depth range; resolution enhancement; aper-
ture filtering

1. Introduction

Holography is one of the most promising three-dimensional (3D) display techniques
which can reproduce very realistic 3D images with all depth cues. For electronic holography,
the computer-generated holography (CGH) technique is used to calculate hologram pat-
terns from the 3D data of objects [1–3]. Among the many CGH techniques, the holographic
stereogram (HS) is an excellent approach for the processing of occlusion culling, gloss re-
production and surface shading, which are important for realistic 3D display. Furthermore,
the HS printing technique enables large-scale holographic 3D display [4,5].

The HS is a kind of holographic 3D display based on light field reproduction [6,7]. It
is usually spatially segmented into many hologram elements (hogels), and each hogel is
the Fourier transform of the corresponding parallax image. Non-hogel-based calculation
for HS generation is also possible [8–11]. The parallax images can be obtained by either a
camera array or the computer graphics rendering techniques. In reconstruction, the light-
rays from all hogels are reproduced to form the light field. The principle of HS is similar to
the integral imaging (II) which uses a lens array to reproduce the light field [12–14]. Thus,
the HS can be converted from II through fast Fourier transforming (FFT) the elemental
images (EI) into hogels [15].

The light-ray sampling and the diffraction at the hologram surface in HS cause image
blur far from the hologram plane. Several techniques were reported to improve the
image quality of HS for deep scene by adding depth information [16–20]. However, the
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acquisition of depth information is not easy. The ray sampling (RS) plane method enhances
the resolution by setting the RS plane near the object to sample high resolution projection
image [21,22]. The moving array lenslet technique (MALT) was used to enhance the
sampling rate of HS without decreasing the angular resolution [23]. The compressive light
field could be encoded into a hologram to relieve the spatio-angular resolution trade-off in
conventional HS [24]. Recently, we have proposed a new concept of HS which is called
the resolution priority HS (RPHS) [25]. The RPHS is obtained by adding a quadratic phase
term on the conventional FFT of EIs. Different from conventional HS which uses multiple
plane waves to reproduce light field, the RPHS uses spherical waves focusing on the central
depth plane (CDP) to reconstruct 3D images. The spherical waves form smaller volume
pixels (voxels), thus resulting in enhanced resolution.

In this paper, the resolution of RPHS is analyzed in a geometrical imaging model.
Three parameters, capturing depth, pixel size of EI and focal length of the lens array, mainly
determine the resolution. It is found that simply modifying the three parameters may
enhance the image resolution near the CDP, at a price of decreased depth range. To enhance
resolution within the total depth range, three methods are proposed. Firstly, A numerical
method is proposed to find the proper capturing depth. Secondly, after reducing pixel size
of EI for the resolution enhancement near the CDP, a partial aperture filtering technique
is proposed to limit the light ray width for resolution enhancement away from the CDP.
Lastly, after increasing focal length of the lens array for the resolution enhancement near
the CDP, partial aperture filtering is used to limit the light ray width, which results in dark
gaps. The moving array lenslet technique is introduced to fill in the dark gaps.

2. The Resolution Characteristics of RPHS

Figure 1 shows the principle of RPHS. Based on the conventional HS which converts
each EI to the corresponding hogel through FFT, the RPHS multiplies each transformed
hogel with a converged spherical wave phase:

H(u, v) = exp
[
−jk
2L

(u2 + v2)

]
·A(

u
λ f

,
v

λ f
), A( fx, fy) = FFT[I(x, y)] (1)

where FFT[] is the fast Fourier transform, A(fx, fy) is the frequency spectrum of elemental
image I(x, y), k is the wave number, f is the focal length and L is the distance between
hologram and the image reference plane (IRP) [25]. Assuming each elemental image has
N × N pixels with pixel size of ∆x1, and the pixel size of the hogel is ∆x2, the following
equation is derived according to sampling theorem and FFT theory:

N∆x1∆x2 = λ f . (2)

