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Abstract: Automated pig monitoring is important for smart pig farms; thus, several deep-learning-
based pig monitoring techniques have been proposed recently. In applying automated pig monitoring
techniques to real pig farms, however, practical issues such as detecting pigs from overexposed
regions, caused by strong sunlight through a window, should be considered. Another practical
issue in applying deep-learning-based techniques to a specific pig monitoring application is the
annotation cost for pig data. In this study, we propose a method for managing these two practical
issues. Using annotated data obtained from training images without overexposed regions, we first
generated augmented data to reduce the effect of overexposure. Then, we trained YOLOv4 with both
the annotated and augmented data and combined the test results from two YOLOv4 models in a
bounding box level to further improve the detection accuracy. We propose accuracy metrics for pig
detection in a closed pig pen to evaluate the accuracy of the detection without box-level annotation.
Our experimental results with 216,000 “unseen” test data from overexposed regions in the same pig
pen show that the proposed ensemble method can significantly improve the detection accuracy of
the baseline YOLOv4, from 79.93% to 94.33%, with additional execution time.

Keywords: agriculture IT; computer vision; pig detection; deep learning; data augmentation;
model ensemble

1. Introduction

The health and well-being of group-housed pigs can be maintained by detecting
or managing problems regarding their health and welfare in the early stages [1–5]. The
reduction of practical problems (e.g., infectious diseases, hygiene deterioration) with
individual pigs is essential, as pigs that roam around in an enclosed pen have a high
possibility of being infected by diseases or developing stress [6]. However, in general, the
farm workforce is significantly low compared to the number of pigs. For example, the pig
farm from which the video monitoring data were obtained had more than 1000 pigs cared
for by each worker. It is nearly impossible for a small workforce to manage a huge number
of pigs. Therefore, the main objective of this study was to identify the number of pigs in a
pig pen and to prevent deaths of individual pigs due to health and welfare problems by
detecting irregularities.

Many studies have reported the use of monitoring techniques to solve problems in
pig pens [7–30]. It is important to detect individual pigs in each video frame to analyze
this type of motion behavior, as object detection is the first process for various vision-
based high-level analyses. While many researchers have reported the detection of pigs
using typical learning and image processing techniques, the detection accuracy for highly
occluded images may not be at an acceptable level. Recently, end-to-end deep learning
techniques have been proposed for object detection, and various pig-detection methods
based on deep learning results (along with the typical learning and image processing
techniques) have been reported [11–30]. YOLOv4 [31] is a recently released detector that
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can detect pigs with a good tradeoff between speed and accuracy; hence, we used YOLOv4
as the baseline detector in this study.

However, practical issues such as detecting pigs from overexposed regions, caused by
strong sunlight through a window, should be considered when applying automated pig
monitoring techniques to real pig farms. Image processing and deep learning techniques
can be applied to solve such problems caused by sunlight. For example, images with
overexposed regions can be generated using image processing and deep learning tech-
niques. However, the overexposed regions caused by strong sunlight through a window
depend on the structure of the pig pen; moreover, each pig moves independently within
the overexposed regions. Therefore, it is very difficult to generate training images with
overexposed regions for different types of pig pens. In this paper, a method utilizing image
processing and deep learning techniques is proposed to improve the accuracy of detection,
without generating training data.

After training on a dataset that completely excluded data from overexposed regions,
the detection accuracy on data from unseen overexposed regions was measured to validate
the ability to detect pigs from various forms of overexposed regions. Specifically, a test was
performed on the entire two hours of video (216,000 raw video frames) that included the
overexposed region after training on extracted data that excludes frames from 8:00 to 10:30
in the morning (during which time an overexposed region was created due to the effect of
sunlight from the window; see Figure 1).
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Figure 1. Infrared images obtained from a closed pig pen at each hour. From 8:30 a.m. to 10:30 a.m., overexposed regions
(with grey pixel values higher than 240) caused by sunlight can be observed. To solve this issue, the training images do not
include overexposed regions, and the test images include overexposed regions. Practical accuracy metrics are also proposed
for evaluating the detection accuracy with 216,000 test images, without box-level annotation.
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Another practical issue in applying deep-learning-based techniques to pig detection
is the annotation cost for large-scale training and test data. Traditional metrics, such as
average precision (AP)/average recall (AR), which are widely used in COCO [32] and
VOC [33], are employed to evaluate the detection accuracy of group-housed pigs. These
require box-level annotation for each pig in an image. Because of this annotation cost (which
is typically 5 min for one image of group-housed pigs), previous studies on pig detection
have reported detection accuracy with a small number of test images. For example, if one
image takes about five minutes to annotate, then about 18,000 h (estimated to be 2 years)
are taken to annotate 216,000 test images, and 1166 h (estimated to be 1.5 months) are taken
to annotate 13,997 key frame images. For large-scale evaluation, accuracy metrics without
box-level annotation are needed.

This study proposes a performance testing method and performance metrics that are
used to compare the accuracy of the proposed ensemble detectors and baseline detectors
in processing all frames of the 216,000 images, without box-level annotations. Hence,
the number of test data is reduced by extracting key frames for movements that occur
by considering the characteristics of pigs that have been lying down for a long time. In
addition, this study proposes an accuracy measurement method that does not require
additional annotation cost by modifying CorLoc [34], which is used in weakly supervised
object detection (WSOD). The validity of this measurement metric can be verified by
comparing the pig detection performance in an enclosed pen on all video frames without
annotation with the proposed performance metric. This is possible by visual verification of
a small number of 13,997 key frame images. The contributions of the proposed method are
summarized as follows:

• For real-time deployment, a deep-learning-based pig detector should handle unseen
data. An ensemble-based pig detection method is proposed in this study to improve
the detection accuracy in overexposed regions (as an example of unseen data), pre-
sumably for the first time. The detection of pigs from such overexposed regions is very
challenging because the pixel distribution of such regions caused by strong sunlight
through a window is different from that of other regions. Without using training data,
including those from overexposed regions, image preprocessing for diversity and a
model ensemble with different preprocessed images can robustly detect pigs from
overexposed regions.

