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Featured Application: The proposed object detection framework aims to improve detection per-
formance for noisy SAR images, which is applicable for general object detection in SAR imagery:
recognition of militarily important targets such as ships and aircrafts or monitoring for abnormal
civilian events.

Abstract: Detecting objects in synthetic aperture radar (SAR) imagery has received much attention in
recent years since SAR can operate in all-weather and day-and-night conditions. Due to the prosperity
and development of convolutional neural networks (CNNs), many previous methodologies have
been proposed for SAR object detection. In spite of the advance, existing detection networks still
have limitations in boosting detection performance because of inherently noisy characteristics in
SAR imagery; hence, separate preprocessing step such as denoising (despeckling) is required before
utilizing the SAR images for deep learning. However, inappropriate denoising techniques might
cause detailed information loss and even proper denoising methods does not always guarantee
performance improvement. In this paper, we therefore propose a novel object detection framework
that combines unsupervised denoising network into traditional two-stage detection network and
leverages a strategy for fusing region proposals extracted from both raw SAR image and synthetically
denoised SAR image. Extensive experiments validate the effectiveness of our framework on our own
object detection datasets constructed with remote sensing images from TerraSAR-X and COSMO-
SkyMed satellites. Extensive experiments validate the effectiveness of our framework on our own
object detection datasets constructed with remote sensing images from TerraSAR-X and COSMO-
SkyMed satellites. The proposed framework shows better performances when we compared the
model with using only noisy SAR images and only denoised SAR images after despeckling under
multiple backbone networks.

Keywords: denoising; detection; SAR imagery; fusing region proposals

1. Introduction

Synthetic Aperture Radar (SAR) is a type of radar system used to reconstruct 2D or 3D
terrain and objects on the ground (or over oceans). The SAR system utilizes a technology to
synthesize a long virtual aperture through a coherent combination of the received signals
from objects. The synthesized aperture transmits pulses of microwave radiation, which
in turn has the effect of narrowing the effective beam width in an azimuth direction and
thus achieving high resolution. Combining return signals by an on-board radar antenna,
SAR overcomes the main limitations of traditional systems that the azimuth resolution is
determined by physical antenna size. Optical and infrared sensors are passive since they
detect objects by reflected light and emitted signals from the objects, respectively, while
the radars can actively transmit and receive radar waves, operating in all-weather and
day-and-night conditions.

Thanks to the useful characteristics available under all-weather conditions and also
during night-time, SAR images are especially applied to military reconnaissance as most
military operations take place at night in poor weather conditions. There is a variety of
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applications such as information and electronic warfare, target recognition of aircrafts that
maneuver irregularly, battlefield situational awareness, and development of aircrafts that
are hard for the other party to track with radar. In addition, it is necessary to study on
object detection using radar imagery for civilian applications (e.g., resources exploration,
environmental monitoring, etc.).

With the recent rapid development of deep learning, many deep convolutional neural
network (CNN)-based object detection approaches using SAR imagery have gained in-
creased attention. The successes of the deep detectors on SAR images facilitate a wide range
of civil and military applications, such as detection of ship [1–5], aircraft [6–9], destroyed
building [10], oceanic internal wave [11], oceanic eddy [12], oil spill [13], avalanche [14],
and trough [15]. For the further research purposes, several SAR object detection datasets
have also been released called AIR-SARShip-1.0 [16], SAR-Ship-Dataset [17], SAR ship
detection dataset (SSDD) [18], and HRSID [19].

SAR images are formed from a coherent sum of backscattered signal components
at the boundary of different media after pulsed transmissions of microwave radiation,
enabling to observe the interior of the targets otherwise invisible to the naked eye. However,
when obtaining the SAR images, if the emitted pulses are reflected from the boundary of
a target with uneven surface, then scattering and interference waves are created. These
wave signals have a direct impact on a SAR imaging the structure of the target as noise
components. The produced noise is often called speckle noise, which hinders the original
image information and causes a speckle corrupted SAR image as shown in Figure 1.
The scattering characterization of the target gets severe depending on changes in radial
properties and orbital surfaces, leading to degradation of recognition performance. It
is worth noting that a number of published studies were conducted for denoising (or
despcekling) SAR images [20–25].

