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Abstract: The Intrusion Detection System (IDS) is an important tool to mitigate cybersecurity threats
in an Information and Communication Technology (ICT) infrastructure. The function of the IDS is to
detect an intrusion to an ICT system or network so that adequate countermeasures can be adopted.
Desirable features of IDS are computing efficiency and high intrusion detection accuracy. This paper
proposes a new anomaly detection algorithm for IDS, where a machine learning algorithm is applied
to detect deviations from legitimate traffic, which may indicate an intrusion. To improve computing
efficiency, a sliding window approach is applied where the analysis is applied on large sequences
of network flows statistics. This paper proposes a novel approach based on the transformation of
the network flows statistics to gray images on which Gray level Co-occurrence Matrix (GLCM) are
applied together with an entropy measure recently proposed in literature: the 2D Dispersion Entropy.
This approach is applied to the recently public IDS data set CIC-IDS2017. The results show that the
proposed approach is competitive in comparison to other approaches proposed in literature on the
same data set. The approach is applied to two attacks of the CIC-IDS2017 data set: DDoS and Port
Scan achieving respectively an Error Rate of 0.0016 and 0.0048.

Keywords: intrusion detection systems; security; machine learning; communication

1. Introduction

Our society is becoming increasingly dependent on the internet and communication
services but the risk of cybersecurity threats has also increased. Intrusion Detection System
(IDS) can be a powerful tool to mitigate cybersecurity attacks. Research in IDS is more than
20 years old and various types of IDS have been proposed in literature: signature-based
IDS, which focuses on the recognition of traffic patterns associated to a threat, anomaly-
based IDS which detects deviations from a model of legitimate traffic and often relies on
machine learning or reputation-based IDS based on the calculation of reputation scores [1].
Requirements or preferred features of IDS have been already defined in literature [1,2] and
they can be summarized in: (a) fast detection of the attack, (b) high detection accuracy
and (c) low computing complexity of the detection algorithm to support the capability to
analyze a large amount of traffic due to the high throughput of the current networks. The
successful fulfillment of these three main requirements can be challenging because there are
trade-offs between them. For example, algorithms, which are able to obtain high detection
accuracy, may require considerable computing resources or they may not be able to achieve
a fast detection. The advantage of anomaly-based IDS, in comparison to signature-based
IDS, is to potential detect new attacks which have not been recorded before and where
the corresponding signature has not been created yet. On the other side, the detection of
anomalies in high throughput traffic would benefit from dimensionality reduction while
preserving an high detection accuracy. To achieve this goal, anomaly-based IDS have been
proposed in literature where a sliding window is used [2,3].
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This paper focuses on an anomaly detection approach where the network flows data
is collected in windows of fixed size, which are then converted to gray images on which the
Gray level Co-occurrence Matrix (GLCM) is calculated. Then, the features (e.g., contrast) of
the GLCM are used as an input to a machine learning algorithm for the threat detection. In
addition, the 2D Dispersion Entropy (2DDE) recently introduced in [4] is also calculated as
additional feature of the GLCM. To the knowledge of the authors, this approach is novel in
IDS literature both from the point of view of the application of GLCM and the application
of 2D Dispersion Entropy. The application of the sliding window and the GLCM allows a
significant dimensionality reduction. First of all, the number of samples of the data set is
reduced by the size of the sliding window (WS in the rest of this paper). For example, the
data from the IDS is processed in windows of size WS = 100 ∗ number of features of the
data set (NF = 78 for the data set used in this paper). Then, the window data is converted
to a grayscale image, which implies a further dimensionality reduction because the output
of GLCM is a matrix of size QF ∗QF where QF is the quantization factor of GLCM. Then,
the GLCM features (e.g., contrast, Shannon entropy) plus the 2DDE applied to GLCM is
calculated to implement an additional dimensionality reduction step. Finally, the reduced
data set is provided as an input to a machine learning algorithm. The application of
the Sequential Feature Selection (SFS) algorithm (a wrapper feature selection algorithm)
further reduces the number of features. The challenge is to preserve the discriminating
characteristics in the data set, which allows to detect with significant accuracy the attack.

The rationales for the approach proposed in this paper are following: the first reason
is related to the choice of using the GLCM beyond the need for dimensionality reduction
as explained above. The idea is that the sequential structure of the network flows, in
case of an intrusion, is altered in comparison to the legitimate traffic. Since the GLCM is
created by calculating how often pairs of pixels with a specific value and offset occur in
the image, the underlying idea of the approach is that numbers of pairs of pixels will be
altered when an attack is implemented. Such changes will be reflected in the frequencies
of the number of pairs, which (in turn) will have an impact on GLCM features (e.g.,
contrast) or information theory measures like entropy. The second reason for the proposed
approach is that the classical Shannon entropy measure is only based on the histogram
of GLCM elements while it would also be valuable to evaluate the sequences of GLCM
elements since they may provide further information on the presence of the attack. For this
reason, the 2D Dispersion Entropy (2DDE) was introduced in the study. As described in
Section 3.4 later in this paper, 2DDE allows to analyze irregularity of images on the basis
of the frequency of patterns in the image, which can provide more information than the
classical Shannon entropy.

This study uses the CIC-IDS2017 data set [5], which has been recently published (2017)
and it has been increasingly used by the IDS research community.

The results shown in this paper demonstrate that this approach manages to remain
competitive in terms of detection performance in comparison to more sophisticated and
computing demanding approaches based on Deep Learning (DL) applied to the same data
set [6,7].

To summarize, the contributions of this paper are following:

• GLCM is applied to an IDS problem where the network traffic features are transformed
to grayscale images on which GLCM is applied. An extensive evaluation of the GLCM
hyperparameters on detection accuracy is implemented. To the knowledge of the
authors this is the first time that the GLCM in combination with 2DDE is used for
the IDS problem. This is also the first time that the authors submitted this study for
review and the authors did not publish this work before.

• 2D Dispersion Entropy (2DDE) is used as additional GLCM feature. We demonstrate
that the use of this entropy measure contributes significantly to the capability of the
proposed approach to detect a cybersecurity attack.