• Another practical issue in applying deep-learning-based techniques to pig detection is
the annotation cost for large-scale data. Experimental results for pig detection with
large-scale test data have not yet been reported because the box-level annotation cost
for this data is very expensive. Accuracy metrics for pig detection in a closed pig
pen are proposed to evaluate the accuracy of detection, without box-level annotation.
Presumably, this is the first report of large-scale pig detection in a pig pen with 216,000
test data, without any box-level annotation. It is also indicated that the detection
accuracy with 216,000 raw video frames is very similar to that with 13,997 key frames.
Thus, reducing the number of test images using key frame extraction is effective in
reducing both the evaluation cost (with very large test data) and the inference time
(with the model ensemble).

This paper is organized as follows: Section 2 summarizes previous pig detection
methods. Section 3 describes the proposed method to efficiently detect pigs using the
model ensemble method. Section 4 explains the details of the experimental results, along
with the new accuracy metric, and the paper is concluded in Section 5.

2. Background

The main objective of this study was to automatically monitor and analyze the be-
havior of an individual pig for 24 h using computer vision methods. Many studies have
analyzed the behavior of group-housed pigs. For example, research on pig behavior
analysis [7,8], weight measurement [9], environment control [10], pig detection [11–15],
tracking [16–18], and segmentation [19] using image processing have been reported. In
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addition, pig detection [20–24], behavior analysis [25], and posture detection [27,28] using
deep learning have also been reported. Seo, J. et al. [29] proposed a method to solve the
problem of process time and accuracy when detecting individual pigs in a resource-limited
embedded environment. Considering the high complexity of deep learning for individual
pig detection, parallel pipeline processing and filter clustering methods were used to solve
the problem of accuracy and process time, allowing the process in an embedded system.
The study applied an image processing method to recover the dropped accuracy using
filter clustering. Cowton, J. et al. [30] proposed a method of tracking individual pigs in
various environment by combining deep learning detection and a tracking algorithm. More
specifically, Faster RCNN and DeepSORT were used after organizing a dataset of 1646
images for individual tracking in a low-light environment. However, since the detection
method for 24 h individual pig monitoring is dependent on individual pig detection, there
is a need for a method to improve individual pig detection accuracy using deep learning
that considers special condition of an overexposed region in a pig pen environment. In
other words, special conditions such as overexposed regions of the pig room caused by
sunlight have to be considered to automatically monitor and analyze the behavior of an
individual pig for 24 h. Our proposed study focused on deep learning technology that
improves individual pig detection accuracy. This study proposes a method to improve
accuracy by combining two models (CLAHESFB and CLAHEET) that considers difficult
overexposed regions in pig detection.

Infrared input images were used to detect individual pigs during the day and night.
Figure 2 shows the results of deep learning (i.e., YOLOv4 [31]) during the day, night,
and daytime with sunlight. During the day, pigs tend to move more actively than at
night, as shown in Figure 2a. In contrast, the pigs tend to sleep at night, leading to less
movement than during the day, as shown in Figure 2b. During both day and nighttime
environments, deep learning methods can provide high detection accuracy for detecting
individual pigs. Note that YOLOv4 [31] is a recently released detector that can detect
pigs with a good tradeoff between speed and accuracy. However, in environments with
strong sunlight, as shown in Figure 2c, the detection accuracy can be degraded by an
overexposed environment.

As mentioned in the introduction, it is very difficult to generate training images
from overexposed regions for different types of pig pens. Instead of this approach, the
overexposed regions with gray pixel values higher than 240 were considered as occlusion
(i.e., invalid data), and a method is proposed to improve the detection accuracy with
valid data only (i.e., gray pixel values lower than 240). From the training images without
gray pixel values higher than 240, two different parameters for image preprocessing were
derived to maximize the diversity of the given images. Then, a model ensemble method
was developed for combining the test results from the two YOLOv4 models in a bounding
box level to further improve the detection accuracy.

Previous studies on pig detection have reported detection accuracy with a small
number of test images because of annotation cost. Table 1 shows the pig detection results
with 100–1792 test images during the last 10 years.

For large-scale evaluation, accuracy metrics without box-level annotation are required.
As the number of pigs in a closed pig pen is known, two accuracy metrics are proposed
based on the number of pigs in the pen and the observed number of pigs in images. The
effectiveness of the accuracy metrics was also evaluated by defining “key frames” (frames
that are considered to have captured meaningful movements of pigs) and “hard frames”
(key frames that have located pigs in overexposed regions, that is, frames where accurate
detection of pigs is difficult due to overexposed regions). The accuracy metrics were then
compared with all frames, key frames, and hard frames, without expensive box-level
annotation costs.
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Table 1. Some of the recent results for group-housed pig detection (published during 2011–2020).

Management of
Overexposed Region Data Size No. of Pigs

in a Pen
No. of Test

Images
Detection
Technique Reference

No

640 × 480 22 270 Image Processing [8]
720 × 540 12 500 Image Processing [11]

1280 × 720 7–13 Not Specified Image Processing [12]
640 × 480 22, 23 Not Specified Image Processing [13]

1440 × 1440 9 200 Image Processing [14]
1024 × 768 4 100 Image Processing [15]
720 × 576 10 Not Specified Image Processing [16]

Not Specified 3 Not Specified Image Processing [17]
512 × 424 19 Not Specified Image Processing [18]

Not Specified 2~12 330 Image Processing [19]
2560 × 1440 4 100 Deep Learning [20]
960 × 720 ~30 500 Image Processing [21]

1920 × 1080 Not Specified 400 Deep Learning [22]
64 × 64 6 500 Deep Learning [23]

1280 × 720 ~79 160 Deep Learning [24]

1280 × 720 9 1000 Image Processing
+ Deep Learning [25]

1280 × 720 ~32 400 Deep Learning [26]
1280 × 800 13 226 Deep Learning [27]
720 × 480 2 1792 Deep Learning [28]