Generally, ∆x1 = ∆x2, and the size of hogel is equal to the EI. Then, all the transformed
hogels can be spliced seamlessly. In RPHS, each hogel emits spherical waves which
are focused on the IRP to reconstruct the 3D images. The object points at the IRP are
reconstructed perfectly and objects’ points around the IRP are reconstructed with good
quality. Thus, the IRP is also called the central depth plane (CDP), which means the center
of the 3D images. That is to say, the 3D image needs to be located near the CDP to obtain
the best reconstruction quality. Thus, L can also be called the capturing depth. At the CDP,
the image spot size S is given by lens imaging amplification:

S =
L
f

∆x1. (3)

Therefore, by reducing L, reducing ∆x1 or increasing f, the resolution at the CDP will
be enhanced. However, considering the reconstructions away from the CDP, the situation
becomes complicated.
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Figure 1. The principle of RPHS.

Figure 2 shows the image spot size at different reconstruction planes. At the CDP, the
focused image spot is formed with the minimum size. At a reconstruction plane away from
the CDP, the defocused spot is formed. The image spot size S at reconstruction depth z can
be derived easily by dividing the defocused spot into two parts: the green part and the
red part. The green part is related with the focused image spot (represented by the blue
rectangle) in a similar triangle relation, and the red part is related with the hogel size p in
another similar triangle relation. Thus, the image spot size S at reconstruction depth z can
be expressed as:

S =
L + ∆z

f
∆x1 +

|∆z|
L

p, (4)

where ∆z is the defocused depth, and p is the hogel size and is equal to N∆x2. The value of
∆z is negative if z is smaller than L, and it is positive if z is greater than L. The first term in
Equation (4) is indicated by the green rectangle and the second term is indicated by the
red rectangle in Figure 2. The first term is related with imaging while the second term is
caused by defocusing. Substituting Equation (2) into Equation (4), we can get:

S =
L + ∆z

f
∆x1 +

|∆z|λ f
L∆x1

. (5)
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Figure 2. The image spot size at different reconstruction planes.

Equation (5) shows that at a given defocused depth ∆z, the image spot size is mainly
determined by three parameters: CDP depth L, focal length f and pixel size ∆x1. It is inter-
esting that in Equation (5), the values of the first and second terms have opposite changing
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directions when the three parameters change. Thus, simply changing the parameters may
not work for resolution enhancement. Next, we will show how to enhance resolution by
changing the three parameters properly with additional techniques.

3. Reducing CDP Depth L

Reducing L means to capture the 3D object at a closer distance. It is apparent that by
reducing L, the first term in Equation (5) will decrease while the second term will increase.
Thus, for the reconstructed 3D image near the CDP, reducing L will always be beneficial
to the resolution enhancement. But for the reconstruction away from the CDP, reducing L
may have a negative influence on the resolution. Reducing L is effective only when the
reduction of the first term exceeds the increment of the second term. At a small ∆z, it
is always satisfied. However, as ∆z increases, this condition needs to be examined. The
limiting case occurs when the reduction of the first term equals the increment of the second
term at a given ∆z. In this case, the resolution is enhanced within the total depth ∆z, and
an appropriate L should be chosen.

Assuming the parameters are L = 80 mm, f = 3 mm, ∆x1 = ∆x2 = 5 µm, λ = 500 nm, the
relationship between image spot size S and defocused depth ∆z is drawn by the black solid
line in Figure 3a. It can be seen that at the CDP, the image spot has the minimum size. As
|∆z| increases, the image spot size also increases, resulting in a degraded resolution. To
enhance resolution, we try to reduce L to 30 mm, which is shown by the green dash-dotted
line. The resolution at the CDP is greatly improved, but at |∆z| = 20 mm, the resolution
is degraded, indicated by the upward arrow. Thus, the resolution is enhanced at a price
of decreased depth range. This case can be avoided by choosing a proper L. As shown
by the red dashed line with L = 45 mm, the resolution at the CDP is improved compared
with L = 80 mm. In addition, at |∆z| = 20 mm, its image spot size just equals that of
L = 80 mm. It means that the resolution is enhanced within the total depth ∆z, without
the price of decreased depth range. It is just the limiting case as mentioned above, with
an appropriate L. The suitable value of L can be found by a numerical method. Figure 3b
shows the relationship between L and image spot size at ∆z = 20 mm. First, the image spot
size with L = 80 mm can be obtained, represented by the red point. Then, a horizontal line
starting from the red point is generated, and it intersects with the curve to form a green
point. The x-coordinate of the green point is just the proper value of L.
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However, the proper value of L cannot be found at any situation. Figure 4a shows
the case with the same parameters as Figure 3 except for ∆x1 = 3 µm. It can be seen that
reducing L will always decrease the resolution away from the CDP, indicated by the upward
arrows. On the contrary, Figure 4b shows the case with ∆x1 = 8 µm. It can be seen that



