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Abstract: The applications of knowledge graph have received much attention in the field of artificial
intelligence. The quality of knowledge graphs is, however, often influenced by missing facts. To
predict the missing facts, various solid transformation based models have been proposed by mapping
knowledge graphs into low dimensional spaces. However, most of the existing transformation based
approaches ignore that there are multiple relations between two entities, which is common in the
real world. In order to address this challenge, we propose a novel approach called DualQuatE that
maps entities and relations into a dual quaternion space. Specifically, entities are represented by
pure quaternions and relations are modeled based on the combination of rotation and translation
from head to tail entities. After that we utilize interactions of different translations and rotations to
distinguish various relations between head and tail entities. Experimental results exhibit that the
performance of DualQuatE is competitive compared to the existing state-of-the-art models.

Keywords: knowledge graph embedding; link prediction; artificial intelligence

1. Introduction

Knowledge graphs, which represent knowledge from real world applications, contain
abundant facts. In knowledge graphs, each fact is represented by a triple (4, r, t) which indi-
cates that the relation r between the head entity /1 and tail entity t. Knowledge graphs have
been applied to various tasks such as explainable recommendation system [1], question
answering [2] and prediction of future research collaborations [3].

Predicting missing facts (i.e., link prediction) is a fundamental task in knowledge
graph research. Various models aiming at embedding entities and relations into low-
dimension spaces have been proposed. For example, TransE [4] learned the embeddings of
entities and relations by transforming head entity to tail entity according to the relation;
RotatE [5] and QuatE [6] learned the embeddings of entities and relations by considering
relations as rotations from head entities to tail entities. However, existing transformation
based models fail to capture multiple relations between head and tail entities. For example,
as shown in Figure 1, David Lynch is the director, the creator and an actor in the film
Mulholland Drive, i.e., there are three relations: directed, created and actedIn between
David Lynch and Mulholland Drive. These relations between head entity David Lynch and
tail entity Mulholland Drive have no semantic connections with each other, which should
be represented by spatially dispersed embeddings. Most existing transformation based
models, however, assume that there is only one relation between each pair of head and tail
entities. For instance, for each triple (h,r, t), their corresponding embeddings are assumed
to be satisfied with & 4 r = f in TransE, which indicates, for (k,r1,t), (h,1r2,t), and (h, 13, 1),
the embeddings of 11, ry, 13 are similar, as shown in Figure 2c (i.e, 11 = 1, = r3). To
overcome this challenge, we propose a novel approach that considers multiple relations
between head and tail entities in knowledge graph.
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Figure 1. Visualization of partial knowledge graph in YAGO3-10. The blue relations indicate that
there can be multiple relations between two entities.

(b) relations (c) TransE (d) RotatE

Figure 2. Geometrical significance of DualQuatE and multiple relations between the entities. (a) denotes the interaction of

rotation and translation from the head entity & to the tail entity t. my represents the rotation of the relation, n denotes the

translation of the relation. (b) shows how to express multiple relations between the head entity & and the tail entity ¢ for

DualQuatE. (¢,d) demonstrate that TransE and RotatE fail to model multiple relations.

In this paper, we propose a model called DualQuatE which utilizes the various combi-
nations of distinct rotations and translations to represent multiple relations between head
and tail entities. Based on this, easily to think of RotatE combined with TransE in complex
space and real space. However, it is hard to find a uniform mathematical expression
to convey their combination. Therefore, we propose DualQuatE which embeds entities
and relations into dual quaternion space to combine rotation and translation. The dual
quaternion consists of real part and dual part. More concretely, we embed entities with
pure quaternions vectors in three-dimensional space to represent entity embeddings. To
distinguish various relations between head entity / and tail entity ¢, we design a score
function to utilize dual quaternion Hamilton product to model relations as interaction of
rotation and translation. We utilize distinct interactions of rotations and translations to
represent various relations between head and tail entities. Compared with RotatE and
TransE in two-dimensional space, the dual quaternions space is eight-dimensional with
six real degrees of freedom, three for translation and three for rotation; we can explore
the interaction of rotation and translation with more free degrees in higher dimensions.
Summarized in Table 1, our model has rich expression abilities of relations (i.e., relation
patterns and multiple relations).

