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Abstract: In this paper, considering the porosity defects of Additive Manufacturing (AM), a level
set topology optimization method for AM with porosity constraints is proposed. The concept of
topological sensitivity is used to formulate a global porosity constraint function in the proposed
method, and a level set topology optimization model considering porosity defects is obtained. To
improve the robustness of the algorithm, the topology optimization model is solved in two phases.
At first, the classical level set method without the porosity constraint is used to initially optimize the
structure. During this process, the hole nucleation method combining bi-directional evolutionary
structural optimization (BESO) and the topological sensitivity is used. Secondly, the topology
optimization considering the effects of porosity is implemented on the preliminary optimization
results. After performing the two-step optimization, a robust structure that alleviates the harmful
impact of porosity defects is obtained. Finally, the robustness and effectiveness of the proposed
method are validated by several two-dimensional numerical examples.

Keywords: topology optimization; porosity; hole nucleation; topological sensitivity; additive manu-
facturing; level set method

1. Introduction

Topology optimization is a calculation method that achieves the optimal material
configuration in the design domain according to the given boundary conditions and the
load conditions. In the past decades, many effective topology optimization methods have
been studied and applied, e.g., the homogenization method [1–5], the Solid Isotropic
Material with Penalization (SIMP) method [6–9], the Evolutionary Structural Optimization
(ESO) method [10–14], the Moving Morphable Component (MMC) method [15–18], and the
level set method [19–25]. In particular, the level set method is introduced as an alternative
new method in the structural optimization field. This method uses a higher-dimensional
level set function to implicitly represent the structural boundary (zero level set) and then
obtains the updated structural boundary via the evolution of the level set function during
the optimization process. This implicit expression can avoid the relaxation of design
variables and numerical instability. As a result, the level set topology optimization is
recognized by many researchers.

The studies and applications of numerous optimization methods have made the field
of structural optimization to develop rapidly. For example, Calleja-Ochoa et al. [26] estab-
lished a method of designing and manufacturing micro-structured ultralight components
to achieve the goal of lightweight. Topology optimization achieves lightweight structure
but results in a more complex structure. Complex structures cannot be manufactured
easily by traditional manufacturing processes (turning, milling, casting, etc.). However,
the rapidly developing Additive Manufacturing (AM) technology is a forming method
in which materials are overlapped layer by layer, which fully eliminates the limitation of
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geometric complexity. AM makes it possible to manufacture complex structures derived
from topology optimization and provides technical support for the application of topology
optimization. On the other hand, affected by the cost of AM, how to reduce the con-
sumption of AM has become an urgent problem to be solved. The topology optimization
can effectively reduce material consumption under the condition of satisfying structural
performance, which provides a solution for reducing the manufacturing cost of AM. In
theory, the characteristics and advantages of both topology optimization and AM enable
them to complement each other.

AM has unlimited potential, but it does not have unlimited capabilities. Laser AM
is based on the technical principles of point-by-point melting, line-by-line scanning, and
layer-by-layer accumulating. The metal material undergoes complex thermodynamic
behavior under the action of the laser, and the parts are fabricated after the cyclic process
of heating, melting, cooling, and solidifying. When affected by many conditions such as
laser power, scanning speed, powder materials, and temperature, defects will inevitably
occur in the fabricated parts. In recent years, these defects of laser AM have been studied
widely [27–35].

Porosity is one of the most common defects in laser metal AM. The shape of pores is rel-
atively regular and mostly spherical, and the size is generally small (within 100 µm) [36–39].
Most of these defects are generated by gas remaining in the molten pool due to excessive
or unstable energy input. In the process of material melting and solidifying, the gas in
the molten pool does not have sufficient time to escape. Furthermore, the higher the
temperature of the molten pool during the melting process, the higher the solubility of
the gas in the molten pool. As the molten pool cools, the temperature and the solubility
decrease, and the residual gas increases [39].

In the AM process, eliminating or suppressing porosity defects is a challenging prob-
lem. Gäumann et al. [40] presented Epitaxial laser metal forming (E-LMF) to effectively
reduce porosity defects in AM process. Clijsters et al. [41] designed a real-time molten pool
monitoring system which consists of an optical sensor, data processing, reference database,
and quality evaluation. In this system, the sensor collects the melt pool information in the
form of an optical signal, and then transmits it to the data processing module to establish
the melt pool image. Then, the location and size of the defects are determined by comparing
with the reference database. Finally, the process parameters are optimized by the feedback
system to reduce the porosity. Although the proposed methods can effectively reduce the
porosity defects, they cannot completely remove the porosity defects.

It is well known that stress concentration occurs near the defects of the fabricated
part. Under the external load, the stress near the defects will increase significantly. When
the ultimate strength of the material is exceeded, cracks are generated and gradually
expand until fracture failure. Thus, the existence of porosity has a significant impact on
the mechanical properties of the fabricated parts. Moreover, the pores not only are the
source of fatigue cracks but also accelerate the expansion of fatigue cracks under the stress
concentration, greatly reducing the fatigue life of the fabricated part. The more pores in the
fabricated parts, the more cracks may occur. It is difficult to satisfy the requirements with
the existence of porosity, which restricts the usability of the fabricated parts.

According to our investigation, few researchers consider the porosity defects of the AM
in the topology optimization problem. In this paper, the concept of topological sensitivity
is employed to construct a porosity constraint function in the form of domain integral and
a level set topology optimization model considering the effects of porosity is proposed. To
improve the robustness of the algorithm, the topology optimization model is solved by
two steps. At first, the classical level set method is used to initially optimize the structure.
Secondly, the porosity is taken into topology optimization of the structure after the initial
optimization, and a robust structure that minimizes the impact of porosity is obtained.