Appl. Sci. 2021, 11, 5595 5 of 12

reducing L will always enhance the resolution within the total depth range, indicated by the
downward arrows. These two results can be easily understood in Figure 4c, which shows
the relationship between L and image spot size at ∆z = 20 mm. In the case of ∆x1 = 3 µm,
represented by the black solid line, reducing L will cause the increase of the image spot size
at the marginal depth, which means reducing L will always cause decreased depth range.
Constrastingly, in the case of ∆x1 = 8 µm, represented by the red dashed line, reducing L
will cause the decrease of the image spot size at the marginal depth, which means reducing
L is always effective. In both cases, the proper value of L cannot be found using the method
in Figure 3b.
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The differences among Figures 3a and 4a,b can also be understood through different
weights of the first and second terms in Equation (5). When ∆x1 = 5 µm and L = 80 mm,
the two terms have similar weights at large ∆z. By reducing L, the reduction of the first
term is comparable to the increment of the second term. However, when ∆x1 = 3 µm and
L = 80 mm, the second term has greater weight. By reducing L, the reduction of the first
term is always less than the increment of the second term at large ∆z. That is why reducing
L will always decrease the depth range in this case. When ∆x1 = 8 µm and L = 80 mm,
the first term has greater weight. By reducing L, the reduction of the first term is always
more than the increment of the second term within the total depth range. That is why
reducing L is always effective in this case. Thus, in different cases, the strategy of reducing
L is different.

Next, numerical simulation is performed. Figure 5a shows a bee model and a school
badge built in the 3 ds Max modeling software. The camera array consists of 60 × 60
virtual pinhole cameras, and the pitch and focal length are set as p = 0.3 mm and f = 3 mm.
The captured EI array contains 3600 × 3600 pixels with 5 µm pixel pitch. The CDP is set
at the center of the bee model, and the distance between the school badge and CDP is
set as ∆z = 20 mm. Figure 5b shows the numerical reconstruction with capturing depth
L = 80 mm. By reducing L to 45 mm, Figure 5c shows better reconstruction quality at the
CDP (see the foreleg of the bee), with comparable reconstruction quality at the marginal
depth plane (the school badge). Further reducing L to 30 mm, Figure 5d shows the best
reconstruction quality at the CDP. However, the reconstruction quality of the school badge
is degraded, which means the depth range is decreased. This simulation verifies that a
proper L needs to be chosen to enhance the resolution without decreasing the depth range.
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Figure 5. (a) A bee model and a school badge built in the 3 ds Max modeling software. The numerical
reconstruction with capturing depth (b) L = 80 mm, (c) L = 45 mm, and (d) L = 30 mm.

Next, an optical experiment is performed on a binary amplitude-only hologram which
is printed on a glass substrate coated with chromium film. The amplitude-only hologram
I(u, v) is encoded as:

I(u, v) = 2Re[H(u, v)r∗(u, v)] + C, (6)

where r (u, v) is the reference plane wave with incident angle of 3◦ and r* (x, y) is the
conjugation of r (u, v). C is a constant real value to make I(u, v) non-negative. Then the
hologram is binarized by setting the mid-value as the threshold. The hologram contains
3600 × 3600 pixels with 5 µm pixel pitch. A solid laser with wavelength of 510 nm was
used to illuminate the hologram after being collimated by a lens. Figure 6a–c show the
reconstruction results with capturing depth L = 80 mm, 45 mm and 30 mm, respectively. It
is easily confirmed that reducing L will always improve the reconstruction quality near the
CDP (see the bee model). But to avoid the quality degradation at the marginal depth (see
the school badge), a proper L should be chosen.
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4. Reducing Pixel Size ∆x1 with Aperture Filtering