To conclude, the contributions of our proposed model are listed as follows:

*  Weintroduce dual quaternions to knowledge graph embeddings.

*  We propose a novel transformation based model DualQuatE to overcome the challenge
of multiple relations between two entities.

¢ Our experiments denote that DualQuatE is effective compared to the existing state-of-
the-art models.
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Table 1. The ability of expressing relation patterns and multiple relations between head and tail entities.

Model  Symmetry Antisymmetry Inversion Composition Multiple Relations

TransE
RotatE
HAKE [7]

DistMult [8]
ComplEx [9]
QuatE

DualQuatE

NENENENENENEN
N RN ENENEN
NENE PN
== x[aas

NESNNEE

The rest paper is organized as follows. In Section 2, we introduce the related work.
Section 3 presents prerequisite knowledge about dual quaternions. In Section 4, we describe
our model. We present the results of experiments and make analysis and discussions in
Section 5. In Section 6, we introduce the conclusion of this paper and future work.

2. Related Work

To gain high-quality knowledge graphs, approaches which utilize knowledge graph
embedding to predict missing facts have been proposed recently. These methods fall
into two broad categories in [10]: transformation based models and semantic matching
models. Specifically, transformation based models transform head entity to tail entity by
relations, while semantic matching models match entities and relations semantics in latent
spaces. Compared to transformation based models, semantic matching models suffer from
poor interpretability.

Transformation based models usually embed entities and relations into vector space
and model the relation as a transformation from head entity embeddings to tail entity
embeddings. One of the most representative is TransE which mapped entities and relations
to the same space R, For each triple (h,r,t), entity embeddings h, t and relation embedding
r hold h +r = t. Then a series of extensions based on TransE are presented to improve
accuracy and interpretability. For instance, TransR [11] introduced relations-specific spaces.
TransR modeled relations and entities into different spaces following the idea that TransE
can only express 1-to-1 relations. RotatE mapped embeddings into complex space which
focused on expressing relation patterns. HAKE [7] utilized the polar coordinate system to
capture semantic hierarchies in the knowledge graphs.

Semantic matching models that match latent semantics of entities and relations can
be divided into two categories: bilinear models and neural network based models. Bi-
linear models include DistMult [8], HolE [12], SimplE [9], ComplEx [13] and QuatE and
DihEdral [14]. DistMult represented each entity as a vector and each relation as a diag-
onal matrix. HolE matched latent semantics of entities by circular correlation operation
and then the compositional vector interacted with relations latter. ComplEx, mapping
knowledge graph embedding into complex space, leveraged Hermitian product to capture
latent semantics of entities and relations which could express antisymmetry relation pat-
tern. QuatE, extending knowledge graph embedding from complex space to quaternion
space, modeled each relation as rotation in four-dimensional space with more degree of
freedom. Compared with ComplEx, QuatE could express the main relation patterns except
composition. For each entity, SimplE proposed two embeddings and each of them learned
latent semantics dependently. DihEdral mapped relations into dihedral group to capture
composition relations. Neural network based models including ConvE [15], R-GCNs [16]
and InteractE [17] are proposed recently. ConvE, R-GCNs introduced convolutional net-
work and graph convolutional networks to knowledge graph embedding respectively.
Compared with ConvE, InteractE introduced the feature permutation, “checkered” feature
reshaping and circular convolution to increase interaction.

Recently, some models introduced hyperbolic space to knowledge graph embed-
dings. MuRP [18] represented knowledge graph in Poincaré ball of hyperbolic space.
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Chami et al. [19] attempted to capture hierarchical and logical patterns in hyperbolic space.
Compared to hyperbolic space based models which focused on semantic hierarchies in
knowledge graphs, DualQuatE try to overcome overcome the challenge of multiple relations
between two entities and relation patterns.

Both DualQuatE and QuatE use quaternion to embed knowledge graphs. However,

those are three different models. The main differences between DualQuatE and QuatE are
as follows:

DualQuatE, a transformation based model, measures score of triples by the distance
between two entities. QuatE which is a semantic matching model measured the latent
matching semantics of entities and relations.

The purpose of the model is different. DualQuatE aims to address the challenge of hav-
ing multiple relations between two entities. QuatE aims to utilize quaterion Hamilton
product to encourage a more compact interaction between entities and relations.