Since the reinitialization retains the properties of the signed distance function, the
holes cannot be automatically nucleated in the solid design domain, i.e., the topology
change can only rely on the existing initial structural boundary. In the past few decades,
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some solutions have been proposed for hole nucleation. Allaire et al. [42] proposed
a level set topology optimization method that inserts holes according to the value of
topological sensitivity. He et al. [43] added topological sensitivity as a diffusive term of
the Hamilton–Jacobi equation, so that new holes were automatically nucleated during the
optimization process. Xia et al. [44] proposed a hole nucleation method in combination
with bi-directional evolutionary structural optimization (BESO) based on the material
removal scheme. Yaghmaei et al. [45] proposed a filtering level set method to nucleate
holes and avoid re-initialization of level set function. Although the above hole nucleation
method makes the level set method unnecessary to guess the initial structure, the effect of
hole nucleation is not ideal for various reasons. Therefore, it is necessary to propose a new
hole nucleation method.

In the present work, a new level set hole nucleation method is proposed by combining
the BESO method with topological sensitivity. This method can automatically find and
nucleate holes within the design domain.

The rest of this paper is organized as follows: Section 2 reviews the level set topology
optimization methods. Section 3 describes the hole nucleation method combining BESO and
topological sensitivity. In Section 4, a level set topology optimization model considering
porosity defects is formulated, and the shape sensitivity of the constraint function is
calculated. Section 5 lists the optimization procedure. Section 6 gives numerical examples
and discussions. Finally, the paper is summarized in Section 7.

2. Level Set Topology Optimization

In the level set topology optimization of continuum structure, an optimal design Ω is
sought in the design domain D, and ∂Ω is the boundary of Ω. The topology of the structure
is described by the implicit level set function Φ(x) as:

Φ(x) > 0 x ∈ Ω
Φ(x) = 0 x ∈ ∂Ω
Φ(x) < 0 x ∈ D ∩Ω

(1)

In the problem of maximizing structural stiffness (i.e., minimizing compliance), it
is assumed that the constraint condition is the optimized structural volume, and the
optimization objective is the compliance. When the load and boundary conditions are
given, the topology optimization problem can be described as:

min J(u) =
∫

Ω f (u)dx =
∫

Ω Eε(u)·ε(v)dx
s.t.

∫
Ω Eε(u)·ε(v)dx =

∫
Ω Pvdx +

∫
∂Ω τvds

∀v ∈ U u
∣∣
ΓD = u0∫

Ω dΩ = Vmax

(2)

where u is the displacement field, E is the elasticity tensor of the material, ε is the strain
tensor, P is the body force, τ is the boundary force,

∫
Ω dΩ is the volume of the structure,

and Vmax is the maximum admissible volume.
This paper aims to study the topology optimization problem of the linear elastic

structure, so the boundary ∂Ω of the design domain Ω consists of three parts:

∂Ω = Γ0 + ΓN + ΓD (3)

where ΓD is the Dirichlet boundary conditions and ΓN is the Neumann boundary condi-
tions. Therefore, the linear elastic problem described in (2) is also expressed as:

−div(Eε(u)) = P Ω
u = 0 ΓD
(Eε(u))n = τ ΓN
(Eε(u))n = 0 Γ0

(4)
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Then, the objective function based on compliance can be expressed as:∫
Ω

Eε(u)·ε(u)dx =
∫

Ω
P·udx +

∫
ΓN

τ·uds (5)

Employing the level set function Φ(x), the level set topology optimization problem is
written as follows:

min J(u, Φ) =
∫

Ω f (u)H(Φ)dx =
∫

Ω Eε(u)·ε(u)H(Φ)dx
s.t. a(u, v, Φ) = L(v, Φ)
∀v ∈ U u

∣∣
ΓD = u0

V(Φ) = Vmax

(6)

where a(u, v, Φ), L(v, Φ) and V(Φ) are expressed as:

a(u, v, Φ) =
∫

Ω Eε(u)·ε(v)H(Φ)dx
L(v, Φ) =

∫
Ω PvH(Φ)dx +

∫
∂Ω τvδ(Φ)|∇Φ|ds

V(Φ) =
∫

Ω H(Φ)dx
(7)

where H(·)is the Heaviside function, which is defined as:

H(x) =
{

1 x ≥ 0
0 x < 0

(8)

δ(·) is the Dirichlet function, and its relationship with the Heaviside function is
as follows:

δ(x) =
dH(x)

dx
(9)

To solve the Hamilton–Jacobi partial differential equation, the concept of shape sensi-
tivity is introduced to calculate the velocity field Vn of the level set function. The Murat
and Simon analysis [46] based on the Hadamard variational method was used to calculate
shape sensitivity. Considering a smooth initial shape Ω0, all admissible shapes Ω are
obtained by applying a smooth vector field θ:

Ω = {x + θ(x), xεΩ0} (10)

The above equation shows that all admissible shapes are represented by a vector θ, so
(10) is also written as:

Ω = (Id + θ)(Ω0) (11)

where (Id + θ) is the diffeomorphic mapping of Ω0.
Then, the shape sensitivity can be defined by the derivative with respect to θ. The

shape expression (10) means that all admissible shapes will have the same topology as the
initial shape Ω0. Therefore, the topology cannot be changed by continuously transforming
the initial shape Ω0, which theoretically answers the reason why the level set topology
optimization method cannot automatically nucleate holes.