(a) TerraSAR-X (b) COSMO-SkyMed

Figure 1. Examples of the real-world SAR image where noise-like speckle appears.

Many previous works first perform despeckling on SAR images as one of preprocess-
ing steps and then utilize the SAR images for several tasks via deep learning; e.g., classifica-
tion task [26,27], detection task [28–30], etc. Processing separately the large amount of SAR
images results in high time consumption and low efficiency. Though various despeckling
methods such as Lee filter [22], Kuan filter [23], Frost filter [24], Probabilistic Patch-Based
(PPB) filter[25] have been proposed, if we take an improper despeckling methodology
without considering the dataset characteristics carefully, then the despeckling may lead to
poor performance due to the information loss from raw SAR images. Meanwhile, to further
improve the visual quality of SAR images, there are other preprocessing methods such
as contrast enhancement methods. Given that most of SAR images are usually grayscale
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images, we can consider various processing methods, for example, fuzzy-based gray-level
image contrast enhancement [31] or fuzzy-based image processing algorithm [32].

To overcome the issue and guide for directly promoting object detection performance,
developing an object detection framework through incorporating an alternative deep
denoiser replacing the separate denoising preprocessing step into the classical object
detection network is significant and necessary. The motivation shares the similar spirit to
the recent classification work proposed by Wang et al. [33], where they learn a noise matrix
from an input noisy image and with the noise matrix synthesize a despeckled image taken
as the input into a subsequent classification network. According to our best knowledge, we
are the first to connect a denoising network to an object detection network. We additionally
introduce fusing region proposals approach which fuses set of Region of Interests (RoIs) from
both noisy and denoised images; rather than simply ending with the coupling structure as
in Wang et al. [33].

We propose a novel object detection framework whose the core idea comprises two
parts: (1) connecting an unsupervised denoising network to an object detection network
for dynamically extracting a denoised SAR image from a given noisy SAR image, and
(2) forwarding an image pair of two SAR images (the given real SAR image and the
synthetically generated SAR image) to an object detection network and fusing region
proposals from the two SAR images for complementarily integrating regional information.
Here fusing region proposals refers to merging two sets of RoIs yielded by a shared region
proposal network within the object detection network. This is inspired by the observation
that utilizing only real SAR image may bring about false positives due to the inherent
speckle noise of the image and on the contrary, depending on only denoised SAR image
may cause missing targets because inadequate denoising leads to fine information loss of
raw data.

The rest of this paper is organized as follows. Section 2 mainly consists of two parts,
where the first part introduces our datasets constructed with SAR images from TerraSAR-X
and COSMO-SkyMed satellites, and the second part describes the detailed design of our
proposed object detection framework, i.e., how to incorporate an unsupervised denoising
network into an object detection network and fuse the region proposals within the object
detection network. Section 3 reports comparative experimental results for the proposed
object detection network on our own datasets. To validate the effectiveness of our approach,
we carry out multiple experiments; (1) we need to experimentally demonstrate that our
coupling structure between denoising and detection networks can strengthen detection
performance, (2) we further verify the proposed region proposal fusing strategy in terms of
input data for detection network and fusing method through ablation studies, and (3) we
additionally perform comparative experiments with respect to the choice of a feature map
extracted from either real or synthetic SAR image, where the feature map refers to the
output of CNN backbone in the detection network. Section 4 presents the discussion of
the experimental results together with an additional time complexity analysis. Finally,
Section 5 includes the final remarks and a conclusion.

2. Materials and Methods

In this section, we describe SAR remote sensing datasets that we constructed and the
proposed object detection framework which fuses region proposals utilizing denoised SAR
image. The remote sensing datasets include not only SAR imagery but also corresponding
labeled objects. We develop our object detection framework with the datasets and detail
the proposed framework in the rest of this section.
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2.1. SAR Remote Sensing Dataset
2.1.1. Description