The geometric meaning is different. QuatE embeds entities and relations with quateri-
ons to model relations as rotations. Our model firstly attempts to represent entities
with pure quaternions and models relations as interaction of translation and rotation.

. Preliminaries

In this part, we introduce several concepts used in this paper.

Quaternion: Quaternion [20], is a number system that extends complex numbers
to four-dimensional numbers. Generally, a quaternion is a number of the form
q = a+ bi+ cj + dk, where 4, b, c, d are real numbers and i, j, k satisfy that iZ = j2 =
K? = ijk = —1.

Quaternion conjugate: The definition of conjugate to a quaternion q is q* =a —bi —
¢ —dk.

Quaternion Multiplication: Multiplication of two quaternions p = pp + p1i + p2j +
psk and q = g + g1i + q2j + g3k is defined by:

Pq = (Poqo — P191 — p292 — P343)

+ (Poq1 + p140 + p2q3 — p3q2)i
+ (poq2 — p193 + p290 + p3q1)j
+( )

J
poqs + p192 — p2q1 + p3qo)k

M

Rotation with quaternions in three-dimensional space: The point v’ is rotated by
the point v along the unit vector u (i.e., rotation axis), which can use quaternion
multiplication to represent. We define v and v’ as pure quaternion, i.e., quaternions

with real part being zero, m = cos g + usin % is a unit quaternion, then

v = mvm* )

Dual quaternion: Dual quaterion [21] is an eight-dimensional real algebra to combine
with quaternions. Formally, a dual quaternion J can be represented by § = p + €q,
where € is a dual unit with €2 = 0, both the real part p and the dual part q are
quaternions. Therefore, a dual quaternion J is of the form § = pg + p1i + p2j + psk +
€(go + i+ q2j + q3k).

Dual quaternion conjugate: The conjugate of the dual quaternion é = p + eq is de-
fined as: ¢6° = p* — eq®, which can be represented by an 8-tuple:
6% = (po, —p1, —P2, —P3, —q0, 91,92, 93)-

Dual Quaternion Multiplication: Dual Quaternion Hamilton product between §; =
p1+€qp and 6, = py + €qp is defined as follows:

61 ® 6y = p1p2 + €(p192 + q1p2) 3)
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¢ Unit Dual Quaternion: A dual quaternion § = p + €q is a unit dual quaternion, if
0 ® 0* =1, namely, ¢ satisfies the following conditions:

i+t tr=1,

4)
poqo + p191 + p2g2 + p3gs =0

where 6* = p* 4+ eq*. In order to simplify the calculation process, we use another
effective form to represent unit dual quaternion which defines as follows:

€
d=m+ ymn (5)
where m = cos% + usin% and n is a pure quaterion. We prove that J is a unit
dual quaternion:

d®* = <m+ %nm) ® (m* + g(nm)*)

=mm* + g(mm*n* +nmm”)

:1+§(n*—0—n) ©)
=1+ g(—n+n)

=1

We can easily verify mm* = 1, as shown below:

0 0 0
* _ 1 _ - imn —
mm —(c052+u51n2)(c052 usm2)

_ T R .0 6 . 6. 8. 00 (7)
= (cos 5 + u; sm21+”1 sin 5 +uk51n2k)(c052 Ui sin 51 — u;sin 7 uk51n2k)
=1

¢  Combination of Rotation and Translation: We define a point in the three-dimensional
space as a pure quaterion v and let n be the translation. The point v under the rotation
6 followed by the translation n becomes the point v'. It is straightforward to utilize
unit dual quaternion multiplication to represent the transformation from v to v/, as
shown below:

5 (1+ev)®06° = (m+ gnm> ®(1+ev)® (m* - g(nm)*)
= (m + Enm—|— emv) ® (m* — fm*n*)
2
=mm"* + e(;(nmm* —mm*n*) + mvm*) ®
=1+ ¢e(mvm* +n)
= (1+ev)

4. Our DualQuatE Model

In this section, we introduce our model DualQuatE which maps entities and relations
to dual quaternion space, and two variations of DualQuatE, namely DualQuatE-1 and
DualQuatE-2.