1280 × 720 9 1000 Image Processing
+ Deep Learning [29]

1920 × 1080 20 828 Deep Learning [30]

Yes 1280 × 720 9

216,000
(13,997 Key

Frames)
(4193 Hard

Frames)

Image Processing
+ Deep Learning

(+ Accuracy
Metrics)

Proposed
Method
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3. Proposed Method

This study proposes a solution to the problem of decreasing accuracy caused by
overexposed regions with strong sunlight by applying image preprocessing to images that
are not exposed to strong sunlight. In addition, a model ensemble method of combining
detection results using the detection boxes of two models to improve detection accuracy is
proposed, along with a method for extracting key frames that have effective movement in
a test video and new accuracy metrics that measure accuracy, without additional box-level
annotation cost. The entire structure of the proposed method is shown in Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 19 
 

1920 × 1080 20 828 Deep Learning [30] 

Yes 1280 × 720 9 

216,000 

(13,997 Key 

Frames) 

(4193 Hard 

Frames) 

Image Processing 

+ Deep Learning 

(+ Accuracy Metrics) 

Proposed 

Method 

3. Proposed Method 

This study proposes a solution to the problem of decreasing accuracy caused by over-

exposed regions with strong sunlight by applying image preprocessing to images that are 

not exposed to strong sunlight. In addition, a model ensemble method of combining de-

tection results using the detection boxes of two models to improve detection accuracy is 

proposed, along with a method for extracting key frames that have effective movement in 

a test video and new accuracy metrics that measure accuracy, without additional box-

level annotation cost. The entire structure of the proposed method is shown in Figure 3. 

 

Figure 3. Overview of the proposed method EnsemblePigDet. 

3.1. Image Preprocessing 

In this study, detection accuracy is considered to be decreased due to occlusion when 

the images exposed to strong sunlight have pixel values higher than 240. To solve this 

problem, image preprocessing on training data that does not include overexposed regions 

is proposed. It considers overexposed regions with pixel values higher than 240 as invalid 

regions and increases accuracy by improving image quality through image preprocessing 

in the remaining regions. This study proposes image preprocessing methods that include 

contrast limited adaptive histogram (CLAHE) [35], Gaussian filter [36], and sharpening 

filter [36] and divides them into two sections.  

CLAHE divides the input image into small blocks of uniform sizes and smoothens 

the histogram for each block. The main parameter, TilesGridSize, determines the block 

sizes to be divided, and ClipLimit is a threshold value that is needed for the histogram 

smoothing process. This is used to redistribute the pixels that exceed the threshold value 

and equalize the histogram. As TilesGridSize decreases, it has the effect of increasing local 

contrast between the object and background, and as it increases, the overall feature 

strengthens, which emphasizes the object’s texture. For this study, averages of individual 

pixel values in the ground truth box region and ground truth excluded region were ac-

quired to find the effective parameter combination of the first model. This emphasizes the 

effect of the contrast between the object and background. Among the combinations, the 

parameter combination that had the largest difference between the averages was chosen. 

Following this, the entropy value, which is one of the metrics that shows the amount of 

Figure 3. Overview of the proposed method EnsemblePigDet.

3.1. Image Preprocessing

In this study, detection accuracy is considered to be decreased due to occlusion when
the images exposed to strong sunlight have pixel values higher than 240. To solve this
problem, image preprocessing on training data that does not include overexposed regions
is proposed. It considers overexposed regions with pixel values higher than 240 as invalid
regions and increases accuracy by improving image quality through image preprocessing
in the remaining regions. This study proposes image preprocessing methods that include
contrast limited adaptive histogram (CLAHE) [35], Gaussian filter [36], and sharpening
filter [36] and divides them into two sections.

CLAHE divides the input image into small blocks of uniform sizes and smoothens the
histogram for each block. The main parameter, TilesGridSize, determines the block sizes to
be divided, and ClipLimit is a threshold value that is needed for the histogram smoothing
process. This is used to redistribute the pixels that exceed the threshold value and equalize
the histogram. As TilesGridSize decreases, it has the effect of increasing local contrast
between the object and background, and as it increases, the overall feature strengthens,
which emphasizes the object’s texture. For this study, averages of individual pixel values
in the ground truth box region and ground truth excluded region were acquired to find
the effective parameter combination of the first model. This emphasizes the effect of the
contrast between the object and background. Among the combinations, the parameter
combination that had the largest difference between the averages was chosen. Following
this, the entropy value, which is one of the metrics that shows the amount of information
in an image, was calculated to find the parameter combination that highlights the texture
intensity of an image. Table 2 shows the difference in average pixel value of the object and
background (difference) and entropy value (entropy) for each parameter combination.
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Table 2. Comparison of difference and entropy values for each combination of CLAHE parameters.

TilesGridSize ClipLimit Difference Entropy

(2,2) 0.2 51.14 5.48
(2,2) 0.4 51.30 5.49

(2,2) 0.6
CLAHESFB

51.31 5.49

(2,2) 0.8 51.30 5.49
(2,2) 1.0 51.30 5.49
(4,4) 0.2 21.44 5.57
(4,4) 0.4 17.75 5.60
(4,4) 0.6 18.13 5.60
(4,4) 0.8 18.15 5.60
(4,4) 1.0 18.15 5.60
(8,8) 0.2 17.91 5.54
(8,8) 0.4 9.27 5.60
(8,8) 0.6 7.33 5.61
(8,8) 0.8 7.45 5.61

(8,8) 1.0
CLAHEET

7.46 5.62

(16,16) 0.2 13.41 5.45
(16,16) 0.4 4.63 5.54
(16,16) 0.6 0.78 5.57
(16,16) 0.8 0.69 5.58
(16,16) 1.0 1.24 5.59
(32,32) 0.2 17.13 5.37
(32,32) 0.4 7.82 5.47
(32,32) 0.6 1.77 5.51
(32,32) 0.8 1.81 5.54
(32,32) 1.0 4.19 5.55
(64,64) 0.2 18.68 5.25
(64,64) 0.4 11.54 5.39
(64,64) 0.6 6.15 5.44
(64,64) 0.8 1.01 5.48
(64,64) 1.0 2.85 5.50