We constructed our datasets with 60 TerraSAR-X images from German Aerospace
Center [34] and 55 COSMO-SkyMed images from Italian Space Agency [35], which is
mainly covering harbor- and airport- peripheral areas. For TerraSAR-X satellite, the images
have resolutions from 0.6 m to 1 m, and is of the size in the range from about 6 k × 2 k to
11 k × 6 k pixels (sorted by their area). For COSMO-SkyMed satellite, the images have a
resolution of 1m, and is of the size in the range from about 13 k × 14 k to 20 k × 14 k pixels
(sorted by their area). Each remote sensing image is labeled by experts in aerial image
interpretation with multiple categories such as airplane (A), etcetera (E) and ship (S). The
ship/airplane classes contain a variety of civil and military ships/airplanes while the
etcetera class includes support vehicles, air defense weapons and air defense vehicles.
Some example ship/airplane objects are shown in Figures 2 and 3 for TerraSAR-X and
COSMO-SkyMed imagery, respectively.

Figure 2. Example airplane (top) and ship (bottom) objects in TerraSAR-X image. The groundtruth bounding boxes labeled
as corresponding class are plotted in red color.
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Figure 3. Example airplane (top) and ship (bottom) objects in COSMO-SkyMed image. The groundtruth bounding boxes
labeled as corresponding class are plotted in red color.

Our labeled objects include a total of 15.7 k instances of 3 categories; 3.7 k instances
for A class, 0.2 k instances for E class, and 11.8 k instances for S class, which implies that
our datasets are quite imbalanced between the categories and relatively skewed towards S
class. The class distribution by type of satellite imagery is plotted in Figure 4. Furthermore,
target objects in our dataset exist at a variety of scales due to our multiresolution images
and the variety of shapes, especially for ships objects. We measure the bounding box size
of objects with wbbox × hbbox and present the frequency of boxes by size as a histogram in
Figure 5, where wbbox and hbbox is the width and height of the bounding box, respectively.

Figure 4. Number of annotated instances per category for TerraSAR-X and COSMO-SkyMed imagery.
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Figure 5. Histogram that exhibits the number of annotated instances with respect to area (width× height)
in pixels.

2.1.2. Comparison to other SAR Detection Datasets

Table 1 summarizes the detailed comparisons between our own constructed dataset
and other publicly available SAR detection datasets, i.e., AIR-SARShip-1.0 [16], SSDD [18],
SAR-Ship-Dataset [17], and HRSID [19]. SAR-Ship-Dataset is the dataset with the largest
number of instances, followed by our own dataset. The primary differentiator of our
dataset as compared with other datasets lies in (1) class diversity such as ships, aircrafts,
and etcetera classes, and (2) the number of scene areas. We obtained the SAR images from
a variety of harbor and airport peripheral areas around the world wide and annotated
different shapes of objects.

Table 1. Comparison of statistics among multiple datasets. We denote the number of instances, patches,
and areas as # Instances, # Patches, and # Areas, respectively.

Dataset # Instances # Patches # Areas Patch Size Resolution

AIR-SARShip-1.0 [16] 461 31 4 3000 × 3000 1∼3 m
SSDD [18] 2540 1160 15 300 × 400 1∼10 m

SAR-Ship-Dataset [17] 59,535 43,819 30 256 × 256 3∼25 m
HRSID [19] 16,951 5604 13 800 × 800 0.6∼3 m
Our Dataset 21,717 16,308 92 800 × 800 0.6∼1 m

2.2. Proposed Methodology

Given the inherent speckle noise of SAR, researchers have previously performed a
preprocessing step like despeckling before training an object detection model. However,
such prior preprocessing independent of the performance of object detection may not only
be inefficient, but also lead to weak detection performance because an unintentionally im-
proper denoising induces loss of detailed information. Therefore, we integrate a denoising
network with a two-stage detection network so that the denoising network can directly
receive feedbacks from the detection network, as illustrated in Figure 6.

We choose a blind-spot neural network [36] based self-supervised scheme as the unsu-
pervised denoising model and adopt Gamma noise modeling as in Speckle2Void [37] fitted
with SAR speckle, but not limited to this model sturcture. We can train the unsupervised
denoising model as a generator G that maps a real (noisy) SAR image Ireal to the synthetic
(denoised) SAR image G(Ireal). The core idea of our model is to infer a synthetic denoised
SAR image from the input SAR image and merge the two sets of extracted RoIs to im-
prove detection performance. Without any help of related materials such as corresponding
denoised image for an input SAR image, we can autonomously simulate the denoised
image and fuse the inferred information such as RoIs. The entire model enables effective
end-to-end learning.
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Figure 6. Overview of the proposed object detection framework: (1) connecting an unsupervised
denoising network to an object detection network for dynamically extracting a denoised SAR image
from a given noisy SAR image, and (2) forwarding an image pair of two SAR images to an object
detection network and fusing region proposals from the two SAR images for complementarily
integrating regional information.