• The study uses the recent IDS CIC-IDS2017 data set instead of older data sets, which
may not be representative any longer of modern networks.
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We highlight that the approach is based only on the network flow features and it does
not attempt to perform a deep-packet inspection on the network traffic. In addition, it is
limited in scope to two specific attacks of the CIC-IDS2017 data set: DDoS and Port Scan
attack since they are the ones with the most significant number of samples in the data set
and they are the ones where the research community has given much attention [7–10], which
is relevant for the comparison of the results of this paper with literature (see Section 4).

The structure of this paper is the following: Section 2 provides the literature review.
Section 3 describes the overall workflow of the approach, the concept of GLCM, the defini-
tion of 2D Dispersion Entropy and the materials (i.e., CICIDS2017 data set) used to evaluate
the approach. In addition, Section 3 describes the machine learning algorithms adopted
for the detection and the evaluation metrics. Section 4 presents the results, including the
findings from the hyperparameters optimization phase and the comparison to the other
approaches used in literature. Finally Section 5 concludes this paper.

2. Related Works

IDS have been proposed in literature for more than 20 years. As described in [1],
IDS performs the essential function to detect unauthorized intruders and attacks to a
wide scope of electronic devices and systems: from computers, to network infrastructures,
ad-hoc networks an so on. From that seminal survey, many different types of IDS have
been proposed and various classifications of IDS can be found in literature. One early
classification in [1] defines two main IDS categories: offline IDS where the analysis of logs
and audit records is performed some time after the traffic network operation (e.g., the
analysis is executed the day after the network or computer system activity) and the online
(or real-time) IDS where the analysis is performed directly on the traffic or immediately
after the traffic features are calculated (e.g., average duration of the packets or average
time of the connection). For example, the online IDS performs the analysis on a single
or a set of observations (e.g., network flows) at the time after an initial training phase,
while the offline IDS analyzes all the observations of the day before. More recent surveys
like [11–13] provide different taxonomies for IDS. For example, IDSs can be classified
in the category of signature detection or anomaly detection. In signature detection, the
intrusion is detected when the system or network behavior matches an attack signature
stored in the IDS internal databases. Signature-based IDSs have the advantage that they
can be very accurate and effective at detecting known threats, and their mechanism is
easy to understand. On the other side, signature-based IDSs are ineffective to detect new
attacks and variants of known attacks, because a matching signature for these attacks is still
unknown. In anomaly detection, the activities of a system at an instant (e.g., an observation
or a set of observations of network traffic) are compared against the normal behavior profile
calculated in a training phase against legitimate traffic. Machine Learning (ML) or DL can
be used to evaluate how traffic samples are different from legitimate traffic and they can
be used to classify the network traffic in the proper category. The disadvantages of the
anomaly detection approach are the significant computing effort, the difficulty to define
the proper model and the potential high number of False Positives (FP) [14].

The method proposed in this paper is anomaly detection, where a dimensionality
reduction is performed to improve the detection time and accuracy. The dimensionality
reduction is implemented using a sliding window approach where the initial data samples
(the network flows data) are collected in windows of size WS (this is the name of the
parameter used in the rest of this paper). Then, features are calculated on the window
set of data. This approach has been already used in literature to achieve dimensionality
reduction [2,3]. In the rest of this section, we identify some key studies with a specific focus
on IDS approaches based on the sliding window concept and/or the use of entropy mea-
sures. We also report on studies where image-based approaches are used in combination
with ML or DL.

Shannon entropy is usually adopted as a feature calculated on the windowed set of
data. The reason is that intrusion attacks have been demonstrated to alter the entropy
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of the network flows traffic. For example, the authors in [15] have proposed a detection
method called D-FACE to differentiate legitimate traffic and DDoS attacks. The method
compares the Shannon entropy calculated on the source IP data of the normal traffic flows
with the traffic in a specific time window (e.g., the observation). This entropy difference is
called Information Distance (ID) and is used as the detection metric when the calculated
entropy goes beyond thresholds based on legitimate traffic. In another example, the
authors of [10] have used a sophisticated approach to evaluate the difference between
legitimate traffic and anomalous traffic potentially linked to a DDoS attack by using
Shannon entropy. Then, the authors employ a Kernel Online Anomaly Detection (KOAD)
algorithm using the entropy features to detect input vectors that were suspected to be DDoS.
Another IDS approach based on sliding window and conditional entropy is proposed in [16]
where anomalies related to various attacks including DDoS are detected in a two steps
approach. The maximum entropy method is first used to create a normal model in which
the classes of network packets are distributed and have the best uniform distribution. In
a second step, conditional entropy is then applied to determine the difference between
the distribution of packet classes in current traffic compared to the distribution found as
a result of the maximum entropy method. The authors in [17] have also used a sliding
window approach combined with Shannon entropy to detect Denial of Service Router
Advertisement Flooding Attacks (DSRAFA). A fixed sliding window of 50 packets was
used and a threshold mechanism was adopted to identify traffic anomalies which could
indicate the attack.

The data presented in a sliding window can also be transformed to enhance the
detection accuracy. With the advent of DL and Convolutional Neural Network (CNN) in
particular, an approach adopted by some authors is to convert the batch data of a sliding
window into an image, which is then provided as an input to a CNN based detection
algorithm. This approach is proposed recently in [18] where the data of the network traffic
flows is transformed to images which are given as input to CNN combined with Long Short
Term Memory (LSTM). A similar approach is adopted in this paper with the difference
that DL is not used since it can be quite time-consuming and a more conventional texture
analysis approach is used together with a novel entropy measure. Another DL approach
is proposed by the authors in [19] where a conditional variational autoencoder is used
for intrusion detection in IoT. The conversion of flow features to grayscale images is also
adopted in [20] where the authors propose a method which extracts 256 features from the
flow and maps them into 16 ∗ 16 grayscale images, which are then used in an improved
CNN to classify flows. On the other side, none of the papers investigated by the authors
adopt other tools for image analysis for IDS like the GLCM adopted in this study. This may
be due to the consideration that DL has become state of art in image processing even if it
comes at the cost of a significant computational effort.

Then, the approach presented in this paper combines the image-based concept of [18,20]
where the set of network flows are combined in images following the studies [10,15]
where an information theory approach (e.g., entropy measure) is used in combination
with conventional machine learning. We show in the Results Section 4 that this approach
manages to provide competitive detection results in a time efficient way in comparison to
studies using the same CICIDS2017 data set used in this paper.