Based on the above assumptions, the shape sensitivity of the objective J(Ω) on Ω0 can
be defined as the Fréchet derivative at θ = 0:

J((Id + θ)(Ω0)) = J(Ω0) + J′(Ω0)(θ) + (θ), where lim
θ→0

|(oθ)|
θ

= 0 (12)

where J(Ω) has first-order continuous differentiability at θ = 0. According to the definition
of shape sensitivity, shape sensitivity (12) is also rewritten as:

J′(Ω0)(θ) = lim
θ→0

J((Id + θ)(Ω0))− J(Ω0)

θ
(13)
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Wang and Allaire have already calculated the shape sensitivity of the optimization
problem (6). This paper will directly quote the results, and the detailed process is in Wang
and Allaire et al. [19,25].

Lemma 1. The shape sensitivity of the compliance is:

J′(Ω)(θ) =
∫

ΓN

(
2
[

∂(τ·u)
∂n + Hτ·u + Pu

]
− Eε(u)·ε(u)

)
θ·nds

+
∫

ΓD
(Eε(u)·ε(u))θ·nds

(14)

Lemma 2. The shape sensitivity of the volume constraint is:

V′(Φ)(θ) =
∫

∂Ω
θ(x)·n(x)ds (15)

3. Hole Nucleation Method
3.1. BESO

BESO is developed from ESO which was originally proposed by Xie et al. [13] in
1992. ESO allows only to remove material from the structure, and those removed materials
cannot be admitted in the later evolutions. Therefore, some elements with higher utilization
are accidentally removed. Correspondingly, Xie et al. [14] proposed the BESO that can
remove low-efficiency materials and add materials at key positions. This method is widely
used in machinery, civil engineering, aerospace, and other fields because of its simple
algorithm and easy programming.

In BESO, the sensitivity number is used to remove low-efficiency materials or add
high-efficiency materials. In other words, material is removed or added in the design
domain by comparing the value of the sensitivity number. Therefore, BESO regards the
structure itself as the design variable of the optimization problem. The optimization
problem is expressed as:

minC = FTu = uTKu

s.t.
N
∑

i=1
Vixi = f V∗ = Vmax

F = Ku

xi =

{
0
1

(16)

where compliance C is the objective of the optimization problem, F is the load vectors, u is
the displacement vectors, K is the global stiffness matrix, Vi is the elemental volume, V* is
the total volume of the design domain, f is the volume fraction, and N is the number of
elements in the design domain. The design variable xi is the elemental density with xi = 0
for a void element and xi = 1 for a solid element.

In BESO, the sensitivity number is compared with the sensitivity threshold. For
solid elements, the sensitivity number is greater than or equal to the threshold. For void
elements, the sensitivity number is less than the threshold. The elemental sensitivity
number is defined as the change of the mean compliance or elemental strain energy:

αe
i =

uT
i Kiui

Vi
(17)

To calculate the sensitivity of void elements, a sensitivity filter scheme is introduced.
Furthermore, this filter method can solve the checkerboard and mesh dependency. The
formula for sensitivity filter scheme is written as:
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αi =
∑j∈Ni

ω
(
rij
)
αn

j

∑j∈Ne ω
(
rij
) (18)

where αi is the elemental sensitivity after filtering, and αn
j is the elemental sensitivity before

filtering. The neighbor elements set Ni of the element i is defined as all elements whose
spatial distance from the central cell i is less than or equal to the filtering radius Rmin. The
weight factor ω(rij) of the spatial distance is:

ω
(
rij
)
= Rmin − rij (19)

where rij is the spatial distance between element j and central element i, defined as
||xj-xi||.

The sensitivity threshold αth can be determined by the target volume Vk+1. The target
volume can be calculated by the current volume and the evolutionary volume ratio cer:

Vk+1 = Vk(1± cer) (20)

If the current structure volume is equal to the volume constraint, the target volume
Vk+1 will remain Vmax.

The finite element analysis, sensitivity filtering, and structure update are continuously
looped until the volume constraint and the convergence criterion (21) are satisfied.

e =

∣∣∣∑N
i Ck−i+1 −∑N

i Ck−N−i+1

∣∣∣
∑N

i Ck−i+1
≤ δ (21)

where e is the change of objective, δ is the tolerance factor, and N is a positive integer.

3.2. Topological Sensitivity

The topological sensitivity defines the impact on the objective when a small hole
is inserted at a certain position in the design domain. The topological sensitivity of the
objective J(Ω) in a given design domain is defined as:

DT(x) = lim
r→0

J(Ωr)− J(Ω)

M(r)
(22)

where M(r) is the measure of the hole Br. According to reference [47], this paper takes the
Lebesgue measure, which can be written as:

lim
r→0

M(r) = 0 (23)

According to the topological-shape sensitivity method [47], topological sensitivity can
be solved by shape sensitivity. The relationship between shape sensitivity and topological
sensitivity is expressed as:

DT(x) = D∗T(x) = lim
r→0

1
M′(r)|VN |

dJ(Ω)

dθ

∣∣∣∣
θ=0

(24)

This paper aims to study the topology optimization problem based on the compliance,
so it is necessary to solve the topological sensitivity of the compliance. According to the
research of Novotny et al. [48], the topological sensitivity of compliance is:
for d = 2

DT J(x) =
π(λ + 2µ)