We denote a knowledge graph by G, a set of entities by £ and a set of relations by R.
A knowledge graph G is composed of a set of facts, each of which can be represented by
(h,r,t), where h € £ is a head entity, t € £ is a tail entity, and r € R is a relation between
and t. We denote a set of facts that are true by O, and a set of facts that are false by Q™.
Given a knowledge graph G, we aim to predict missing facts (i.e., link prediction) in G.
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4.1. Multiple Relations between the Entities

To address the challenge of having multiple relations between head and tail entities,
we embed knowledge graph into dual quaternion space. h,r,t denote vector of entity
embeddings and relation embeddings, each element of entity embeddings #; or t; is pure
quaternion and every dimension of relation embeddings r; is unit dual quaternion. We
expect to model relation embeddings r as interaction of rotation and translation from
head entity embeddings h to tail entity embeddings t as shown in Figure 2a. Specifically,
each true triple (h,r,t) satisfies:

r® (14+eh)®@r° = (1+et) 9)

where each dimension of r is a unit dual quaterinon satisfying Formula (4). We define
a quaternion m = Cosg + using to represent a rotation about pure unit quaternion u
through 6 and a pure quaternion n = n;i + nj + nzk. Furthermore, we define a unit dual
quaternion by:

r=m-+ gnm (10)

With Formula (10), we can deduce the transformation of DualQuatE in Formula (9):

r®(l+eh)®r®=1+¢(mhm* +n)

= (1+et) an

where the geometric meaning of mhm* is shown in Formula (2). As shown above,

DualQuatE transforms head entity / to tail entity t by relation » which combines rotation

(i.e., m) and translation (i.e., n). Unlike previous models learned similar representations

of relations 1,79, 73 shown in Figure 2¢,d, our model learns combinations of different

translations and rotations to represent various relations between head and tail entities.
We define score function by:

fr(ht) = —||r@ (1 +eh) @1° — (1 +€t)|]| (12)

where || - || represent L, norm of a vector. With the score function we want head entity to
be as close to tail entity as possible after the transformation of the relation.

4.2. Loss Function

We employ self-adversarial negative sampling [5] method to generate corrupt samples.
We define the probability distribution of negative samples by:

expafy (I}, t)
 Liexpafr(ht)

where « is sampling temperature. Combining with self-adversarial negative sampling, we
define loss function by:

p(Hj, v 1{ (i, ris 1) }) (13)

L=—loga(y+ f(ht))

n
=Y p(h,r ) log o (— fy (I, 1)) = )
i=1

(14)

where 7 is fixed margin. We define our algorithm as shown in Algorithm 1.
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Algorithm 1 DualQuatE.

Input: Entity embeddings £ and relation embeddings R. hyperparameters including
margin -y, martrix dim k, negative sample size n.

1: h, t < uniform (—%2'0, %20) foreachh,t € £

r < uniform (—%2'0, %20) foreachr e R
repeat
Tpos — uniform random sampling (4,7, t)
(W', r,t') < generate n negative samples for (h, 7, t)
T = Tpos U{(W,1,t')}
compute each (I',r,t') weight: p(h},r, t}|{(h§, ri, th)})
update relation embeddings r and entity embeddings h, t:

hort=hrt— Vo[~ logo(y+ fr(h 1) — L. p(h!,r, /) logo(~Flh}, ) — )
i=1

8: until

4.3. Properties of DualQuatE

In this part we describe the relation patterns and introduce how DualQuatE expresses
those patterns. Recently, learning relation patterns including symmetry/antisymmetry,
inversion and composition have been realized to the key of link prediction task. Our model
DualQuatE can easily explain the relation patterns of the learned relation embeddings and
proof of relation patterns can be found in the Appendix A.

Inversion: If a relation ¥ € R is the inverse to a relation ¥ € R, then we can infer
(h,r,t) € QT &< (t,7/,h) € Q. For example, the relation has_part is inverse to the relation
part_of. To r and ', we infer that (m’m)h(m’m)* + m’nm’ + n’ = h, which denotes the
composition of component m and m’ have no rotation (i.e., (m'm)h(m’m)* = h) and
the translation n which is rotated by m’ is the opposite number of the translation n’ (i.e.,
m'nm’ +n’ = 0).