According to Equation (5), reducing pixel size ∆x1 will reduce the value of the first
term, or enhance the resolution at the CDP. However, the increase of the second term may
decrease the depth range, similar to reducing L in the above analysis. Instead of choosing
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a proper value of ∆x1, we propose to use an aperture filtering technique to enhance the
resolution more effectively.

Figure 7a shows a typical case in which the pixel size ∆x1 of EI equals the pixel size
∆x2 of hogel. In Figure 7b, ∆x1 is reduced and according to Equation (2), the hogel size
p = N∆x2 is increased accordingly. Since the hogel size is larger than EI, the adjacent hogels
will have overlap. It can be seen that the focused image spot at the CDP is decreased,
making a better reconstruction quality near the CDP. However, the increased hogel size will
cause wider light rays, making larger defocused spots away from the CDP. As a result, the
depth range is decreased. To address this issue, an aperture filter is introduced to limit the
width of the light ray in Figure 7c. The calculated complex amplitude distribution of each
hogel is multiplied with a rectangle function Rect(u/p0)·Rect(v/p0), where p0 is the pitch of
the EI. Then each filtered hogel can be spliced seamlessly. The aperture filter reduces the
width of light rays, making better reconstruction qualities within the total depth range.
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Figure 8a–c show three groups of numerical simulation results corresponding to the
three cases in Figure 7. In Figure 8a, the parameters are set as p = 0.3 mm, f = 3 mm,
∆x1 = ∆x2 = 5 µm, L = 80 mm. The captured EIA consists of 60 × 60 EIs, each with
60 × 60 pixels. The CDP is set at the center of the bee model, and the distance between
the school badge and CDP is set as ∆z = 40 mm. In Figure 8b, ∆x1 is reduced to 2.5 µm
and each EI contains 120 × 120 pixels. The hogel size p is increased to 0.6 mm, so that
adjacent hogels will have overlap. As a result, Figure 8b shows better reconstruction quality
at the CDP (see the foreleg of the bee), but with degraded reconstruction quality of the
school badge. It just verifies the above analysis that the increased hogel size will cause
larger defocused spots away from the CDP. In Figure 8c, each transformed hogel is first
multiplied with an aperture filter to reduce its size to 0.3 mm; then, all the filtered hogels
are spliced seamlessly to form the final hologram. It shows the best reconstruction quality
at the marginal depth (the school badge), and the reconstruction quality at the CDP is better
than that in Figure 8a. A slight degradation at the CDP can be observed compared with
Figure 8b. That is because the numerical filtering causes limited aperture diffraction. Since
a spherical wave phase is multiplied with each hogel, the diffraction pattern at the CDP
can be thought of as the Fraunhofer diffraction of the rectangular hogel. The zero-order
diffraction contains the most energy, with width of 2λL/p. The zero-order diffraction
width determines the upper limit of the resolution. The filtering process reduces the hogel
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size p, resulting in a degraded diffraction spot. To further improve the reconstruction
quality within the total depth range, a partial aperture filtering technique is proposed here.
That is, part of the EIs are converted to hogels without aperture filtering to ensure good
reconstruction quality near the CDP, and the rest of the EIs are converted to hogels with
aperture filtering to improve the reconstruction quality away from the CDP. This classifica-
tion process can be easily realized in a simple 3D scene such as Figure 5a. The bee model
and the school badge are located at the left-half and right-half spaces, respectively. Thus,
the EIs mainly contributing to the two objects can be simply classified to the left half and
the right half. Then, the left half EIs are transformed to hogels without aperture filtering,
while the right half EIs are transformed to hogels with aperture filtering. It is noted that the
reconstruction brightness is decreased due to the aperture filtering. Thus, to balance the
brightness of the left and right halves, the calculated right half hologram needs to multiply
with “2”. Through this simple classification, the negative influence of aperture filtering on
the reconstruction near the CDP can be relieved, as shown in Figure 8d. Figure 9 shows
the optical reconstruction results, which verify the conclusion in Figure 8.
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and aperture filtering. (d) Numerical simulation results with pixel size ∆x1 = 2.5 µm and partial
aperture filtering.
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5. Increasing Focal Length f with Aperture Filtering and Moving Array
Lenslet Technique