2µ(λ + µ)
(4µEε(u)·ε(u) + (λ− µ)tr(Eε(u))tr(ε(u)))(x) (25)



Appl. Sci. 2021, 11, 5578 7 of 20

for d = 3

DT J(x) =
π(λ + 2µ)

µ(9λ + 14µ)
(20µEε(u)·ε(u) + (3λ− 2µ)tr(Eε(u))tr(ε(u)))(x) (26)

where λ and µ are the Lamé moduli of the material, which satisfy:

λ =
Eν

1− ν2 (27)

µ =
E

2(1 + ν)
(28)

3.3. Hole Nucleation Method Combining BESO and Topological Sensitivities

The BESO method uses the sensitivity number as the criterion to remove low-efficiency
materials or add high-efficiency materials to optimize the structure. The topological
sensitivity describe the impact of inserting holes on the objective. Using topological
sensitivity as the criterion for removing or adding materials in the BESO method has
practical physical meaning. Therefore, the combination of BESO and topological sensitivity
can be used as a hole nucleation method for level set topology optimization.

Thus, the sensitivity number αi of BESO can be replaced with the topological sensitivity:

Di
T = lim

r→0

1
M′(r)|VN |

dJ(Ω)

dθ

∣∣∣∣
θ=0

(29)

According to the idea of BESO, adding and removing materials in the current struc-
ture requires topological sensitivity threshold DT

th. The threshold is usually determined
according to a given evolutionary volume ratio. Assuming that there are N elements in
the design domain, the topological sensitivity Di

T of all elements is arranged according
to the value, that is D1

T < D2
T < · · · < DV

T < · · · < DN
T . According to (20), V elements

are required to maintain holes (i.e., N-V solid elements), then the topological sensitivity
threshold is:

DT
th
1 = DV

T (30)

However, only using the threshold as in (30) is likely to cause unstable optimization.
As the BESO method always needs to add or remove materials, it will continue to add
or remove materials from the boundary of the structure when the structure is close to
the optimization result. In this case, the boundary based on the evolution of the level set
method will continue to be updated, and the material will be added at the position where
the material was removed by the BESO method, which will easily cause numerical instabil-
ity and lead to optimization failure. Therefore, another topological sensitivity threshold
DT

th
2 needs to be introduced in the optimization, and its value is determined according to

the average topological sensitivity of the structure boundary ∂Ω. The boundary threshold
DT

th
2 can be described as:

DT
th
2 = βDT (31)

where 0 < β < 1 is a user-defined threshold factor, and DT is the average topological
sensitivity of the structure boundary ∂Ω.

Therefore, the topological sensitivity threshold of adding and removing materials
DT

th can be defined as:
DT

th = min
(

DT
th
1 , DT

th
2

)
(32)

The holes are nucleated every j iteration in this hole nucleation method. After multiple
iterations, if the topological sensitivity in the solid domain is greater than or equal to the
threshold DT

th, the hole nucleation process ends.
The procedures of level set topology optimization combining BESO and topological

sensitivity are as follows:
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1. Define the design domain and initialize level set function;
2. Solve linear elasticity equation via the Finite Element Method;
3. Calculate shape sensitivity, topological sensitivity, and the normal evolution velocity Vn;
4. Solve the Hamilton–Jacobi equation to update the level set function;
5. If the current iteration number is an integer multiple of j, nucleate hole by (45), then

go to step 6. Otherwise, go to step 7;
6. Calculate the topological sensitivity threshold DT

th;
7. Reinitialize the level set function;
8. Check whether the convergence criteria are satisfied. If not, repeat steps 2–8 until

convergence.

The flowchart of level set topology optimization combining BESO and topological
sensitivity is shown in Figure 1.
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4. Constraint Function Considering Porosity Defects

Topology optimization is to find the optimal material distribution to achieve the
best structural performance. However, the appearance of porosity in the subsequent AM
process will affect the performance of the structure, causing the manufactured parts to fail
to satisfy the performance requirements. Therefore, it is necessary to consider the effects of
porosity during the structural topology optimization, so that the manufactured parts still
satisfy the requirements.

In actual production, the generation of porosity is closely related to laser power,
forming speed, scanning scheme, forming environment, and other factors in additive man-
ufacturing. Our method cannot avoid the generation of porosity during the manufacturing
process, that is, porosity will still be generated in the optimization results. However, we can
consider these porosity defects in the optimization process, so as to reduce its effects on the
structural performance of the optimization results. In other words, the optimization results
without considering the porosity constraints cannot meet the actual working conditions
due to the existence of porosity, while the optimization results considering the porosity
constraints can still meet. Therefore, this method can greatly promote the combination of
additive manufacturing and topology optimization, so as to greatly improve the production
efficiency and capacity.

Topological sensitivity is defined as the impact of objective when a small hole is
inserted, which is compatible with the impact of porosity on structural performance. There-
fore, this paper will use topological sensitivity to define the porosity constraint function.
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4.1. Formulation of Porosity Constraints

Assuming Bx,r = x + rB, x∈Ω represents a small pore with radius r at x in the design
domain Ω, the design domain where the pore appears can be expressed as Ω0,x,r = Ω0 −
Bx,r. The objective function J(Ω0) does not change significantly due to the appearance of
pores in the design domain Ω0, so the change of structural performance before and after
the appearance of pores can be expressed as:

c0 = J(Ω0,x,r)− J(Ω0) (33)

Introduce the definition of topological sensitivity in Section 3.2:

J(Ω0,x,r) = J(Ω0) + DT J(Ω0,x,r)M(Bx,r) + (M(Bx,r)) (34)

where M(Bx,r) is the measure of the pore Bx,r and lim
r→0

|o(M(Bx,r))|
M(Bx,r)

= 0.