Symmetry: A relation r € R is symmetric, if (h,7,t) € Q" & (t,r,h) € QT holds.
For instance, relations similar_to and verb_group from the dataset WN18 are symmetric.
If a relation is symmetric, we reason that (mm)h(mm)* + mnm* + n = h, which means
no rotation of the self-composition of component m (i.e., (mm)h(mm)* = h) and no
translation of component n (i.e., mnm* +n = 0).

Antisymmetry: A relation r € R is antisymmetric, if (h,7,t) € QF = (h,r,t) € Q7,
which satisfies (mm)h(mm)* + mnm* + n # h. For example, the relation part_of.

Composition: A relation r3 is composed by the relation rq and r,, which can be de-
noted by r3 = r1 ®rp if (h,1,s) € QT A (s,1,t) = (t,1,h) € Q. For example, relation un-
cle_of can be composited by brother_of and father_of such as if (Alva, brother_of, Aaron),
(Aaron, father_of, Abel) are true triples, we can reason (Alva, uncle_of, Abel) is a true
fact in the real world. Relation 73 can be composited by relation r; and r,; they can be
represented by (mpym;)h(mom;)* + monymj + ny, = mzhmj + n3, which deduces that n3
is equal to the sum of translation n; and translation n; which is rotated by the rotation mp
(i.e., mynimj + ny = n3).

4.4. Variations

We introduce extensions of DualQuatE. DualQuatE is a transformation based model,
which combines rotation and translation. To compare the effects of interaction of rotation
and translation, we compare DualQuatE with DualQuatE-1 which models relations as
rotation in three-dimensional space. Furthermore, we propose DualQuatE-2 to explore the
role of scaling in the rotation.

DualQuatE-1: We devise DualQuatE-1 which embeds entities and relations to quater-
nion space. Specifically, we represent entity embeddings h,t with pure quaternions
and relation embeddings r with quaternions. We design a score function as follows



Appl. Sci. 2021, 11,5572

8 of 15

fr(h,t) = —||rhr* — t|| to model the relation as rotation in three-dimensional space.
Namely, for each fact satisfies: rhr* = t.

DualQuatE-2: To explore the effect of scaling in knowledge graph embeddings, we
present DualQuatE-2 to introduce scaling. DualQuatE-2 maps knowledge graph embed-
dings to four-dimensional space. Especially, we represent entities and relations with
quaternions where relation embeddings are not unit quaternions. We define score func-
tion f;(h,t) = —||hr — t|| meaning relation transform head entity to tail entity combining
rotation and scaling.

4.5. Connection to TransE and RotatE

Compared with RotatE: RotatE embedded entity embeddings h, t and relation em-
beddings r into the complex space. RotatE utilized score function —||h o r — t|| to calculate
the probability of each triple, where r; is unit complex cos 6 + isin 6. DualQuatE can be
transformed to RotatE by fixing rotation plane and removing translation variables. For
instance, we can construct relation embeddings by Formula (10) in xoy plane, where u = k
andn = 0 (ie, r = cosg + sin %i) and embed entities with corresponding forms: h or
t = ai + bj.

Compared with TransE: TransE modeled relation as translation that embedded entity
embeddings h, t and relation embeddings r to vector space. To express TransE, we can
set § = 0 (i.e., m = 0) in relation embeddings to ignore the rotation. In other words, the
relation embedddings in DualQuatE can be expressed as r = 1 + §n.

5. Experiments
5.1. Experiment Settings
5.1.1. Datasets

We evaluated our approach on widely used datasets: WN18, FB15k, WN18RR, FB15k-
237 and YAGO3-10, details of which are shown in Table 2. WN18 [4] is sampled from
WordNet (https://wordnet.princeton.edu/ accessed on 11 June 2021), which is a knowl-
edge graph about lexical relations of words. WN18RR [15] is a subset of WN18 with inverse
relations removed. FB15k [4] is a large database with structured general human knowledge.
FB15k-237 [22] is a subset of FB15k with reverse relations removed. YAGO3-10 [23] is a sub-
set of YAGO3 which extends YAGO (https:/ /io.datascience-paris-saclay.fr/dataset/ YAGO
accessed on 11 June 2021) in different languages. Tuples in YAGO3-10 mainly come from
Wikipedia describing individuals, e.g., who lives in which city.