3. Methodology and Materials
3.1. Workflow

The overall workflow of the proposed approach is shown in Figure 1 where the main
phases are identified with numbers. The phases are described in the following bullet list:

1. The network flows for the labeled legitimate traffic are collected in a sliding window
(the windows are not overlapping) of size WS using all the 78 network features present
in CICIDS2017 data set (see Section 3.2). Different sizes WS of the sliding window are
used in this study: WS = (100, 200, 300, 400, 500) network flows.
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2. The sliding window data (of size WS ∗ 78) is converted to gray images by rescaling
the values of the network flows features. The rescaling is implemented by converting
the original values of the network flows in the sliding window to the range 0–256
(for each network flow feature) to obtain 256 levels of gray. A linear conversion is
used. Examples of the resulting gray images for the Legitimate traffic and the Port
Scan traffic are shown in Figure 2, where the y-axis represents the id of the network
flow feature, while the x-axis represents the flow id. The sliding window is applied in
sequential order regardless of the IP origin as it was created in the public data set [5]
used in this paper.

3. The GLCM is applied to the gray images with different values of the GLCM hyparam-
eters. See Section 3.3 for the definition of GLCM and hyperparameters. One of the
important hyperparameters is the quantization factor QF. In other words, different
GLCMs are created for each of the distances and directions considered in Section 3.3
(even for different values of GD) and for the value of the quantization factor QF. The
resulting size of the GLCM is QF ∗QF.

4. The GLCM features (e.g., contrast) are calculated. In addition, the 2DDE is also
calculated on the images. The definition of the 2DDE is presented in Section 3.4.

5. The ML algorithm is applied to the features calculated in the previous step. The
description of the algorithm used in this study and the related hyperparameters are
described in the Section 3.5.
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Figure 1. Overall workflow.

Finally, the hyperparameters of the GLCM and of the ML algorithm are tuned using
the Error Rate (ER) as evaluation metric. The definition of ER and the other evaluation
metrics are provided in Section 3.6.
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(a) Grayscale image of the Legitimate network
flows for WS = 200.

20 40 60 80 100 120 140 160 180 200

Network flow

6
12
18
24
30
36
42
48
54
60
66
72
78

F
e

a
tu

re

(b) Grayscale image of the Port Scan network
flows for WS = 200.

Figure 2. An example of the grayscale images with WS = 200 for legitimate and Port Scan net-
work flows.
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3.2. Materials

To evaluate the proposed approach, the publicly available CICIDS2017 data set de-
scribed in [5] is used. This data set was used because it is relatively recent in comparison
to older data set like the KDD-99 data set, whose limitations are known and discussed
in [14,21]. These limitations have prompted the research community to generate even
simulated data sets like the ones proposed in [22]. The CICIDS2017 data set is based on a
real network where intrusion attacks have been implemented. Then, it satisfies one of the
requirements for data sets identified in [21]. As described in [5], the test bed to implement
the attacks was divided into two completely separated networks: a Victim-Network and
the Attack-Network. In the Victim-Network, the creators of the CICIDS2017 data set have
included routers, firewalls, switches, along with the different versions of the common three
operating systems: Windows, Linux and Macintosh. The Attack-Network is implemented
by one router, one switch and four PCs, which have the Kali and Windows 8.1 operating
systems. The Victim-Network consists three servers, one firewall, two switches and ten
PCs interconnected by a domain controller (DC) and active directory. The dataset contains
normal traffic (i.e., legitimate traffic with no attacks) and traffic with the most up-to-date
common attacks for five days. We selected two types of attacks in this study: the DDoS
attack and the PortScan attack. These attacks are chosen because they are quite represen-
tative of intrusion attacks and because they have the largest number of samples in the
CICIDS2017 data set. Both attacks were generated on the last day of the data set. The
DDoS traffic in this dataset was generated with a tool to flood UDP and TCP requests to
simulate network layer DDoS attacks, and HTTP requests to simulate application-layer
DDoS attacks. The Portscan attack was executed from all the Windows machines by the
main switches. The dataset is completely labeled and includes 78 network traffic features,
which were extracted using the CICFlowMeter software package described in [5]. Note
that the CICflowmeter outputs 84 features including the label (see [23] for a description
of all the features), but we removed features 1 (Flow Id), 2 (Source IP), 3 (Source Port),
4 (Destination IP), 5 (Destination Port) thus obtaining the 78 features used in this paper,
since the last field is used as the label.

Two separate data sets are created from the original CICIDS2017 data set: one data
set containing only the legitimate traffic and the Distributed Denial of Service (DDoS)
network flows and another data set containing only the legitimate traffic and the Port Scan
network flows. The two data sets were created by selecting from the whole data set only
the network flows labelled as legitimate traffic and the specific attack: DDoS or PortScan.
All the network flows from the other attacks were removed from the other data set.

Table 1 shows the number of legitimate/benign traffic samples and the attack samples
for the DDoS and the PortScan attacks.

Table 1. Number of samples for the legitimate/benign traffic and the DDoS and PortScan attacks in
the CICIDS2017 data set considered in the study.

Attack Number of Legitimate Samples Number of Attack Samples

PortScan 2,273,097 158,930
DDoS 2,273,097 128,027

As described in Section 3.5 later in this paper, the data set is subdivided in folds,
which contain exclusive portions of the data set containing both legitimate traffic and
traffic related to the intrusion attack. In this study, a number of folds equal to 3 was
selected to ensure to have enough samples of the attack since the CICIDS2017 data set is
unbalanced like many other intrusion data sets: the number of traffic samples related to
the intrusion are usually much less than the legitimate traffic ones. The application of the
approach proposed in this paper is applied separately to each fold and then the values are
averaged. The optimization step is also performed on averaging the results from all the
folds. This technique of subdividing the data set is one of the guidelines for the application
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of machine learning to intrusion detection problem as suggested in [21]. It is important
to point out that, in our study, we use all the 78 network flow features of the data set
and we do not perform a feature selection on the network flow features as other papers
have attempted [5,24]. The reason is that feature selection is performed on the GLCM
features instead and we wanted to conduct the analysis on the widest set of information
from the initial data set. We want to limit the degrees of freedom in the problem by not
performing a feature selection on the network flows features. This is a similar approach to
other papers where all the 78 Network flows features are used [25]. Future developments
may investigate the selection of specific network flow features even if this task can be quite
time consuming with this approach.