By substituting (34) into (33), the result is:

c0 = DT J(Ω0,x,r)M(Bx,r) + (M(Bx,r)) (35)

After considering the porosity constraints, assuming that Ωp is set as the structural
design domain of the optimal design, and J( Ωp) is the corresponding objective function
to characterize the structural performance, the change of structural performance can
be obtained:

cp = J
(
Ωp,x,r

)
− J
(
Ωp
)
= DT J

(
Ωp,x,r

)
M(Bx,r) + (M(Bx,r)) (36)

According to the above analysis, the structural performance will decrease after consid-
ering the porosity constraint, so the inequality can be established:

cp − ηc0 ≤ 0 (37)

where η∈ (0, 1] is a user-defined tolerance that indicates the admissible change of objective.
In level set topology optimization, the inequality is not conducive to solving by

Lagrange method, so inequalities need to be transformed. According to the work of Al-
laire et al. [49,50], assuming [F]+ ≡max(F, 0), the inequality (37) satisfies:[

cp − ηc0
]
+
≡ 0 (38)

Equation (38) are constraints defined at various points in the design domain. This type
of constraint is inconvenient for implementation in topology optimization and to solve
shape sensitivity. Addressing the issue, the domain integral is established:∫

Ω

([
cp − ηc0

]
+

)2
dx = 0 (39)

Therefore, the topology optimization problem considering porosity constraints is
expressed as:

min J(u) =
∫

Ω f (u)dΩ =
∫

Ω Eε(u)·ε(u)dΩ
s.t.

∫
Ω dΩ = Vmax

Cp(Ω) = 1
2

∫
Ω

([
cp − ηc0

]
+

)2
dx = 0

(40)

4.2. Shape Sensitivities of Porosity Constraints

The level set method topology optimization needs to solve the shape sensitivity of
the objective and the constraint function. The shape sensitivity of the compliance and
the volume constraint have been obtained in Section 2. Next, the shape sensitivity of the
porosity constraint function will be derived.
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The shape sensitivity of the constraint function is solved by the Céa method. Introduc-
ing Augmented Lagrangian:

L(Ω, u, p) = 1
2

∫
Ω

([
cp − ηc0

]
+

)2
dx +

∫
Ω Eε(u) : ε(p)dx

−
∫

Ω f ·pdx−
∫

ΓN
g·pds

(41)

Under the optimization theory, the stagnation point of the Lagrangian is the optimality
condition of the minimization problem. Therefore, the optimal value of the function can be
solved by finding the stagnation point of the function. For a given Ω, (uΩ, pΩ) represents
the stagnation point. At first, take the partial derivative of L(Ω, u, p) with respect to p:

∂L
∂p

(Ω, u, p) =
∫

Ω
Eε(u) : ε( p̂)dx−

∫
Ω

f · p̂dx−
∫

ΓN

g· p̂ds (42)

Let (42) be equal to 0, which is the same as the linear elastic equation in the optimiza-
tion problem. Therefore, the solution of (42) is equal to the solution of the linear elastic
equation, i.e., u = uΩ = ue.

Secondly, take the partial derivative of L(Ω, u, p) with respect to u:

∂L
∂u

(Ω, u, p) =
∫

Ω

[
cp − ηc0

]
+

M(Bx,r)D′T J(Ω)(û)dx +
∫

Ω
Eε(p) : ε(û)dx (43)

Let (43) be equal to 0, suppose its solution is p = pΩ, which results in:∫
Ω

[
cp − ηc0

]
+

M(Bx,r)D′T J(Ω)(v)dx +
∫

Ω
Eε(pΩ) : ε(v)dx = 0 (44)

The shape sensitivity of the constraint function can be obtained by differentiating
Cp(Ω) = L(Ω, u, p). According to the chain derivation rule, the shape sensitivity of the
objective function can be obtained as:

C′p(Ω)(θ) =
∂L
∂Ω

(Ω, u, p)(θ) +
∂L
∂u

(Ω, u, p)
(
u′(θ)

)
(45)

Substituting (uΩ, pΩ) into (45), the second term ∂L
∂u (Ω, uΩ, pΩ) on the right side of (45)

is equal to 0, so the shape sensitivity of the constraint function is:

C′p(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ)(θ) (46)

Quoting Lemma 4 and Lemma 5 in [20], the result is:

∂L
∂Ω (Ω, uΩ, pΩ)(θ) = 1

2

∫
Ω

([
cp − ηc0

]
+

)2
θ·nds

+
∫

Ω

([
cp − ηc0

]
+

)
M(Bx,r)D′T J(Ω)ds

+
∫

Ω Eε(uΩ) : ε(pΩ)θ·nds−
∫

Ω f ·pΩ·θ·nds
−
∫

ΓN
g·pΩ·θ·nds

(47)

when u∈ΓN, θ = 0. The shape sensitivity of the constraint function is:

C′p(Ω)(θ) = 1
2

∫
Ω

(
[DT J(Ω)− ηB J(Ω)]+

)2
θ·nds

+
∫

Ω

([
cp − ηc0

]
+

)
M(Bx,r)D′T J(Ω)ds

+
∫

Ω(Eε(uΩ) : ε(pΩ)− f ·pΩ)θ·nds

(48)

where pΩ satisfies:∫
Ω

[
cp − ηc0

]
+

M(Bx,r)D′T J(Ω)(v)dx +
∫

Ω
Eε(pΩ) : ε(v)dx = 0 (49)
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where
for d = 2