Table 2. Specific information of the experimental datasets. #E and #R denote entities and relations
number in datasets, #TR, #V and #TE denote the size of training set, valid set and test set.

Dataset #E #R #TR #V #TE
FB15k 14,951 1345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
WNS8 40,943 18 141,442 5000 5000
WNSRR 40,943 11 86,835 3034 3134
YOGAS3-10 123,182 37 1,079,040 5000 5000

5.1.2. Evaluation Metric

Similar to [6], we used three metrics to measure our approach, i.e., Mean Rank (MR),
Mean Reciprocal Rank (MRR), and Hit@n. To calculate those metrices, we first replace
by all entities i’ € € for each testing triplet (h,7,t) € T (where T is a set of testing triplets)
and compute score f; (', t) for each triple (1, r, t). After that we sort i’ according to score
fr(H', t) ascendingly and get the rank of the original entity &, denoted by IC(h). Note that
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IC(h) is the “rank” of h instead of the score of , e.g., if the score of h the smallest, C(h) is 1.
We can calculate MR as shown below:

Ynrper K(h)

MR =
|T|

which means MR is an average of ranks of all the original entities in the testing triplets.
Likewise, MRR can be calculated as follows:

_ Y (I t)ET ﬁ

MRR
|T|

which indicates MRR is an average of inverse ranks of all the original entities in the testing
triplets. Hit@n suggests the proportion of original entities in the top # entities, which can
be calculated by:
Y(nr et one(K(h) <n)

|T|
where one(K(h) <n)is1if K(h) < n,and 0if K(h) > n. We tested different values n =1,
3, 10 in the evaluation, similar to the setting used in reference [6].

Hit@n =

5.1.3. Baselines

We compared our model with several state-of-the-art baselines. For transformation
based models, we compared our model to TransE [4], TorusE [24], RotatE [5] and HAKE [7];
for bilinear models, we compared our model to ComplEx [13], HolE [12], SimplE [9], DihE-
dral [14] and QuatE [6] (to make the comparison fair, we use the version of QuatE without
type constraints on the common link prediction datasets considering the requirement of
type constraints is too strong).

5.1.4. Implementation Details

We utilized Pytorch (https:/ /pytorch.org accessed on 11 June 2021) to implement our
model (https:/ /github.com/gaoliming123/DualQuatE accessed on 11 June 2021) and its vari-
ations DualQuatE-1 and DualQuatE-2. We tuned the hyperparameters as follows:the em-
bedding dimension k € {100,200,300,500}, the learning rate € {0.0001,0.0003,0.0005, 0.0008},
the ratio of negative sample n € {32, 64,128}, the margin y € {3,6,9,12,15,18,24} and the
self-adversarial sampling temperature & € {0.5,1.0}. We adopt k = 100 for WN18RR and
WN18, k = 200 for FB15k-237 and YAGO3-10 and k = 500 for FB15k.

5.2. Results

Tables 3-5 show the experimental results on four datasets. The performance of
DualQuatE and its variations represent comparability to state-of-the-art models. For
YAGOB3-10, the link prediction results are shown in Table 3, from which we can see that
DualQuatE is competitive compared to most previous knowledge graph embedding mod-
els, especially in metric Hit@10. The result of YAGO3-10 tells us that the performance of
DualQuatE is better than DualQuatE-1, which indicates that modeling relations as the in-
teraction of rotation and translation with more degrees of freedom (as done by DualQuatE)
is indeed better than simply modeling relations as rotation (as done by DualQuatE-1).
Furthermore, the advanced results of DualQuatE-2 and DualQuatE inspire us to explore
the mixed effects of vector operations. Tables 4 and 5 indicate the effects of our models
on four common datasets: WN18RR, FB15k-237, WN18 and FB15k. We can find that our
models perform better on datasets WN18RR and FB15k-237; for WN18 and FB15k, metrics
are almost close to previous models and several metrics surpass the previous.
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Table 3. Link prediction on datasets YAGO3-10. # represents the results that came from (Toutanova
and Chen, 2015) and the others came from the original papers. The results with bold are the best and
the underlined ones are the second best results.