The unsupervised denoising network G in our model firstly takes as input a real (noisy)
SAR image Ireal and extracts synthetic (denoised) SAR image G(Ireal) as the output. Then,
the formed (real, synthetic) image pairs (Ireal , G(Ireal)) are fed into a shared region proposal
network and the region proposal network outputs two corresponding feature maps and
sets of RoIs. The two sets of RoIs Breal ,Bsynth are merged and the redundant bounding
boxes are subsequently removed by a NMS procedure, i.e., B f inal = NMS(Breal ∪Bsynth),
where B f inal is the resultant fused bounding boxes. For each RoI in B f inal on the feature
map from the real SAR image, the RoI feature vector is then forwarded to obtain the
classification and regression results as traditional two-stage detection network.

Usually, only single SAR image which is either real or denoised (preprocessed) is
employed for training an object detection network as shown in Figure 7. Suppose we have
real SAR images which is inherently speckled noisy without any preprocessing, relying
solely on the real SAR image for training may cause false alarms of region proposals. On
the other hand, utilizing denoised SAR images alone may be prone to suffer from missing
targets because of detailed information loss. We, therefore, devise a novel denoising-based
object detection network to make full use of the complementary advantages between the
real and denoised SAR images.

Figure 7. Overview of the traditional two-stage object detection network given a real or denoised
(preprocessed) SAR image as input.

To combine extracted information from both real and synthetic SAR images, we
consider fusing region proposals which merges two sets of RoIs yielded by a region proposal
network. Considering that there exist qualitative differences between the two sets of RoIs
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derived real and synthetic SAR images, the real and synthetic SAR images are separately
trained by the region proposal network. After fusing region proposals, we take the feature
map from the real SAR image for preserving the global context information of the raw
input SAR image.

The proposed architecture is trained end-to-end with a multi-task loss which mainly
consists of (1) unsupervised denoising loss, (2) region proposal loss, and (3) RoI loss for
classification and bounding-box regression. Especially, the region proposal network is
trained for both real and synthetic SAR image, and thus two distinctly losses are defined.
The final loss function that we propose is a weighted summation of all losses as follows.

L(Ireal) = λ1Lden(Ireal) + λ2Lreal
rpn(Ireal) + λ3L

synth
rpn (G(Ireal)) + λ4Lroi(B f inal) (1)

where:

Ireal = a real (noisy) image

G(Ireal) = a synthetic (denoised) image extracted from the denoising network G

B f inal = NMS(Breal ∪Bsynth), where B· is set of RoIs from either Ireal or G(Ireal)

where Lden denotes the unsupervised denoising loss. Lreal
rpn and Lsynth

rpn are the region
proposal loss of RPN for Ireal and G(Ireal), respectively. Lroi refers to the loss summation
of classification and bounding-box regression loss for all RoIs B f inal . λ1:4 are the hyper-
parameters to balance the interplay between the losses and the all parameters are set to 1
in all our experiments.

3. Results

We first present the description of our experimental dataset settings in Section 3.1.
Section 3.2 presents the details of our model architecture and the hyperparameter settings.
Based on this implementation, we conduct extensive experiments to validate the contri-
butions of the proposed model and Sections 3.3 and 3.4 contain the experimental results.
Section 3.5 provides comprehensive ablation studies.

3.1. Dataset Settings

We acquired 60 TerraSAR-X raw scenes from German Aerospace Center [34] and
55 COSMO-SkyMed raw scenes from Italian Space Agency [35]. The raw scenes go through
multiple stages like preprocessing, Doppler centroid estimation (DCE), and focusing to
obtain single look slant range complex (SSC) images. The SSC images are then converted
to multi-look ground range detected (MGD) images by multi-looking procedures. With
the MGD images, we create patches of size 800×800 via sliding-window operation, within
each patch containing at least one target object which belongs to airplane (A), etcetera (E),
or ship (S) categories. Finally, we randomly split patches into 80% for training, and 20%
for testing.