3.3. Gray Level Co-Occurrence Matrices

The GLCM is a statistical method for examining texture that considers the spatial
relationship of pixels. The GLCM functions characterize the texture of an image by calcu-
lating how often pairs of pixel with specific values and in a specified spatial relationship
occur in an image, creating a GLCM. In this context, the network flows features are used
to create a grayscale image (256 levels of gray) X of size WS (where WS is the size of the
sliding window) for NF (where NF is equal to the number of features or 78). Then, the
GLCM is created on this grayscale image by calculating how often a pixel with the intensity
(gray-level) value i occurs in a specific spatial relationship to a pixel with the value j. Each
element (i,j) in the resultant GLCM is simply the sum of the number of times that the pixel
with value i occurred in the specified spatial relationship to a pixel with value j in the input
image. The GLCM is characterized by a number of hyperparameters in its definition: the
most important is the quantization factor QF or the number of levels. From the original
256 gray levels of the source image, the GLCM introduces a new number of gray levels,
specified as an integer: the QF. This parameter is quite important because the number of
gray-levels determines the size of the resulting GLCM. This means that regardless of the
size (WS ∗ NF) of the input grayscale image, the resulting GLCM image has size QF ∗QF.
The trade-off is that a larger QF may increase the granularity of the features on which the
ML is applied, thus potentially increasing the detection accuracy. On the other side of the
coin, a larger GLCM (and greater values of QF) increases the time to calculate the GLCM
features and 2D Dispersion Entropy (2DDE). Then the value of QF must be optimized.
Another hyperparameter is the distance between a pixel of interest and its neighbor. It is
possible to define not only the absolute distance among pixels but also the angle as shown
in Figure 3. In the rest of this paper, the absolute distance is named GD and each distance
and angle is defined by a 2-tuple (e.g., [0 GD]).

[-1 -1] 135o [-1 1] 45o

[0 1] 0o

[-1  0] 90o

GLCM
with distance =1

Figure 3. GLCM distance and angle parameter with GD = 1.

A third parameter (Symmetric or Not Symmetric) is the order of values which can
be counted only once or twice. When the hyperparameter is set to Symmetric the GLCM
is calculated by counting the pairings twice. When the hyperparameter is set to Not
Symmetric the GLCM is calculated by counting the pairings only once.
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An example of the calculation of the GLCM applied to a grayscale image of size 4 ∗ 5
is provided in Figure 4 where QF = 8 and the distance/angle 2-tuple is set to [0 1].

1 1 5 6 8

2 3 5 7 1

4 5 7 1 2

8 5 1 2 5

4x5 grayscale image

GLCM

(QF=8,  [0 1] (00)

1 2 0 0 1 0 0 0

0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 1 2 0

0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 4. Example of the calculation of GLCM on the basis of a grayscale image.

In the original GLCM definition, it is possible to calculate the GLCM along all the
possible directions, but an evaluation of the data set by the authors in this specific IDS
context has shown that the additional directions not described in Figure 3 are duplications
of the directions already identified and they would add unneeded computing efforts as
they would grow the number of features on which the ML has to be applied. A quantitative
confirmation that the angles shown in Figure 3 have an higher detection performance than
using all the angles of the GLCM is provided in Section 4. Then, in the rest of this paper,
we will use the 2-tuples [0 GD], [−GD 0], [−GD −GD], [−GD GD].

As described in the Introduction Section 1, the idea to use GLCM in the context of
IDS is that the sequential structure of the network flows in case of an intrusion is altered
in comparison to the legitimate traffic. Since the GLCM is created by calculating how
often pairs of pixels with a specific value and offset occur in the image, the underlying
idea of the approach is that numbers of pairs of pixels will be altered when an attack is
implemented. The challenge is that it is not known a priori how the choice of values of
the hyperparameters influences the detection accuracy of the intrusion attack, since this
information depends on the context (e.g., the topology of the network, the type of traffic
and the type of attack). Then, an optimization process has to be performed, which is
described in detail in Section 4.1.

3.4. Two dimensional Dispersion Entropy

Two dimensional dispersion entropy (2DDE) was introduced by Azami and others
in [4] where it is described in detail. Here, we provide a brief description of the 2DDE
measure with reference to the IDS problem.

2DDE is an extension of the one dimension dispersion entropy, which has demon-
strated its superior performance in many problems [26]. The original definition of 2DDE is
applied to an image of size w ∗ h, but in this study, the GLCM is the image on which the
2DDE is to be calculated and its size is equal to QF ∗QF, then the equations and definitions
from [4] are modified accordingly.

In a first step, each value in the image U (i.e., the GLCM image in this case) is mapped
to classes with integer indices from 1 to c (which is one of the hyperparameters in the
definition of 2DDE). To this aim, there are a number of linear and nonlinear mapping
approaches, which can be used in the dispersion entropy based methods. The simplest and
fastest algorithm is the linear mapping. However, when maximum or minimum values
are noticeably larger or smaller than the mean/median value of the image (as in this case
where anomalies significantly greater than the average must be detected), it is preferable
to use a sigmoid function as defined in [4], where the normal cumulative distribution
function (NCDF) is used to map the image into the classes, as this function naturally raises
in a sigmoidal shape. The NCDF maps the initial image U (i.e., the GLCM of the window
traffic) to Y with values from 0 to 1 as in the following equation:
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yi,j =
1

σ
√

2π

∫ xi,j

−∞
e
−(t−µ)2

2σ2 dt (1)

where µ and σ are the average and standard deviation of U.
The concept of Dispersion Entropy (even the one in one dimension) is related to

the patterns of the embedding dimension m (another hyperparameter in the definition of
2DDE). The dispersion patterns are created in the following way.

First, a new matrix z zm,c
k,l is created from yi,j using the following equations (this is the

adaption of Equation (2) from [4] taking in consideration that w and h from (2) are equal to
QF in this case):

zc
k,l = round(c× yi,j + 0.5) (2)

where zc
k,l shows the (i, j)th of the classified image and rounding involves either increasing

or decreasing a number to the next digit.
Second, zm,c

k,l are made with the embedding dimension vector according to the follow-
ing equation.

zm,c
k,l = zc

k,l , zc
k,l+1, zc

k,l+2, ..., zc
k,l+(mQF−1),

zc
k+1,l , zc

k+1,l+1, zc
k+1,l+2, ..., zc

k+1,l+(mQF−1), ...,

zc
k+(mQF−1),l , zc

k+(mQF−1),l+1, zc
k+(mQF−1),l+2, ..., zc

k+(mQF−1),l+(mQF−1) (3)

where k, l = 1, 2, . . . ,QF−(mQF−1).
Third, each term of the matrix zm,c

k,l is mapped to a dispersion pattern πvj on which the
final entropy measure 2DDE is calculated in the following way.