D′T J(Ω)(v) = 8µ
π(λ+2µ)
2µ(λ+µ)

Eε(u) : ε(v)

+2(λ− µ)
π(λ+2µ)
2µ(λ+µ)

Tr(Eε(u))Tr(ε(v))
(50)

for d = 3
D′T J(Ω)(v) = 40µ

π(λ+2µ)
µ(9λ+14µ)

Eε(u) : ε(v)

+2(3λ− 2µ)
π(λ+2µ)

µ(9λ+14µ)
Tr(Eε(u))Tr(ε(v))

(51)

5. Optimization Procedure

In this paper, the Lagrangian method is used to solve the level set topology optimiza-
tion problem (40), which transforms the optimization problem into the Lagrangian uncon-
strained minimization problem. The topology optimization problem is transformed into:

L(Ω, `, Γ) = J(Ω)− `1Cp(Ω)− `2(Vol(Ω)−Vmax)

+ Γ1
2
(
Cp(Ω)

)2
+ Γ2

2 (Vol(Ω)−Vmax)
2 (52)

where ` = (`1, `2) and Γ = (Γ1, Γ2) are the Lagrangian multipliers and the penalty factors
of the constraint function, respectively.

The shape sensitivity of the augmented Lagrangian function can be derived as:

L′(Ω, `, Γ)(θ) = J′(Ω)(θ)− `1C′p(Ω)(θ)− `2
∫

Ω θ·nds + Γ1Cp(Ω)C′p(Ω)(θ)

+Γ2(Vol(Ω)−Vmax)
∫

Ω θ·nds
(53)

Substituting J’(Ω)(θ) and C’p(Ω)(θ), the normal evolution velocity Vn of the Hamilton–
Jacobi equation can be obtained.

When performing a one-step solution, it is easy to make the optimization considering
the effects of porosity converge to the local optimal solution. Addressing the issue, the
topology optimization is solved in two steps in this paper. For one thing, the hole nucleation
method combining BESO and topological sensitivity can be used to reduce the influence of
initial hole distribution on the optimization results. For another, the optimization results
obtained in the previous step can be directly used in the second step, which improves the
convergence efficiency of the optimization. Therefore, the level set topology optimization
algorithm considering porosity constraints is summarized as follows:

1. Perform preliminary structural optimization according to the level set topology op-
timization combining BESO and topological sensitivity and obtain optimal results
without considering porosity constraints;

2. Import optimization results without considering porosity constraints for subsequent
optimization;

3. Initialize the level set function Φ2 according to the preliminary optimization results;
4. According to the given load conditions, solving the elastic balance equation a(u, v, Φ)

= L(v, Φ), the displacement field vector uΩ and the topological sensitivity DT J(Ω) are
obtained;

5. Solve the adjoint vector pΩ using (49);
6. Calculate the shape sensitivity using (48);
7. Solve the level set velocity field vector Vn, and extend the velocity to the entire design

domain Ω;
8. Using the existing level set function and the obtained velocity Vn, solve the Hamilton–

Jacobi equation ∂Φ
∂t −Vn‖∇Φ‖ = 0 by finite difference to obtain a new level set function;

9. Reinitialize the signed distance function for the new level set function;
10. Check whether the level set function satisfies the convergence criterion. If not, repeat

steps 4 to 10 until convergence. The convergence criterion is:∣∣∣Jn − Jn−k
∣∣∣ ≤ 0.01Jn &&

∣∣∣Cn
p − Cn−k

p

∣∣∣ ≤ 0.01Cn && |Vn −Vmax| ≤ 0.01 (54)
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where 1 ≤ k ≤ 5.

The optimization process of level set topology optimization considering porosity
constraints is shown in Figure 2.
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6. Numerical Examples

In this Section, two examples are given to verify the effectiveness of the proposed
porosity constraints. For the convenience of calculation, the measure M(Bx,r) of the small
pores is expressed as:

M(Bx,r) = πrd (55)

where d represents the structural dimension.
The Lagrangian multipliers and the penalty factors of (53) will be updated continu-

ously with the rule:
`n+1

1 = `n
1 − Γn

1 Cn
p(Ω)

`n+1
2 = `n

2 − Γn
2 (Voln(Ω)−Vmax)

Γn+1
1 = β1Γn

1
Γn+1

2 = β2Γn
2

(56)

where ` = (`1, `2) is updated every iteration and Γ = (Γ1, Γ2) is updated every five
iterations. In the level set topology optimization, it is difficult to select the initial values
of Lagrangian multipliers and the penalty factors. The initial values of the following
numerical examples follow the empirical formula:

`0
1 = 0.05(J(Ω)/Vmax)

`0
2 = 0.05

(
Cp(Ω)/Vmax

)
Γ0

1 = 0.05
∣∣`0

1

∣∣
Γ0

2 = 0.05
∣∣`0

2

∣∣ (57)

Since the main purpose of this Section is to verify the effectiveness of the method, all
material properties and loads are dimensionless. The materials for all numerical examples
are isotropic. Assume that the Young’s modulus of the solid material is E1 = 1, the Young’s
modulus of the void material is E0 = 10−3, and the Poisson’s ratio is ϑ = 0.3. All examples
adopt four-node rectangular elements to mesh the design domain.