3.2. Implementation Details

We implemented our unsupervised denoising model following self-Poisson Gaussian [38],
however, adopted Gamma noise modeling as in Speckle2Void [37] to characterize the
SAR speckle. Our implementation for detection framework was based on the MMDetec-
tion tool box [39] which is developed in PyTorch [40]. Stochastic gradient descent (SGD)
Optimizer [41,42] with momentum of 0.9 was used for optimization. We trained a total of
24 epochs, with an initial learning rate of 0.0025, momentum of 0.9, and weight decay of
0.0001. We experimented with ResNet-50-FPN and ResNet-101-FPN backbones [43,44]. All
evaluations were carried out on a TITAN Xp GPUs with 12G memory.
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3.3. Qualitative Evaluation

Figure 8 shows paired examples of real SAR images and corresponding synthetically
denoised SAR images where the denoised SAR images are the intermediate results in our
model. After the denoising stage, the general speckle noises are drastically reduced; how-
ever, there inevitably exists a trade-off between the noise level and image clarity. Especially,
a lot of buoys that usually look like actual ships are located in the first example of Figure 8
and in the denoised SAR image, brightness of the buoys relatively gets faded and the visual
difference with the surrounding ships becomes clear. In addition, scattering waves around
target objects which are one of factors hindering accurate localization is blurred after the
denoising. The denoising within our network confirms such positive effectiveness.

Some image triples of groundtruth, baseline detection, and our detection visualizations
are presented in Figure 9. We train the baseline detection model with non-preprocessed
and raw noisy SAR images. For a fair comparison, both the baseline and our detection
model equally adopt Faster RCNN with ResNet-101-FPN [43,44] backbone architecture.
The detection results show that our model could localize overall objects accurately with
higher confidence scores and detects with a small number of false alarms compared to with
the baseline detection model in the given patch images. Although the progress made by
our detection models are inspiring, our detectors still have a room further improvement
due to the few remaining false alarms and missing targets.

3.4. Quantitative Evaluation

To quantitatively evaluate the detection performance, we calculate mean average preci-
sion (mAP). The mAP metric is widely used as a standard metric to measure the performance
of object detection and estimated as the average value of AP over all categories. Here, AP
computes the average value of precision over the interval from recall = 0 to recall = 1. The
precision weighs the fraction of detections that are true positives, while the recall measures
the fraction of positives that are correctly identified. Hence, the higher the mAP, the better
the performance.

As shown in Table 2, we compare the proposed network with the traditional two-
stage detection model under two different backbones such as ResNet-50-FPN and ResNet-
101-FPN [43,44]. By varying despeckling approaches, we set several baseline models as
previous work processes: (1) inputting non-preprocessed real SAR images, (2) feeding
denoised SAR images into the traditional two-stage detection model after denoising via
representative techniques called Lee filter [22] or PPB filter [25]. We observe that the
despeckling effect of applying Lee filter is more minor than PPB filter. PPB filter enables us
to reduce more speckle noises; but, much detailed information visually gets concealed. This
validates our experimental results that the baseline model with PPB filter slightly performs
inferior compared to the baseline model with Lee filter. On the other hand, our detection
network provides significant advances in performance under all backbone architectures.
Through observation of the test results, this is attributed to the suppression of many false
positive detections resulting from speckle noise problems of real SAR images.
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(a) Real SAR image (b) Synthetically denoised SAR image

Figure 8. Two paired examples of noisy SAR (left) and despeckled SAR (right) images. Red bounding
boxes for each image enlarge corresponding sub-regions. As shown in the enlarged windows,
scattering waves and speckle noises are relatively less observed in denoised examples.
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(a) Airplane (A) class

(b) Etcetera (E) class

(c) Ship (S) class

Figure 9. Image triples are shown in which the left image is groundtruth, while the middle image is for baseline models
(traditional two-stage detection models with real SAR images), and the right image is for our models. The groundtruth
and predicted bounding boxes are plotted in blue color for A class, yellow color for E class, and pink color for S class.
The numbers on the bounding boxes in the middle and right images denote the confidence score for each corresponding
category. We visualize all detected bounding boxes after NMS and thresholding detector confidence at 0.05.
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Table 2. Comparison of detection performance on our constructed dataset with TerraSAR-X and
COSMO-SkyMed images. By incorporating region proposals from denoised SAR images within
detection network, our model shows significant improvement in AP. The entries with the best APs
for each object category are highlight in bold.