Fourth, for each cmQF xmQF potential dispersion pattern πv0,v1,...,v(mQF–1) , the relative
frequency πv0,v1,...,v(mQF–1) in the image Y is calculated.

Finally, the Shannon entropy is calculated on the dispersion pattern πv0,v1,...,v(mQF–1) to
provide the 2DDE according to the following equation:

2DDE(m, c) = −
c

mQF
×mQF

∑
π=1

p(πv0,v1,...,v(mQF-1)×(mQF−1)
)

× ln
(

p
(

πv0,v1,...,v(mQF-1)×(mQF−1)

))
(4)

As in one dimension dispersion entropy, the value of the parameters m and c should
be tuned to achieve an optimal performance (in this case, the detection of the attack). On
the other side, the parameters m and c are bound [4] by the size of the time series on which
2DDE has to operate. As described in [27] even for the one dimension dispersion entropy,
to work with reliable statistics when calculating dispersion entropy, it is suggested that the
number of potential dispersion patterns cm is smaller than the length of the signal. In the
two dimensional case, the rule reported in [4] and adapted for this case where the GLCM
is square of size QF ∗QF, is that (cmQF )2 < (QF −mQF − 1)2, which limits the space of the
values of m and c to few values as the range of QF. Considering that the range of QF spans
from 12 to 48 in this study, the combinations of c = 2, m = 3 and c = 3, m = 2 are chosen. It
must also be taken in consideration that higher values of m increase the computing time,
which is not desirable for a large data set like the one used in this study.

As pointed out in the Introduction, the rational for using 2DDE in this study is
that 2DDE allows to analyze irregularity of images on the basis of the frequency of the
dispersion patterns in the image [4], which can provide more information than the classical
Shannon Entropy. Since an intrusion attack usually disrupts the regularity of the structure
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of legitimate traffic, the application of 2DDE can provide a significant discriminating power
for the detection of the attack.

3.5. Machine Learning Algorithms

The following machine learning algorithms were used in the study: the Support Vector
Machine, the Decision Tree and Naive Bayes algorithm. These algorithms were chosen
because they have already been used in literature [5,24] on the same problem because
of their accuracy and cost effectiveness. These three algorithms are also chosen because
each of them belongs to a specific category of machine learning algorithms and they are
useful to provide a comparison on the relevance of the algorithm to the IDS problem.
We would like anyway to remark that the goal of the paper is the investigation on the
discriminating power of the approach based on GLCM and 2DDE rather than the choice of
a specific machine learning algorithm. In other words, they are used rather to understand
the relevance of the different features for the detection of benign and malicious activity,
which can eventually serve as the basis for a non-machine-learning detector [14].

Support Vector Machine (SVM), is a supervised learning model which classifies data by
creating a hyperplane or set of hyperplanes in a high dimensional space, to distinguish the
samples belonging to different classes (two classes in this problem). Various kernels have
been tried and the one providing the best performance was the Radial Basis Function (RBF)
kernel, where the values of the scaling factor γ must be optimized together with the
parameter C [28].

The Decision Tree algorithm is a predictive modeling approach where a decision
tree (as a predictive model) analyzes the observations about an item (represented in the
branches) to reach conclusions about the item’s target value (represented in the leaves).
In this case we use classification trees where leaves represent class labels and branches
represent conjunctions of features that lead to those class labels. The hyperparameter
chosen for optimization is the maximum number of branches at each split named NB in
the rest of this paper. It was chosen the option that the algorithm trains the classification
tree learners without pruning them. The optimal values for the three machine learning
algorithms are presented in Section 4.

The Naive Bayes (NB) machine learning algorithm is a probabilistic classifier, which is
based on applying Bayes’ theorem with strong (naïve) independence assumptions between
the features [29]. In the NB algorithm, models assign class labels to problem instances,
represented as vectors of feature values, where the class labels are drawn from some finite
set. In many practical applications like IDS, the parameter estimation for the NB models
uses the method of maximum likelihood; which means that the NB classifier can be applied
even without accepting Bayesian probability.

As discussed before, for the application of all machine learning algorithms, a 3-fold
approach (i.e., K-fold approach with K = 3) was used for classification, where 1/3 of the
dataset was used for test, and 2/3 was used for training and validation. The portions of the
data set in each fold are exclusive among themselves. The value of 3 was used to subdivide
the data set in portions large enough to ensure that a meaningful set of data related to the
intrusion is present in the input data to the classifiers. Then, the attack data was also split
in 3 as part of the overall 3-fold approach. Since intrusion data sets are usually heavily
unbalanced (legitimate traffic is much larger than traffic related to the intrusion), there is
the risk that high values of K produce folds with a limited number of samples related to
the attack. To further generalize the application of the approach, the overall classification
process was then repeated 10 times, each time with different training and test sets. The
final results were averaged.

As it is seen in the Section 4, the Decision Tree algorithm provides the optimal detection
accuracy for this problem.
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3.6. Detection Metrics

This subsection describes the metrics used to evaluate the performance of the approach
proposed in this paper and the alternative approaches used in literature.

The main metric is the Error Rate (ER), which is 1-Accuracy and it is defined as:

ER = 1− TP + TN
(TP + FP + FN + TN)

(5)

where TP is the number of True Positives, TN is the number of True Negatives, FP is the
number of False Positives and FN is the number of False Negatives.

To complement the accuracy metric, the True Positive Rate (TPR) and the False Positive
Rate (FPR) are used, which are defined in the following equations:

TPR =
TP

(TP + FN)
(6)

FPR =
FP

(FP + TN)
(7)

Another method to evaluate the performance of the approach proposed in this paper,
is the Receiver Operative Characteristics (ROC) curve which is created by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings.
A metric based on the ROC curve is the Equal Error Rate (EER), which is the point on the
ROC curve that corresponds to have an equal probability of miss-classifying a positive or
negative sample.