In this study, CLAHESFB (i.e., the separation of foreground and background) was
assigned as the parameter amongst the CLAHE parameter combinations when using
the results of CLAHE image processing for data augmentation. This combination is
deemed to separate the foreground from the background most effectively because the
difference between the foreground and background pixel average is the highest. On the
other hand, CLAHEET (i.e., enhancement texture) is assigned as a parameter that is deemed
to emphasize the texture of an image, as the entropy value is the largest (see Table 2). A
Gaussian filter was then applied to the result of CLAHESFB to emphasize low-frequency
features, whereas a sharpening filter was applied to the result of CLAHEET to emphasize
high-frequency features. Finally, “model A” was created by training YOLOv4 using training
data applied with image preprocessing A. In contrast, “model B” was created by training
YOLOv4 using training data applied with image preprocessing B.

3.2. Model Ensemble with Two Models

Although the model ensemble can increase accuracy, it also increases the execution
time. Therefore, this study proposes a model ensemble method using information from
the detection box of two models at the post-processing level to increase detection accuracy.
Initially, a union (AB_box) of the detection box set is acquired from model A and model B
using two sets, A_box and B_box, which are sets of detection boxes from models A and
B, respectively. After boxes with a lower confidence score for each set of boxes in A_box,
B_box, and AB_box are removed, non-maximum suppression (NMS) is performed for each
set. The thresholds for confidence and NMS are set differently with a set of model boxes,
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A_box and B_box, and a union set of model box AB_box, for diversity. For example, the
boxes from set A_box and B_box can be removed aggressively (in Figure 4, Confidence1
and Threshold1 are set to high and low, respectively), whereas the boxes from set AB_box
can be removed conservatively (in Figure 4, Confidence2 and Threshold2 are set to low
and high, respectively). The effects of diverse combinations of thresholds are explained in
Section 4. After the NMS process, the NMS results of A_box and AB_box are combined
as A/AB_box using the box merging algorithm (explained later), and the NMS results of
B_box and AB_box are combined as B/AB_box. Finally, the detection boxes of A/AB_box
and B/AB_box are combined as final boxes, using the same box merging algorithm. Hence,
this method merges the detection boxes produced from two models in two steps, with a
union set of the model box, to maximize the effect of the model ensemble. The overall
structure is shown in Figure 4.
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The box merging algorithm proposed in this study assumes that the number of pigs in
a closed pig pen (i.e., no_pigs) is known. For continuous pig monitoring applications, note
that the number of pigs in a pen does not generally change for a long time (i.e., one month)
except during some events (such as the death of a pig). Furthermore, the proposed algo-
rithm can be modified by introducing thresholds to select the final boxes if the reasonable
assumption cannot be satisfied. Another point to note is that the number of pigs (by manual
inspection of each video frame) can be less than no_pigs because of possible occlusion.
Therefore, the notation max_pigs was used in this study to represent the known number of
pigs in a pen.

Each video frame is deemed to be correct when the number of bounding boxes detected
by one of the two models matches the number of pigs that can be detected (i.e., no_pigs). If
neither of the two models matches, a box that is produced from a trained model that has
the largest intersection over union (IOU) value with a box of another model is considered
to be a matching box. Subsequently, if this IOU value is higher than iou_thresh, which is a
value deemed for two boxes to be the same box (set to 0.7 in this work), it is considered
that the matching box has correctly detected the pig. Finally, boxes that have the highest
confidence value compared to the remaining boxes that are not chosen as correct boxes
from each model are considered until the total number of correct boxes is equal to no_pigs.
Hence, this is a merging method in which the detection boxes are produced from two
models using the number of pigs that can be detected within a pen at the postprocessing
level. The proposed box-merging algorithm is summarized as Algorithm 1.
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Algorithm 1. Box merging algorithm.

Input: First boxes first_box, Second boxes second_box, no_pigs
Output: Merged boxes result_box
Initialize: Input boxes in first set first_box

Input boxes in second set second_box
if (confidence sum of first_box ≥ confidence sum of second_box & size of first_box = no_pigs) do

return first_box as result_box
else if (size of second_box = no_pigs) do

return second_box as result_box
else do

matched_boxes = 0
sort first_box and second_box in descending order of confidence value
for i = 1 to size of first_box do

for j = 1 to size of second_box do
max_iou = largest IOU of first_box[i] and second_box[j]
if max_iou > iou_thresh do

matched_boxes++
result_box[matched_boxes] = first_box[i]

if matched_boxes < no_pigs do
for k = matched_boxes + 1 to no_pigs do

add remaining first_box or second_box into result_box
return result_box

3.3. Key Frame Extraction and Accuracy Metrics

To measure the detection accuracy of the test dataset, an expensive “box-level” an-
notation to create ground truth is usually required. Therefore, a method to measure the
detection accuracy at an inexpensive cost is necessary for continuous pig monitoring appli-
cations. Raw video frames have a lot of redundant information for pig monitoring because
pigs sleep frequently for a long time. In this study, key frames that show significant changes
in movement (hence, pigs that show movement) were chosen to reduce the test dataset.

After reducing the test dataset through key frame extraction, CorLoc [34] used in
weakly supervised object detection (WSOD) was modified to measure the detection accu-
racy of key frames, under the assumption of knowing the number of pigs to be detected
(max_pigs). This study proposes a method to measure the detection accuracy without the
box-level annotation cost.

To extract key frames, the number of pigs that show movement in a current video
frame is estimated by comparing the previous and current frames. YOLOv4 is then applied
to calculate average size of bounding boxes. Note that YOLOv4 is applied only for a
sample frame from training dataset, not input video data. The pixel difference between the
previous and current frames is computed to decide whether a pig is moving. Finally, the
number of pigs that are moving is estimated, and the current frame is set as the key frame,
if at least one moving pig exists.