Increasing focal length f will decrease the image spot size near the CDP, resulting in
better reconstruction quality. However, according to Equation (2), increased f will cause
increased pixel number N of EI. That is, both sizes of hogel and EI increase and cause wider
light rays, making larger defocused spots away from the CDP. It can be easily understood
by the second term in Equation (5). The above aperture filtering technique can also be used
here to narrow the light ray width, as shown in Figure 10b. However, dark gaps among
hogels will appear. To fill in the dark gaps, the moving array lenslet technique [23,26]
is introduced in Figure 10c. That is, two groups of EIA are captured with lateral shift of
p/2. Each group of EIA is converted into the corresponding sub-hologram, and the two
sub-holograms have relative shift in real space. Then, the two holograms are superimposed
with relative shift of p/2. The dark gaps of one hologram will be filled up by the other
hologram. Note that considering the two-dimensional case, four groups of EIA are needed.
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Figure 11a shows the same simulation results as Figure 8a, with focal length of
3 mm. In Figure 11b, the focal length f is increased to 6 mm, and the sizes of both
hogel and EI increase to 0.6 mm, which means the number of hogels or EIs decreases to
30 × 30. Figure 11b shows that increasing f improves the reconstruction quality near the
CDP, at the price of quality degradation at the marginal depth. The aperture filtering is
applied to the right half hogels in Figure 11c, but dark gaps appear. Note that the dark gaps
do not appear at the school badge plane. However, when observing the 3D image, our eye
will tend to focus on such periodic structures, causing severe image quality degradation.
Figure 11d shows the simulation results with MALT, in which the dark gaps disappear.
The image quality is improved without decreasing the depth range. Figure 12 shows the
optical reconstruction results, which verifies the conclusion in Figure 11.
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results with focal length f = 6 mm. (c) Numerical simulation results with focal length f = 6 mm and
partial aperture filtering. (d) Numerical simulation results with partial aperture filtering and MALT.
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Figure 12. (a) Optical reconstruction results with focal length f = 3 mm. (b) Optical reconstruction
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6. Conclusions

In this paper, the resolution of RPHS was analyzed in a geometrical imaging model.
Three parameters, capturing depth, pixel size of EI and focal length of the lens array,
mainly determine the resolution. Firstly, reducing capturing depth is always beneficial
to the resolution enhancement near the CDP. To avoid decreased depth range, a proper
capturing depth needs to be chosen through a numerical method. Secondly, reducing
pixel size of EI is always effective for the resolution enhancement near the CDP. However,
the increased hogel size will cause wider light rays, making larger defocused spots away
from the CDP. A partial aperture filtering technique is proposed to enhance resolution
within the total depth range. Lastly, increasing focal length of the lens array will always
improve the reconstruction quality near the CDP. However, the sizes of EI and hogel
also increase, resulting in a decreased depth range. The partial aperture filtering can
be used to limit the light ray width, but dark gaps appear. The moving array lenslet
technique is introduced to fill in the dark gaps. Compared with integral imaging 3D
display, the advantage of free wavefront control is shown in the proposed method. In
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the integral imaging display, each display unit is identical and hard to control separately.
The trade-off between the resolution, depth range and view angle in integral imaging
can only be improved by spatial-multiplexing and time-multiplexing techniques. This
trade-off can be easily improved through multiplexing-encoding hologram. Simulation and
optical experiments were performed to verify the proposed methods. This paper provides
resolution enhancement for RPHS from three different aspects. It is a useful solution for
quality improvement in different capturing conditions.
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