6.1. L-Shaped Beam

The design domain of this optimization problem is an L-shaped area with a ratio 1:1
of length L to height H, meshed with 4800 elements, as shown in Figure 3a. Its upper
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side is fixed, and a vertical load P = 1 is applied at the middle of its right-hand side. The
upper bound of volume ratio is 0.4. The evolutionary volume ratio cer is set to 0.04, the
filter radius Rmin is taken as 3, and the interval j of hole nucleation is 5. The initial shape
is displayed in Figure 3b. At first, the level set topology optimization of hole nucleation
combining BESO and topological sensitivity is employed. The optimized shape is shown in
Figure 4. The optimization converges after 65 iterations, and the evolution of the volume
fraction and the compliance are shown in Figure 5.
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Figure 4. Preliminary optimized shape of L-shaped beam.

Secondly, the level set topology optimization considering porosity constraint is em-
ployed. The preliminary optimization results of the previous step are imported to perform
topology optimization considering porosity constraint. The pores radius r is set to 0.625,
and the tolerance η is taken as 0.3. The optimization converges after 14 iterations, and
the evolution of the volume fraction, the compliance and porosity constraint are shown in
Figure 6. The preliminary optimization results and the optimization results considering
porosity constraint are shown in Figure 7a,b, respectively, and the corresponding porosity
constraint distribution clouds are shown in Figure 7c,d.
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Figure 6. Convergence history of L-shaped beam considering porosity constraint.

As shown in Figure 6, the optimization problem with porosity constraints converges
after 14 iterations, the porosity constraint value decreases 30% from 14.6, but the objective
compliance increases from 87.8 to 93.5. Without considering the porosity constraint, the
maximum porosity constraint value appears near the reentrant corner of the optimization
result shown in Figure 7c, while the porosity constraint value in other areas is almost
zero. According to practical experience, the reentrant corner is easy to produce stress
concentration under the loads. If there are pores in this area during manufacturing, cracks
will be generated under the action of concentrated force, which will reduce the fatigue
performance of parts. Therefore, the reentrant corner is more sensitive to porosity. If
the reentrant corner is smoothed into a rounded area, the stress concentration can be
effectively reduced, and the sensitivity to the porosity is also reduced. Therefore, under
the effect of porosity constraints, the reentrant corner will be key optimization region
of the structure. According to the optimization result in Figure 7d, under the effect of
porosity constraints, the reentrant corner becomes smooth and presents a characteristic
of fillet, while the other regions almost have no change. By observing the corresponding
porosity constraint value in this area, it can be found that the porosity constraint value
has decreased significantly, and the maximum porosity constraint value in this area has
decreased from 1.92 to 1.14. According to the numerical analysis, the topology optimization
method considering porosity constraints is effective and conforms to the actual situation.
Comparing the changes in compliance with or without considering porosity constraint,
there is a deviation that is within the admissible range.
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6.2. C-Shaped Bracket

The design domain of the second example is a C-shaped area with a ratio 3:2 of length
L to height H, meshed with 3600 elements, as shown in Figure 8a. Its lower side is fixed,
and a vertical load P = 1 is applied at the bottom of its right-hand side. The upper bound
of volume ratio is 0.4. The evolutionary volume ratio cer is set to 0.04, the filter radius Rmin
is taken as 3, and the interval j of hole nucleation is 5. The initial shape is displayed in
Figure 8b. At first, the level set topology optimization of hole nucleation combining BESO
and topological sensitivity is employed. The optimized shape is shown in Figure 9. The
optimization converges after 75 iterations, and the evolution of the volume fraction and
the compliance are shown in Figure 10.

Secondly, the preliminary optimization results of C-shaped bracket are imported to
perform topology optimization considering the porosity constraint. The pores radius r is
set to 0.5, and the tolerance η is taken as 0.15. The optimization converges after 15 iterations,
and the evolution of the volume fraction, the compliance, and porosity constraint are shown
in Figure 11. The preliminary optimization results and the optimization results considering
porosity constraint are shown in Figure 12a,b, respectively, and the corresponding porosity
constraint distribution clouds are shown in Figure 12c,d.



Appl. Sci. 2021, 11, 5578 16 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

As shown in Figure 6, the optimization problem with porosity constraints converges 
after 14 iterations, the porosity constraint value decreases 30% from 14.6, but the objective 
compliance increases from 87.8 to 93.5. Without considering the porosity constraint, the 
maximum porosity constraint value appears near the reentrant corner of the optimization 
result shown in Figure 7c, while the porosity constraint value in other areas is almost zero. 
According to practical experience, the reentrant corner is easy to produce stress concen-
tration under the loads. If there are pores in this area during manufacturing, cracks will 
be generated under the action of concentrated force, which will reduce the fatigue perfor-
mance of parts. Therefore, the reentrant corner is more sensitive to porosity. If the reen-
trant corner is smoothed into a rounded area, the stress concentration can be effectively 
reduced, and the sensitivity to the porosity is also reduced. Therefore, under the effect of 
porosity constraints, the reentrant corner will be key optimization region of the structure. 
According to the optimization result in Figure 7d, under the effect of porosity constraints, 
the reentrant corner becomes smooth and presents a characteristic of fillet, while the other 
regions almost have no change. By observing the corresponding porosity constraint value 
in this area, it can be found that the porosity constraint value has decreased significantly, 
and the maximum porosity constraint value in this area has decreased from 1.92 to 1.14. 
According to the numerical analysis, the topology optimization method considering po-
rosity constraints is effective and conforms to the actual situation. Comparing the changes 
in compliance with or without considering porosity constraint, there is a deviation that is 
within the admissible range.  