Initially, an object detector YOLOv4 is applied to the sample frame, and bounding
boxes are acquired. Bounding boxes that have less than a certain confidence value (set to
0.7 in this study) are removed to reduce false positives, and boxes that can be trusted are
chosen. The average detection box size S for the sample frame is calculated. Following
this, the number of pixels D for which the difference in pixel value is higher than a certain
threshold (i.e., THpixeldiff) is calculated for regions in individual detection boxes of the
current frame. Subsequently, if the divided value of D to S × N is higher than a certain
threshold (THkeyframe), where the N is number of pigs in a pig pen, then the current frame
is designated as the key frame. For this study, threshold values that are needed to extract
key frames were set to THpixeldiff = 1, THkeyframe = 1, and the algorithm to extract the key
frame is shown as Algorithm 2.
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Algorithm 2. Key frame extraction algorithm.

Input: Current frame CF, Previous key frame PF
Output: Key frame ft
Initialize: Average bounding box size S,

Pixel difference of CF and PF D,
Number of pigs in pig pen N,

Hyperparameter THpixeldi f f , THkey f rame
if D > THpixceldi f f do

if D
S×N > THkey f rame do

return CF
else do
return 0

After extracting the key frames, the detection accuracy is evaluated without box-level
annotation. As explained, the maximum number of pigs that can be detected within an
enclosed pig pen (i.e., max_pigs) is known. With max_pigs, the accuracy ACCmax_pigs
is defined for n test frames. For each test frame i, the number of detection boxes Ci is
compared with max_pigs. If they are equal, the frame is considered as the correct frame
(i.e., Fi = 1). Then, ACCmax_pigs is computed as the ratio of the total number of test frames
to the total number of correct frames w.r.t max_pigs.

However, even though the number of detection boxes is equal to max_pigs, there is
a possibility of false-positive and/or false-negative errors. As explained, the number of
pigs by manual inspection (GTi) for each test frame i can be less than max_pigs because of
possible occlusion. Therefore, with GTi, an accuracy ACCmanual_inspection for n test frames
is defined. For each test frame i, the number of detection boxes Ci is compared to the value
of GTi. If they are equal, the frame is considered as the correct frame (i.e., Mi = 1). Then,
ACCmanual_inspection is computed as the ratio of the total number of test frames to the total
number of correct frames for manual inspection.

Because the cost of manual inspection is still high for a relatively large number of key
frames, a key frame with at most one pig in overexposed regions is also defined as a hard
frame, and ACCmax_pigs and ACCmanual_inspection to detect pigs are evaluated for difficult
frames. In other words, the detection accuracy for hard frames can represent the lower
bound of the detection accuracy for key frames. In Section 4, ACCmax_pigs is compared
between raw video frames, key frames, and hard frames, and ACCmanual_inspection is com-
pared between key frames and hard frames to evaluate the effectiveness of ACCmax_pigs
and the accuracy relationship between key frames and hard frames.

ACCmax_pigs =
n

∑
i=1

Fi
n

ACCmax_pigs =
n

∑
i=1

Fi
n

(1)

Fi =

{
1 if max_pigs = Ci

0 otherwise
(2)

ACCmanual_inspection =
n

∑
i=1

Mi
n

(3)

Mi =

{
1 if GTi = Ci
0 otherwise

(4)

4. Experimental Results
4.1. Experimental Setup and Resources for the Experiment

For the purpose of comparison, individual pig detection experiments were conducted
in the following environment: Intel Core i5-9400F 2.90 GHz (Intel, Santa Clara, CA, USA),
NVIDIA GeForce RTX2080 Ti (NVIDIA, Santa Clara, CA, USA), 32 GB RAM, Ubuntu
16.04.2 LTS (Canonical Ltd., London, UK), and OpenCV 3.4 [36] for image processing.
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The experiment was conducted in a 3.2 m tall, 2.0 m wide, and 4.9 m long pigsty
at Chungbuk National University, and a low-cost Intel RealSense camera (D435 model,
Intel, Santa Clara, CA, USA) [37] was installed on the ceiling to obtain the images. A total
of nine pigs (Duroc × Landrace × Yorkshire) were raised in a pig pen, and the average
initial body weight of each pig was 92.5 ± 5.9) kg. Color, infrared, and depth images were
acquired using a low-cost camera installed on the ceiling, and each image had a resolution
of 1280 × 720 at 30 frames per second (fps). Figure 5 shows a pig pen with a camera
installed on the ceiling. To exclude the unnecessary region of the pig pen, the region of
interest (RoI) was set to 608 × 288.
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From the camera, 2904 training images were acquired, and image preprocessing A
and B were applied with the basic image augmentation method (horizontal flip, vertical
flip, horizontal/vertical flip). Following this, models A and B were trained (0.0001 for
learning rate, 0.0005 for decay, 0.9 for momentum, Mish as the activation function, default
anchor parameter, and 6000 for the iterations) to obtain EnsemblePigDet. Then, 216,000 test
images were extracted from surveillance videos between 8:30 and 10:30 in the morning,
when the pigs were most active. From these, 13,997 key frames and 4193 hard frames were
extracted and verified as being exposed to strong sunlight. The reported accuracy was the
average of the five-fold cross-validation. The proposed method was implemented based on
YOLOv4 [31]. With the COCO data set [32], YOLOv4 exhibited a better tradeoff between
speed and accuracy than other detectors, and thus YOLOv4 was selected as the baseline.