YAGO3-10

Model MR MRR Hit@1 Hit@3 Hit@10
DistMult & 5926 0.34 0.24 0.38 0.54
ComplEx & 6351 0.36 0.26 0.40 0.55
ConvE & 1671 0.44 0.35 0.49 0.62
RotatE 1767 0.495 0.402 0.550 0.670
InteractE 2375 0.541 0.462 - 0.687
HAKE - 0.545 0.462 0.596 0.694
DualQuatE-1 1636 0.477 0.377 0.534 0.672
DualQuatE-2 1889 0.503 0.411 0.557 0.676
DualQuatE 1210 0.534 0.445 0.591 0.695

Table 4. Link prediction on datasets FB15k-237 and WN18RR. & represents the results that came
from (Sun et al., 2019); the others are from the original papers. ] denotes the results of QuatE without
type constraints from the paper. The results in bold are the best and the underlined ones are the
second best results.

FB15k-237 WN18RR

Model MR MRR Hitel Hit@3 Hit@el0 MR MRR Hit@l Hit@3 Hit@10

TransE& 357 0.294 - - 0.465 3384 0.226 - - 0.501
ComplEx & 339 0247 0.158 0275 0428 5261 044 041 046 0.51
RotatE& 177 0.338 0.241 0.375 0.533 3340 0476 0428 0492 0.571
DihEdral - 032 023 0353 0.502 - 048 0452 0491 0.536
QuatE | 176 0311 0.221 0.342 0495 3472 0481 0436 0.500 0.564
InteractE 172 0.354 0.263 - 0.535 5202 0.463 0.430 - 0.528
HAKE - 0346 0.250 0.381 0.542 - 0497 0452 0.516 0.582

DualQuatE-1 173 0329 0230 0.368 0.530 2989 0463 0408 0484 0.571
DualQuatE-2 174 0.345 0.246 0.384 0.545 3324 0484 0437 0503 0.576
DualQuatE 171 0.342 0.245 0.381 0.535 2755 0.470 0415 0493 0.582

Table 5. Link prediction on datasets FB15k and WN18. & represents the results that came from (Sun
et al., 2019) and the others came from the original papers. | denotes the results of QuatE without
type constraints from the paper. The results with bold are the best and the underlined ones are the
second best results.

FB15k WN18

Model MR MRR Hit@l Hit@3 Hit@l0 MR MRR Hit@l Hit@3 Hit@10
TransE & - 0463 0297 0578 0.749 - 049 0113 0.888 0943
ComplEx - 0692 0599 0759 0.840 - 0941 0936 0945 0.947
HolE - 0524 0402 0613 0.739 - 0938 0930 0945 0.949
TorusE - 0733 0.674 0771 0.832 - 0619 0943 0950 0.954
SimplE - 0727 0.660 0.773 0.838 - 0942 0939 0944 0.947
RotatE & 40 0.797 0.746 0.830 0.884 309 0.949 0944 0952 0.959
DihEdral - 0733 0.641 0.803 0.877 - 0946 0942 0948 0952

QuatE | 41 0.770 0.700 0.821 0.878 388 0.949 0941 0.954 0.960

DualQuatE-1 31 0.751 0.659 0.825 0.884 241 0.947 0939 0952 0.959
DualQuatE-2 50 0.766 0.696 0.818 0.877 220 0.948 0942 0.953 0.961
DualQuatE 35 0.754 0.664 0.827 0.884 183 0.949 0.943 0.952 0.960
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5.3. Relation Embeddings

In this part we analyze the properties of DualQuatE learned for relations. DualQuatE
can distinguish multiple relations between head and tail entities, for example, as shown
in Figure 3. We compared our model with RotatE; Figure 3a,b display the difference of
the representation of relation actedIn and directed. Figure 3a shows that the relations
actedIn and directed are more similar where the gap between the two relations is clustered
around zero. For DualQuatE, the difference which is shown in Figure 3b is more dispersed.
Maybe the learned embeddings of our model are slightly concentrated around zero. We
speculate that the reason for this result is due to less relations in YAGO3-10, which causes
the diversity of relations between the entities to be more sparse. Figure 3d denotes the
histrograms of translation component of relation actedIn and directed. Compared with
the relation directed, the distribution of the relation actedIn is more decentralized. The
values of translation component of relation directed are concentrated around zero, while
the values of relation actedIn are more around 4-0.05. Namely, head entity which is rotated
by the rotation component of directed will be closer to tail entity. Figure 3c denotes that the
distribution of the embeddings of relations actedIn and directed is very similar.