3.7. Features and Hyperparameters

As specified before, the proposed approach is based on a number of hyperparameters,
which are summarized in the following bullet list with the related trade-offs:

• WS = the size of the sliding window. The trade-off is that a small value of WS does not
provide an image large enough for the application of GLCM while a large value of WS
limits the number of samples for the application of ML.

• QF = Quantization factor in GLCM. A value too small may not provide enough
granularity for an effective detection of the threat while a value, which is too large
increases significantly the computing time.

• GLCM distance and angle parameter in GLCM definition. There are no trade-offs but
the optimal value must be selected.

• GLCM symmetry. If the GLCM is applied with symmetry or asymmetry. There are no
trade-offs but the optimal value must be selected.

• c and m in the 2DDE definition. c and m are bound by the value of QF as specified in [4].
• hyperparameters in the ML algorithm. For example, the maximum number of

branches at each split in the Decision Tree algorithm.

Beyond the hyperparameters identified above, a number of features were proposed
by Haralick in its seminal paper on the design of GLCM and the related feature [30,31],
but not all the Haralick features are applicable to this context, either because they are
computing intensive, because they are unstable for small images or because they are not
relevant for the context. In addition, the use of all the Haralick Features in combination for
the hyperparameters identified above would generate a search space which would be too
large for the optimization process. After a preliminary assessment of the Haralick features,
the following set of features were used for this study and they are listed in Table 2. The
approach presented in this paper was to combine a pre-selected set of Haralick features
in addition to 2DDE with the GLCM symmetry and GLCM distance and angle parameter
hyperparameters. The other Haralick features described in [31] were not used because their
detection performance using ER was suboptimal in comparison to the features identified
in Table 2: Difference Variance, Difference Entropy, Info Measure of Correlation, Maximum
Correlation Coefficient. Note that in Table 2, Energy indicates the angular second moment
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and Homogeneity is the inverse difference moment on the basis of the terms described
in [31].

Table 2. List of features used in this study (GD is the GLCM distance and the 2-tuples indicate the
angles used to build the GLCM).

Feature Id FID Feature Name and Parameters

1,17,33,49 Contrast [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not Symmetric
9,25,41,57 Contrast [0 GD], [−GD 0], [−GD −GD], [−GD GD] Symmetric
2,18,34,50 Energy [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not Symmetric
10,26,42,58 Energy [0 GD], [−GD 0], [−GD −GD], [−GD GD] Symmetric
3,19,35,51 Homogeneity [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not Sym-

metric
11,27,43,59 Homogeneity [0 GD], [−GD 0], [−GD −GD], [−GD GD] Symmetric
4,20,36,52 Correlation [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not Symmet-

ric
12,28,44,60 Correlation [0 GD], [−GD 0], [−GD −GD], [−GD GD] Symmetric
5,21,37,53 Shannon Entropy [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not

Symmetric
13,29,45,61 Shannon Entropy [0 GD], [−GD 0], [−GD −GD], [−GD GD] Sym-

metric
6,22,38,54 2DDE (m = 2, c = 3) [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not

Symmetric
14,30,46,62 2DDE (m = 2, c = 3) [0 GD], [−GD 0], [−GD −GD], [−GD GD]

Symmetric
7,23,39,55 2DDE (m = 3, c = 2) [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not

Symmetric
15,31,47,63 2DDE (m = 3, c = 2) [0 GD], [−GD 0], [−GD −GD], [−GD GD]

Symmetric
8,24,40,56 Sum of variances [0 GD], [−GD 0], [−GD −GD], [−GD GD] Not

Symmetric
16,32,48,64 Sum of variances [0 GD], [−GD 0], [−GD −GD], [−GD GD] Sym-

metric

As it is shown in Table 2 the GLCM is calculated on the gray image (created from the
sliding window) for different values of the angle for a specific value of the distance GD.
Then, the related features for each specific GLCM are calculated. For example, one GLCM
is calculated for the angle [0 GD] while another GLCM is calculated for the angle [−GD
−GD].

The optimal set of features are selected using the forward sequential feature selection.
In the forward sequential search algorithm, optimal features are added to a candidate subset
while evaluating the criterion. Since an exhaustive comparison of the criterion value at all
subsets of the 64 features from Table 2 (repeated for all the values of the hyperparameters)
is typically infeasible, the forward sequential search moves only in the direction of growing
from an initial feature (the one with the lowest ER when all the features are considered).
The best ten features are used to calculate the final metrics of evaluation: ER, FPR, FNR.
The number of ten has been adopted because it was the optimal value between the need
to limit the number of features for the application of ML and the increase of detection
accuracy (beyond ten features, the improvement in detection accuracy was minimal).

Apart from the application of the ML algorithms, the difference of the discriminating
power of 2DDE in comparison to the other features to detect an attack can be visualized by
the trends of the features in comparison to the network flows features. Figure 5a,b show
respectively the trend of GLCM-2DDE and GLCM-Entropy (i.e., Shannon Entropy) for
the Port Scan attack. The blue plot shows the trend of the specific feature while the bar
graph (purple bars superimposed on the plot) identifies the windows where the attack
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is implemented and labelled. It can be seen in Figure 5a that the values of GLCM-2DDE
(called simply 2DDE in the rest of this paper) are notably higher in correspondence to the
Port Scan attack than the normal legitimate traffic. This difference is less evident for the
GLCM-Entropy feature. These differences in values are the reason why the performance of
GLCM-2DDE is higher than the GLCM-Entropy when ML is applied.

We highlight that Figure 5 and the previous paragraph are only used for informational
purposes to provide to the reader with a visual recognition of the difference of the trends
in the data set once two different entropy measures are applied to the network flows data.
Figure 5 is not used to select features for the classification phase because the SFS is used for
this purpose as described in Section 4.

(a) Trend of the GLCM and 2DDE feature with m = 2 and c = 3 (FID = 6) on the
CICIDS2017 data set (DDoS and legitimate traffic only).

(b) Trend of the GLCM and Shannon Entropy feature (FID = 5) on the CI-
CIDS2017 data set (DDoS and legitimate traffic only).

Figure 5. Trends of two features on the CICIDS2017 data set (DDoS and legitimate traffic only) and
WS = 100. The purple bars indicate the labels of the DDoS attack.

4. Results
4.1. Optimization

This sub-section provides the results on the optimization of the hyperparameters
described in the previous sections.