4.2. Evaluation of Detection Performance

Table 3 shows the experimental results with YOLOv4 as baseline, image augmentation
applied with the single model, and ensemble model after applying proposed image prepro-
cessing A and image preprocessing B. Detection accuracy metric ACCmax_pigs symbolizes
the accuracy when the number of detected boxes is not nine, though the number of pigs
that can be detected within a pen is nine in total (max_pigs = 9). If a falsely detected box
and an omitted box are present in a frame, the frame is not considered as an error frame.
The frame is considered to be an error frame when the pigs are completely occluded and
only eight pigs are visually identified. These are the current limitations of the proposed
error frame metric, but the general accuracy of the large number of test data, without visual
verification, holds special significance. As shown in Table 3, ACCmax_pigs shows better
results for the proposed single model using image preprocessing than the baseline YOLOv4,
and the ensemble model that uses the model ensemble method shows the best result. In
addition, the miniscule difference between the accuracy of the total frame and the key
frame is verified. Using the proposed method, the key frame is only 7% of the total frame,
but a conclusion similar to the experimental result on the total frame can be drawn on
the key frame, verifying the possibility of effectively reducing the total number of frames.
Hence, instead of monitoring all the frames, the extracted key frames from a pig pen can be
monitored to reduce the process time and overhead time in terms of the model ensemble
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process time using a two-model method. In addition, a movement-based key frame is
decided dynamically; however, as only 7% of all frames captured in the morning show
pigs with significant movement, the process time in the ensemble model of the keyframe is
practically faster than the process time in a single model of the entire frame.

Table 3. Comparison of accuracy ACCmax_pigs for 216,000 raw video frames and 13,997 key frames with overexposed
regions (obtained during 8:30 a.m. to 10:30 a.m.).

Model
# Error Frames with max_pigs

(ACCmax_pigs)

216,000 Raw Video Frames 13,997 Key Frames

Single Model
Baseline YOLOv4 43,344 (79.93%) 3976 (71.59%)

Model A (proposed) 20,248 (90.63%) 1619 (88.43%)
Model B (proposed) 21,092 (90.24%) 1844 (86.83%)

Ensemble Model EnsemblePigDet (proposed) 12,244 (94.33%) 621 (95.56%)

In addition, experiments were commenced to validate the suppression effect of the
decreasing accuracy problem based on the pigs exposed to sunlight, proposed in this study.
Table 4 shows the results of the experiments on extracted hard frames that contain pigs
exposed to strong sunlight. When compared to Table 4, the overall accuracy decreased in
all of the models when exposed to strong sunlight, as shown in Table 4, but the decrease
in accuracy is relatively small for the proposed single model and the ensemble model,
compared to baseline YOLOv4. Therefore, models trained on data applied with image
preprocessing A and image preprocessing B are shown to have a significant effect in the
presence of strong sunlight, which can be increased through the model ensemble.

Table 4. Comparison of accuracy ACCmax_pigs for 13,997 key frames and 4193 hard frames with overexposed regions
(obtained during 8:30 a.m. to 10:30 a.m.).

Model
# Error Frames with max_pigs

(ACCmax_pigs)

13,997 Key Frames 4193 Hard Frames

Single Model
Baseline YOLOv4 3976 (71.59%) 1906 (54.54%)

Model A (proposed) 1619 (88.43%) 848 (79.78%)
Model B (proposed) 1844 (86.83%) 778 (81.45%)

Ensemble Model EnsemblePigDet (proposed) 621 (95.56%) 279 (93.34%)

However, even if the number of detected boxes and max_pigs are the same, the
detected boxes have the possibility of being falsely detected boxes. Therefore, validity and
accuracy of the results cannot be confirmed with the number of detections alone. Figure 6a
represents the case where the number of detection boxes and max_pigs is equivalent
but is considered as an error frame because of the falsely detected box. Furthermore,
while the maximum number of pigs that could be detected was nine in the video used in
this experiment, there were cases where the number of pigs was not nine, due to severe
occlusion. Figure 6b shows the case where a frame would be considered as a correct
frame as the number of detection boxes was equivalent to the actual number of pigs when
visually checked, even though the number of detection boxes and max_pigs was different.
Therefore, the actual detection result was checked visually using the extracted key frame
and hard frame. In addition, a total of 864,000 images have to be checked visually to
acquire ACCmanual_inspection for four models, with 216,000 images each, when test frames
are visually checked, instead of a key frame or hard frame. Therefore, a visual test is
performed on the key frame and hard frame, instead of the total frame. If the ACCmax_pigs
value and ACCmanual_inspection value on the keyframe and hard frame are not significantly
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different, it can be inferred that the ACCmax_pigs value and ACCmanual_inspection value on
216,000 total test frames also does not have a significant difference.
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false-negative error based on ground-truth (although it is regarded as a “correct” frame based on ACCmax_pigs); (b) a
“correct” frame with no false positive/negative error based on ground-truth (although it is regarded as an “error” frame
based on ACCmax_pigs).

Table 5 shows the result of actual counting with visual checking (hence,
ACCmanual_inspection), which is considerably similar to the counting result using the number
of boxes (ACCmax_pigs shown in Table 5). As explained in Figure 6, there are cases where
ACCmax_pigs does not consider a frame to be an error frame when it actually is and deems
a frame to be an error frame when it is not. Overall, ACCmax_pigs and ACCmanual_inspection
have similar results. Hence, if the test data are too large to waive box annotation for each
individual pig or pose difficulties in checking the frames visually, ACCmax_pigs is identified
as an actual performance metric to represent the detection accuracy of the deep learning
model when determining the number of pigs within a pig pen (max_pigs). In addition,
unlike the general detection accuracy metric, which is based on box annotation of individ-
ual pigs, AP (average precision)/AR (average recall), ACCmax_pigs and ACCmanual_inspection
consider a frame even with one error as an error frame (for example, eight pigs are correctly
detected, but if a pig is omitted, then the frame is considered to have an error). Thus, the
metrics display fewer numbers overall when compared to AP/AR.

Table 5. Comparison of accuracy ACCmanual_inspection for 13,997 key frames and 4193 hard frames
with overexposed regions (obtained during 8:30 a.m. to 10:30 a.m.).