6.2. C-shaped bracket. 
The design domain of the second example is a C-shaped area with a ratio 3:2 of length 

L to height H, meshed with 3600 elements, as shown in Figure 8a. Its lower side is fixed, 
and a vertical load P = 1 is applied at the bottom of its right-hand side. The upper bound 
of volume ratio is 0.4. The evolutionary volume ratio cer is set to 0.04, the filter radius Rmin 
is taken as 3, and the interval j of hole nucleation is 5. The initial shape is displayed in 
Figure 8b. At first, the level set topology optimization of hole nucleation combining BESO 
and topological sensitivity is employed. The optimized shape is shown in Figure 9. The 
optimization converges after 75 iterations, and the evolution of the volume fraction and 
the compliance are shown in Figure 10. 

  
(a) (b) 

Figure 8. Optimum design problem of C-shaped bracket, (a) design domain and boundary conditions; (b) initial shape. Figure 8. Optimum design problem of C-shaped bracket, (a) design domain and boundary conditions;
(b) initial shape.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 9. Preliminary optimized shape of C-shaped bracket. 

 
Figure 10. Convergence history of C-shaped bracket by hole nucleation method. 

Secondly, the preliminary optimization results of C-shaped bracket are imported to 
perform topology optimization considering the porosity constraint. The pores radius r is 
set to 0.5, and the tolerance η is taken as 0.15. The optimization converges after 15 itera-
tions, and the evolution of the volume fraction, the compliance, and porosity constraint 
are shown in Figure 11. The preliminary optimization results and the optimization results 
considering porosity constraint are shown in Figure 12a,b, respectively, and the corre-
sponding porosity constraint distribution clouds are shown in Figure 12c,d. 

 
Figure 11. Convergence history of C-shaped bracket considering porosity constraint. 

Figure 9. Preliminary optimized shape of C-shaped bracket.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 9. Preliminary optimized shape of C-shaped bracket. 

 
Figure 10. Convergence history of C-shaped bracket by hole nucleation method. 

Secondly, the preliminary optimization results of C-shaped bracket are imported to 
perform topology optimization considering the porosity constraint. The pores radius r is 
set to 0.5, and the tolerance η is taken as 0.15. The optimization converges after 15 itera-
tions, and the evolution of the volume fraction, the compliance, and porosity constraint 
are shown in Figure 11. The preliminary optimization results and the optimization results 
considering porosity constraint are shown in Figure 12a,b, respectively, and the corre-
sponding porosity constraint distribution clouds are shown in Figure 12c,d. 

 
Figure 11. Convergence history of C-shaped bracket considering porosity constraint. 

Figure 10. Convergence history of C-shaped bracket by hole nucleation method.

As shown in Figure 11, the optimization problem with porosity constraints converges
after 15 iterations, the porosity constraint value decreases 15% from 187.1, but the objective
compliance increases from 293.7 to 323.3. Without considering the porosity constraint, the
maximum porosity constraint value appears near the reentrant corner of the optimization
result shown in Figure 12c, while the porosity constraint value in other areas is almost
zero. Therefore, under the effect of porosity constraints, the reentrant corner will be key
optimization region of the structure. According to the optimization results of Figure 12d,
under the effect of porosity constraint, the reentrant corner becomes smooth and presents
a characteristic of fillet. The results show that the porosity constraint value decreases
obviously, and the maximum value decreases from 18.9 to 10.4. Comparing the changes
in compliance with or without considering porosity constraint, there is a deviation that is
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within the admissible range. The optimization results of the C-shaped bracket are similar
to the L-shaped beam, which further proves the effectiveness of the proposed method.
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method.  
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7. Conclusions

Porosity is one of the main defects of the manufactured parts by AM. The appearance
of porosity will significantly reduce the mechanical and fatigue properties of fabricated
parts and accelerate the failure of parts. To reduce the influence of porosity, the pores are



Appl. Sci. 2021, 11, 5578 18 of 20

considered in topology optimization for AM so as to obtain a robust optimization result.
In this paper, the concept of topological sensitivity is used to establish the global porosity
constraint function, and the shape sensitivity of the porosity constraint is analyzed. Consid-
ering the robustness of the algorithm, the topology optimization considering the porosity
constraint is performed by two steps. In the preliminary optimization of the structure, a
hole nucleation method combining BESO and topological sensitivity is proposed to solve
the problem that the level set topology optimization method cannot automatically nucleate
holes. Next, the preliminary optimization results are subjected to topology optimization
considering porosity constraint, obtaining the results that can reduce the effects of porosity
on structural performance. In the L-shaped beam, the porosity constraint value of the
optimization results is reduced by 30%. In the C-shaped bracket, the value is reduced by
15%, but the compliance of the structural performance is only slightly increased. Compared
with the decrease of porosity constraint value, the change of compliance is very small
and within the admissible range. The step-by-step optimization method proposed in this
paper will not increase the extra workload for engineers to guess the initial structure and
improve the convergence efficiency of the optimization algorithm. This method provides a
potential solution for multi-constraint topology optimization problems. In future work,
the idea of using topological sensitivity to construct porosity constraints can also be used
to consider additive manufacturing defects such as cracks and spheroidization in topol-
ogy optimization, which further broadens the research field of topology optimization for
additive manufacturing defects.
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