A grid approach was used to determine the optimum values of the hyperparameters.
While, other methods (e.g., gradient, meta-heuristics algorithms) could be more efficient, it
should be considered that the ranges of values for each hyperparameter are quite limited.
In addition, the intention is to show in an explicit way the impact of each hyperparameter
for the detection performance. The metric is used to determine the optimal values of the
hyperparameters.
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The summary of the hyperparameters used in this study, the optimal values and the
range of the hyperparameters are shown in Table 3. In the rest of this sub-section and
related figures, we show how a specific hyperparameter impacts the detection accuracy
of the threat both for DDoS attack and Port Scan attack. For each presented result, the
other hyperparameters are set to the values identified in Table 3. The Decision Trees (DT)
ML algorithm was used to generate the results provided in this sub-section. As shown in
Section 4.3 the DT algorithm has a higher detection performance than the SVM and Naive
Bayes algorithms.

Table 3. Summary of the hyperparameters in the proposed approach and related optimal values.

Hyper-Parameter Description Range Optimal Value

QF GLCM quantization function [12,16,20,24,28,
32,36,40,44,48]

DDoS QF = 44, Port Scan QF = 40

WS Size of the sliding window [100,200,300,400,500] DDoS and Port Scan WS = 100
GD GLCM distance [1,2,3,4] DDoS GD = 2 and Port Scan GD = 1
NB(DT) Number of branches in the Decision

Tree algorithm
[4 . . . 20] DDoS NB = 12, Port Scan NB = 8

γ and C (SVM) γ and C in the Support Vector Ma-
chine algorithm

2[4...12],2[4...12] DDoS, Port Scan γ = 27 and C = 28

(SVM)

The following figures describe the results for the evaluation of the proposed approach
for different values of the hyperparameters and for the different features used in the study.
In most cases, the evaluation of a single hyperparameter is provided while the other
hyperparameters are set to the values described in Table 3 unless otherwise noted.

Figure 6a,b show respectively for the Port Scan and the DDoS attacks, the impact
of the GLCM distance GD for different values of the window size WS. These results are
obtained using all the 64 features identified in Table 2. It can be noted that the optimal
value of WS is 100 network flows, as the ER increases with larger values of WS. This may
due to the reasons that the difference between legitimate traffic and the traffic related to
the attack are more evident when the WS is relatively small. On the other side, WS = 100 is
the lower limit of WS to allow the GLCM to operate on a grayscale picture large enough to
obtain meaningful values. Figure 6a shows that a value of GD = 1 is optimal to detect the
Port Scan attack, while Figure 6a shows that a value of GD = 2 is optimal for the DDoS
attack. These results seem to indicate that there is no need to use values of GD larger than
2, which would also be more computing intensive.

Then, the impact of the quantization factor QF was evaluated. As described before,
the quantization factor in the GLCM definition is an important factor in the application of
GLCM. A large value of QF provides an higher granularity which can be beneficial in the
application of the ML algorithm for the detection of the threat. On the other side, a large
value of QF is more computing expensive for the calculation of the GLCM features and
2DDE as the resulting GLCM matrix are larger (the GLCM size is QF ∗ QF). This is an
important trade-off, which was investigated for each specific feature and for each attack.

Figure 7a,b shows the impact of the QF parameter on the detection accuracy respec-
tively for the Port Scan and the DDoS attack for the first 8 features (only the first 8 features
are provided in these figures for reasons of space, but subsequent figures will consider
all features). The value of WS is set to 100 since the previous Figure 6 has shown that
WS = 100 is the optimal value for attack detection. Figure 7a,b provide two important
results: the first is that they identify the optimal value of the QF parameter (QF = 40 for
the Port Scan attack and QF = 44 for the DDoS attack). The second is that they show that
the 2DDE features have a better performance than the other features. This result justifies
the assumption done in this paper for the application of 2DDE to the problem of IDS.
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(a) Error Rate (ER) dependence on GLCM distance GD for Port Scan attack.
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(b) Error Rate (ER) dependence on GLCM distance GD for DDoS attack.

Figure 6. Dependence on GLCM distance GD and Window size WS using best selected features. DT
algorithm is used.

Figure 7 shows only the first 8 features. Then, a more extensive analysis of the
detection performance of each of the 64 features was carried on by setting the optimal value
of the other hyperparameters (GD, QF and WS). The results are shown in Figure 8a,b where
the ER is reported for each feature identified with the FID identifier. To better visualize
the features related to 2DDE a red bar is used in the Figures. Figure 8a,b show that the
2DDE is able to obtain a consistent high detection accuracy in comparison to the other
features for all the 64 features. In particular, for both attacks, the values of m = 2 and c = 3
in the 2DDE definition provides a better performance than the values of m = 3 and c = 2
in the 2DDE definition. This result shows the higher detection performance of 2DDE in
comparison to the other features (e.g., Shannon entropy or variance). The results shown
in these figures also give an indication on the GLCM angle, which is most performing. In
general, the GLCM distance and angle defined by the 2-tuple [0 GD] (which corresponds
to FID = 1 . . . 8) provides better results (in terms of detection accuracy) than the other
2-tuples.
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(a) Error Rate (ER) vs. quantization factor of the GLCM QF for the Port Scan attack with
WS=100 for the first 8 features (FID = 1 . . . 8).

DDoS

Q
F
=

1
2

Q
F
=

1
6

Q
F
=

2
0

Q
F
=

2
4

Q
F
=

2
8

Q
F
=

3
2

Q
F
=

3
6

Q
F
=

4
0

Q
F
=

4
4

Q
F
=

4
8

Q
F

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
R

F
ID

=1,Contrast

F
ID=2

,Energy

F
ID

=3,Homogeneity

F
ID

=4,Correlation

F
ID

=5,Shannon Entropy

F
ID

=6,2DDE (m=2,c=3)

F
ID

=7,2DDE (m=3,c=2)

F
ID

=8,Sum of Variances

(b) Error Rate (ER) vs. quantization factor of the GLCM QF for the DDoS attack with WS =
100 for the first 8 features (FID = 1 . . . 8).

Figure 7. Dependence on GLCM distance GD and WS using the first 8 features (FID = 1 . . . 8). DT
algorithm is used.