Model
# Error Frames with Manual Inspection

(ACCmanual_inspection)

13,997 Key Frames 4193 Hard Frames

Single Model
Baseline YOLOv4 3889 (72.21%) 1866 (55.49%)

Model A (proposed) 1532 (89.05%) 808 (80.72%)
Model B (proposed) 1757 (87.44%) 738 (82.39%)

Ensemble Model EnsemblePigDet
(proposed) 649 (95.36%) 302 (92.79%)

To test the effect on image preprocessing and the model ensemble, a comparison
experiment was performed, and Table 6 shows the results. In a single model, as shown in
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Table 6, a trained model that included raw input showed higher accuracy than the trained
model that applied image preprocessing. In addition, training all of image preprocessing A,
image preprocessing B, and raw input together and dividing them into image preprocessing
A + raw input and image preprocessing B + raw input showed higher accuracy. In the case
of the model ensemble, the ensemble of two models with high accuracy on a single model
is shown to have the best accuracy.

Table 6. Comparison of accuracy ACCmax_pigs for 13,997 key frames with overexposed regions (obtained during 8:30 a.m.
to 10:30 a.m.) with different training data.

Proposed Models

# Error Frames with max_pigs

(ACCmax_pigs)

Test Data with Test Data with
Preprocessing A Preprocessing B

Single
Model

Training Data with Preprocessing A 4111 (70.06%) 13,997 (0.00%)

Training data with Preprocessing B 6391 (54.34%) 3287 (76.51%)

Training Data with Preprocessing A and
Preprocessing B 3741 (73.27%) 4198 (70.00%)

Training Data with Preprocessing A and Raw Input 1619 (88.43%)
10,743 (23.24%)Model A

Training Data with Preprocessing B and Raw Input 3881 (72.27%)
1844 (86.83%)

Model B

Training Data with Preprocessing A and
Preprocessing B and Raw Input 3185 (77.24%) 3891 (72.20%)

Ensemble Model

Training Data with Preprocessing A +
Preprocessing B 2498 (82.15%)

Training Data with Preprocessing A and Raw Input +
Preprocessing B and Raw Input

621 (95.56%)
EnsemblePigDet

Tables 7 and 8 show the combination results of Confidence1 and 2 and Threshold1 and
2 for 13,997 key frames. Table 7 shows the result of setting Confidence1 and Threshold1
conservatively and Confidence2 and Threshold2 aggressively. As the Confidence1 and 2
values increased, accuracy showed a decreasing trend. In addition, unrelated to the values
of Confidence1 and 2, the accuracy tended to decrease with the increase of the Threshold1
value. Table 8 shows the results of setting Confidence1 and Threshold1 aggressively and
Confidence2 and Threshold2 conservatively, exhibiting similar results to Table 7, where the
accuracy was shown to decrease as Confidence1 value increased. Nevertheless, unrelated
to the confidence value, the accuracy increased when Threshold1 and 2 values increased.
The overall accuracy was shown to increase when Confidence1 and Threshold1 were set
aggressively and Confidence2 and Threshold2 were set conservatively. When comparing
the ensemble model to the single model in Tables 7 and 8, the accuracy was shown to
increase. Therefore, based on the combination of confidence and threshold, the ensemble
model displays less accuracy than a single model.
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Table 7. Comparison of accuracy ACCmax_pigs for 13,997 key frames with overexposed regions (obtained during 8:30 a.m.
to 10:30 a.m.) with different ensemble parameters (case of Confidence1 and Threshold1 = conservative, Confidence2 and
Threshold2 = aggressive).

Proposed Ensemble Models # Error Frames with max_pigs
(ACCmax_pigs)

Confidence1 = 0.3 and
Confidence2 = 0.5

Threshold1 = 0.5 and Threshold2 = 0.3 956 (93.17%)
Threshold1 = 0.7 and Threshold2 = 0.3 1162 (91.70%)
Threshold1 = 0.7 and Threshold2 = 0.5 1077 (92.31%)

Confidence1 = 0.3 and
Confidence2 = 0.7

Threshold1 = 0.5 and Threshold2 = 0.3 1173 (91.62%)
Threshold1 = 0.7 and Threshold2 = 0.3 3092 (77.91%)
Threshold1 = 0.7 and Threshold2 = 0.5 3090 (77.92%)

Confidence1 = 0.5 and
Confidence2 = 0.7

Threshold1 = 0.5 and Threshold2 = 0.3 1753 (87.48%)
Threshold1 = 0.7 and Threshold2 = 0.3 2283 (83.69%)
Threshold1 = 0.7 and Threshold2 = 0.5 2271 (83.78%)

Table 8. Comparison of accuracy ACCmax_pigs for 13,997 key frames with overexposed regions (obtained during 8:30 a.m. to 10:30 a.m.)
with different ensemble parameters (case of Confidence1 and Threshold1 = aggressive, Confidence2 and Threshold2 = conservative).

Proposed Ensemble Models # Error Frames with max_pigs
(ACCmax_pigs)

Confidence1 = 0.5 and
Confidence2 = 0.3

Threshold1 = 0.3 and Threshold2 = 0.5 832 (94.06%)
Threshold1 = 0.3 and Threshold2 = 0.7 637 (95.45%)

Threshold1 = 0.5 and Threshold2 = 0.7 621 (95.56%)
EnsemblePigDet

Confidence1 = 0.7 and
Confidence2 = 0.3

Threshold1 = 0.3 and Threshold2 = 0.5 916 (93.46%)
Threshold1 = 0.3 and Threshold2 = 0.7 678 (95.16%)
Threshold1 = 0.5 and Threshold2 = 0.7 673 (95.19%)

Confidence1 = 0.7 and
Confidence2 = 0.5

Threshold1 = 0.3 and Threshold2 = 0.5 1312 (90.63%)
Threshold1 = 0.3 and Threshold2 = 0.7 1361 (90.28%)
Threshold1 = 0.5 and Threshold2 = 0.7 1353 (90.33%)

4.3. Discussion

Figure 7 shows the result of solving the failed detection cases for each model using the
model ensemble. In the case of Figure 7a, while false negatives were created that resulted
in missing pig detection in model B, all of the pigs within a frame detected through the
model ensemble are shown. In the case of Figure 7b, while false positives were created that
resulted in the detection of background as pig in model A, all of the pigs detected through
the model ensemble that merged with falsely detected boxes are shown. In addition,
Figure 7c shows false negatives and false positives created in model B, which were merged
using a model ensemble that correctly detected all pigs within a frame. Hence, even if
falsely detected boxes were created from each model, enhancing the detection result of
each model and further merging the result using the model ensemble was possible.