30 — 20

15
20

10

10
5

0—0.2 -0.1 0.0 0.1 0.2 0—0.2 -0.1 0.0 0.1 0.2

(c) TransE (d) translation

Figure 3. Visualization of the multiple relations between the entities. (a) denotes the histrograms
of different between the actedln embeddings and directed embeddings of RotatE. (b) shows the
histrograms of the DualQuatE. (c) denotes the histrograms of actedIn and directed embeddings of
TransE. (d) displays the histrograms of translation embeddings of actedIn and directed of DualQuatE.

Limited by the length of the article, we visualize only some relation patterns in this
paper. Figure 4a shows that the self composition of rotation m is close to 0 or 27t. Figure 4b,c
show the rotation embeddings to antisymmetry relation has_part from dataset WN18. For
inversion relations r and #/, Figure 4d denotes the embeddings of rotation elements between
m and m’ which means the composition of m and m’ is 0 or 27t.
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Figure 4. Visualization of relation patterns represented by DualQuatE in rotation, where (a) denotes
the symmetry relation “similar_to” in rotation of mm, (b,c) are rotations of “has_part” and “part_of”,
and (d) exhibits the inversion effects, where “has_part” e “part_of” represents mm'.

5.4. Space and Time Complexity

In this part, we list space and time complexity of the different transformation based
models and bilinear models as shown Table 6. m and n denote number of entities and
relations. d is dimensions of entity or relation embeddings.

Table 6. Space and Time Complexity.

Method Space Complexity Time Complexity
TransE O(nd + md) O(d)
RotatE O(nd + md) O(d)
HAKE O(nd + md) O(d)

RESCAL O(nd + md?) O(d?)

HolE O(nd + md) O(dlogd)

ComplEx O(nd + md) O(d)
QuatE O(nd + md) O(d)

DualQuatE O(nd 4+ md) O(d)

6. Conclusions

In this paper, we propose a novel model, DualQuatE, for knowledge graph embedding,
which maps entities and relations to dual quaternion space. We present a new score function
to model each relation as interaction of rotation and translation, which addresses the
multiple relations between two entities. We demonstrate that our model is able to express
main relation patterns and outperforms state-of-the-art baselines. However, DualQuatE
does not consider temporal information and semantic hierarchies in knowledge graphs.
In the feature, we will investigate how to explore temporal information and semantic
hierarchies based on our model. It is also interesting to investigate the possibility of
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applying our DualQuatE model to learning representations of propositions for helping
learning action models [25-28] and recognizing plans [29-31] in planning community.
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Appendix A. Proof of Relation Patterns

symmetry: Relation r € R is symmetry, then both (h,7,t) and (t,7,h) € G. The following
equations will hold:
r® (1+eh)®@r° = (1+et)

Al
r® (1+et)@1° = (1+¢€h) 4D
Then we deduce that:
mhm* +n=t (A2)
mtm*+n=h (A3)
Bring Formula (5) into Formula (6), and then we can get:
m(mhm* +n)m*+n=h (Ad)

(mm)h(mm)* + mnm*+n=h

Inversion: Relation r € R is inversion, iff another relation ' € R exists and satisfies both
(h,r,t) and (t,7/,h) € G. Then the following equations will hold:

r® (1+eh)®@r® = (1+et)

Y ®(1+et) @1 = (1+¢h) (A5)

Then we deduce that:

mhm* +n=t (A6)

m'tm™* +n=h (A7)
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Bring Formula (10) into Formula (11), and then we can get:

m(mhm* +n)m” =h
/

A8
(m'm)h(m'm)* + m'nm’ +n’ =h (A8)

Composition: A relation r3 is the composition of relation r; and rp, which can be denoted

byr; =r @ 1.
mihmj +n; =s (A9)
mpsm; +ny =t (A10)
mgsmj; +n3 =t (A11)

Then we can get:

my(m;hmj)m; + ny = mzhmj + nj3 (A12)
(mpymy)h(mpm;)* + mynym* + n; = mzhmj + n3
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