Backbone +Despeckling AP Airplane (A) Etcetera (E) Ship (S)

ResNet-50

- 52.05 53.90 54.54 47.72
preprocessing
(Lee filter [22]) 53.52 54.63 56.96 48.98
preprocessing

(PPB filter [25]) 51.16 54.35 53.68 45.44

within network
(ours) 55.90 58.82 54.04 54.84

ResNet-101

- 54.29 54.65 59.80 48.43
preprocessing
(Lee filter [22]) 56.19 58.04 60.59 49.95
preprocessing

(PPB filter [25]) 52.96 53.16 58.17 47.54

within network
(ours) 60.81 65.03 61.67 55.72

3.5. Ablation Study

We conduct an ablation study for structurally verifying the proposed fusing region
proposal strategy. We first compare the case without fusing itself after denoising on input
noisy SAR image, which corresponds to the first experiment in Table 3. With the comparison
to inputting only denoised SAR image as an input to detection network, we can identify
whether the usage of real SAR image as another input of the detection network is important.
This case shows the poorest detection performance and justifies the importance of fusing
information from raw noisy SAR images. Secondly, for the choice of feature map after
fusing, we perform experiments with feature map from denoised SAR image or feature
map from real SAR image. As a result, keeping the feature map from the real SAR image
as proposed is found to be much better.

Table 3. Ablation study across the input type of detection network and feature map forwarded to
subsequent sub-network for classification and bounding box regression for each RoIs. The entries
with the best APs for each object category are highlight in bold. The backbone is ResNet-50-FPN.

Input of DetNet. Feature Map AP Airplane (A) Etcetera (E) Ship (S)

Denoised only - 52.96 56.71 53.59 48.57
Real + Denoised Denoised 53.96 57.16 51.17 53.54
Real + Denoised Real (ours) 55.90 58.82 54.04 54.84

4. Discussion

Our proposed detection framework obviously achieves a better performance through
combining a denoising network with an existing detection network; however, more pa-
rameters and the complex structure demand larger memory for model storage and higher
computing cost. We report average inference times (measured in seconds/(patch image)
on a Titan Xp GPU) for the purpose of time complexity analysis, as presented in Table 4.
Compared with the existing two-stage object detection network like Faster RCNN [45] in
the first row of Table 4, our detection framework further requires denoising time and time
for fusing region proposals during inference. The denoising time makes up a large portion
of the added running times, so the most promising way for reducing the average inference
time would be adopting a relatively light denoising network.
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Table 4. Comparison of running times for the time complexity analysis. We evaluated the running
times on a patch image sized 800 × 800 with a Titan Xp GPU.

Models Inference Time (sec/patch)

Faster RCNN [45] 0.3854
Faster RCNN + Ours 0.8190

5. Conclusions

In this study, we develop a novel object detection framework, where an unsupervised
denoising network is combined with a two-stage detection network and two sets of region
proposals extracted from a real noisy SAR image and a synthetically denoised SAR image
are complementarily merged. The coupling structure of denoising network with detection
network together intends to replace a cumbersome preprocessing step for denoising with
our denoising network and at the same time, the integrated denoising network performs
denoising to support the subsequent object detection. To remedy a potential risk due to
fine information loss after denoising, we keep raw information from input SAR image
within detection network while only utilize a set of region proposals inferred from the
synthetically denosied SAR image. The extensive qualitative and quantitative experiments
on our own datasets with TerraSAR-X and COSMO-SkyMed satellite images suggest that
the proposed object detection framework involves the adaptive denoising for directly
influencing detection performance. Our method shows significant improvements over
several detection baselines on the datasets constructed from TerraSAR-X and COSMO-
SkyMed satellite images.
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