Although many errors with single models could be solved by the ensemble model,
some errors still remain. Figure 8 shows the result of not being able to detect all pigs within
a frame, even after applying the model ensemble. In the case of Figure 8a, while false
negatives occurred in models A and B, detection of all pigs within a frame failed even after
merging the result using the model ensemble because of false negatives occurring for the
same pig. In addition, as shown in Figure 8b, even though false negatives of model A and
false positives of model B were created, the detection boxes could not be merged. This
was because the false positives of model B were considered as pigs instead of the false
negatives of model A, even after applying the model ensemble, due to false positives with
high confidence scores. To summarize, the detection result might not merge correctly, even
after applying the model ensemble to the following cases: the same pigs not being detected,
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highest confidence score of false positive, and the previous case with the false negative and
false positive occurring at the same time.
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Although the proposed method could improve the accuracy of baseline YOLOv4
significantly for pig detection from unseen overexposed regions, the limitations of this
study are as follows:

• While research on unseen data that include strong sunlight in the same farm was
performed, the development of a more robust model (through semi-supervised or
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self-supervised learning) using unseen data from other farms might be necessary in
future research. In addition, the remaining errors with each key frame could be solved
by exploiting the temporal information among the key frames; thus, this issue could
be addressed in future research.

• As shown in Table 9, the accuracy improvement of EnsemblePigDet was strongly de-
pendent on the accuracy of the baseline model used. Because all the 13,997 key frames
were considered as difficult images due to overexposed regions, ACCmax_pigs of the
light-weight model was significantly degraded. Note that EmbeddedPigDet [26] mod-
ified TinyYOLOv2 for embedded board implementations, and 13,962 key frames (from
13,997 total key frames) typically produced one or two errors (i.e., missing and/or
false pig errors) in each keyframe with EmbeddedPigDet. That is, EmbeddedPigDet
targeted for embedded board implementations cannot be used for a hard scenario
including strong sunlight, and the accuracy improvement of EnsemblePigDet based
on EmbeddedPigDet was limited. Ensemble techniques for light-weight baseline
models need to be studied further.

• In this study, even though fast and accurate YOLOv4 was applied, the execution
time of the ensemble model (i.e., the total time on a PC for processing one input
image was 29.84 ms, with 5.22 ms for two preprocessing executions, 24.24 ms for two
YOLOv4 executions, and 0.38 msec for one postprocessing execution) was slower
than those of single models. However, if detection was applied to key frames that
captured movements through pig pen monitoring using the proposed method, an
average of 20-fold (extracting 13,997 key frames of 216,000 frames using the key frame
extraction method) reduction of computation complexity was verified. Therefore, with
the RTX2080 Ti GPU, the detection speed of the video composed of key frames was 17
times faster than that of the raw video (i.e., 7 min were required for processing 13,997
key frames obtained from the two-hour raw video); thus, the proposed method with
key frames could be executed in real time even on an embedded board.

Table 9. Comparison of performance for 13,997 key frames with overexposed regions (obtained during 8:30 a.m. to
10:30 a.m.).

Model

# Error Frames with
max_pigs Execution Time

(ACCmax_pigs) PC Embedded Board

(RTX2080Ti) (Xavier NX [38])

YOLOv4
[31]

Baseline 3976 (71.59%)
168 s 2661 s

≈3 min ≈44 min

EnsemblePigDet
621 (95.56%)

417 s 5427 s
(proposed) ≈7 min ≈90 min

TinyYOLOv4
[31]

Baseline 4886 (65.09%)
120 s 379 s

≈2 min ≈6 min

EnsemblePigDet
3652 (73.90%)

231 s 762 s
(proposed) † ≈4 min ≈13 min

Embedded
PigDet [26] *

Baseline 13,962 (0.25%)
42 s 265 s

≈1 min ≈5 min

EnsemblePigDet
13,469 (3.77%)

94 s 532 s
(proposed) † ≈2 min ≈9 min

†: For the purpose of comparison, we used the parameters determined with baseline YOLOv4. *: For the purpose of comparison, we
reimplemented EmbeddedPigDet [26] for grayscale images rather than composite images.
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5. Conclusions

Automated pig monitoring is important for smart pig farms; thus, several deep-
learning-based pig monitoring techniques have been proposed recently. In applying
automated pig monitoring techniques to real pig farms, however, practical issues such as
detecting pigs from overexposed regions, caused by strong sunlight through a window,
should be considered. Another practical issue in applying deep-learning-based techniques
to a specific pig monitoring application is the annotation cost for pig data.

In this study, a method for managing these two practical issues is proposed. Using an-
notated data obtained from training images without such overexposed regions, augmented
data were generated to reduce the effect of the overexposed condition. Then, YOLOv4 was
trained with the annotated as well as augmented data. The test results from two YOLOv4
models were combined in a bounding box level to further improve the detection accuracy.
Finally, accuracy metrics were proposed for pig detection in a closed pig pen to evaluate its
accuracy with no box-level annotation.

The experimental results with 216,000 “large-scale unseen” test data with overexposed
regions in the same pig pen showed that the proposed ensemble method could significantly
improve the detection accuracy to 94% from 79% of the baseline of YOLOv4. In addition,
the accuracy for 216,000 raw video frames was consistent with that of 13,997 key frames,
and the accuracy for 4193 hard frames could provide the lower bound of the accuracy for
13,997 key frames. One limitation of the proposed method is the increased execution time.
Although the proposed method with key frame extraction could be executed in real time
(i.e., 2 h test data could be processed without any delay) even on an embedded board, a
method for reducing the increased execution time needs to be studied further.
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