The importance of 2DDE in comparison to other features for the IDS problem is also
visible, once SFS is applied to select the optimal set of features on the basis of the value of
hyperparameters already set. The results of the application of SFS is presented in Table 4,
where the 10 best features are shown respectively for the DDoS and the Port Scan attack. In
Table 4, the 2DDE features are highlighted in red. It can be seen that the 2DDE features are
substantially present among the 10 best features, which shows the the application of 2DDE
to this specific problem is an important element to achieve an higher detection accuracy of
the attack.

Table 4. Ten best features obtained for the Port Scan and the DDoS attack using the SFS approach.
DT algorithm is used.

Attack Ten Best Features

Port Scan (WS = 100, GD = 1) [2,7,13,15,38,42,49,53,54,62]
DDoS (WS = 100, GD = 2) [5,15,24,32,34,54,56,59,63,64]
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(a) Error Rate (ER) vs. all features for the PortScan attack with WS = 100, QF = 40 and GD = 1.
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(b) Error Rate (ER) vs. all features for the DDoS attack with WS = 100, QF = 44 and GD = 2.

Figure 8. Error Rate (ER) relation with all features with WS = 100. The features related to 2DDE are
highlighted with a red bar for improved visualization. DT algorithm is used.

4.2. Optimized Results

On the basis of the best features described in Table 4 and the optimal values of the
hyper-parameters defined in Table 3, the ER, FPR and FNR have been calculated using the
Decision Tree algorithm. It was also evaluated the impact of the size of the data set. From
the whole data set, a partitions of the whole data set have been selected and the ER, FPR
and FNR have been calculated. The results are presented in Figure 9 and related subfigures
where ’All’ means the whole data set and ’All/x’ is a partition by the factor x. The size
of ’All’ can be calculated from the values presented in Table 1. The partition is created by
extracting randonmly ’All/x’ elements from the whole data set. To mitigate the risk of bias,
the selection of the partition and the calculation of the results is repeated 100 times and the
results are averaged.

Both for the PortScan and the DDoS attacks, it can be seen that the performance of
the detection of the attack is lower for smaller partitions of the data set because it is more
difficult for the algorithm to discriminate the legitimate traffic from the traffic related to
the attack. This trend is coherent for all the three metrics (ER, FPR and FNR) and the
two attacks.
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Figure 9. ER, FPR and FNR for the PortScan and DDoS attack for different sizes of the whole data set.

To complete the previous results, the ROCs for the DDoS and the PortScan attacks are
presented respectively in Figure 10a,b. Since the FPR is relatively limited (because the data
set is quite unbalanced), a more detailed figure of the same ROCs (i.e., zoom of the previous
figures) is presented in Figure 10a,b respectively for the DDoS and the PortScan attacks.
The values of the EER for each value of WS are also reported. The results from the ROCs
confirm the previous result that the optimal value of the window size is WS = 100 because
an increase of WS produces slightly worst results in terms of ROCs and EER. It can also
been seen that the detection of the PortScan attack is slightly worse than the DDoS attack.
This may be due to the reason that PortScan attacks are more difficult to distinguish from
legitimate traffic than the DDoS attacks when the entropy measures are applied (especially
in the CIC-IDS2017 data set). The structure of the sequences of network flows features
in the DDoS attacks can be quite different from legitimate traffic (e.g., since a flooding of
messages is implemented) while the PortScan attack traffic may resemble legitimate traffic.
The weakness of the proposed approach in achieving an optimal FPR is also discussed
in the comparison with the literature results in Section 4.3. We note that the proposed
approach manages to achieve a very competitive FNR instead.
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(c) Detailed view of the ROC for the Port Scan
attack for different values of WS.
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for different values of WS.

Figure 10. ROCs and related EERs for the PortScan and DDoS attack for different values of WS. DT
with optimal hyperparameter values from Table 3 and optimal set of features from Table 4. The
bottom figures show the detailed view of the ROCs.

4.3. Comparison with Other Studies

On the basis of the optimization results obtained in the previous Section 4.1, we have
calculated the values of ER, FPR and FNR for the Port Scan and the DDoS attack and we
compared these results with the results in literature on the same CICIDS2017 data set. The
comparison is indicative because each study may have modified the initial data set in
different ways: a subset of the initial 78 features may be used or the data pertaining only
to specific attacks has been used. We must also consider that the CICIDS2017 data set is
relatively recent and not all the studies using it focused on a specific attack as it was done
in this study. The results are presented in Table 5 where the first three columns identify the
value of ER,FPR and FNR. The fourth column provides relevant notes (e.g., the specific
adopted algorithm). The fifth column identifies the specific attack (i.e., DDoS or Port Scan)
and the related study where the results were produced. Table 5 does also provides the
comparison of the machine learning algorithms: SVM algorithm, Naive Bayes algorithm
and Decision Tree.

The results show that the proposed approach is competitive against other approaches
proposed in literature. For example, in the case of the DDoS attack, the obtained ER (0.0016)
is smaller than the ER obtained by most of the other results with the exception of the
study [7] where it has the same value or the study [6] where the obtained ER is slightly
lower than the result obtained in this study (0.0015 rather than 0.0016). It has to be noted
that both [6,7] use sophisticated DL algorithms which are more computing demanding than
the approach proposed in this paper. In addition, it is noted that the approach proposed
in this paper is able to obtain a value of False Negative Rate (FNR) for the DDoS attack
(i.e., 0.00079), which is considerable lower than the result obtained by all other approaches.
On the other side, the FPR is worse than the value obtained by the other studies. Then,
this approach is particularly strong on the FNR performance but it is weaker on the FPR.
A potential reason why FNR is so low in comparison to literature is due to the sliding
window approach where the presence of only a single network flow labelled as an attack
in the data set is magnified to the size of the sliding window. The improvement of the FPR
is one of the actions for future developments and investigations on this approach.
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Table 5. Summary table of the ER, FPR and FNR results obtained with this approach (different
machine learning algorithms) and the results from literature.

ER FPR FNR Optimal Values and/Or
Notes

Approach-Attack

0.0016 0.0223 0.0008 NB = 12 This approach (Decision
Tree), DDoS

0.0084 0.0354 0.0069 γ = 27, C = 210 This approach (SVM), DDoS

0.0248 0.02 0.0251 none This approach (Naive
Bayes), DDoS

0.0045 0.0023 0.0476 Online Kernel Online
Anomaly Detection
(KOAD)

[10], DDoS

0.0016 N/A 0.0016 Deep Belief Network
(DBN) and Bidirectional
Gated Recurrent Unit
(BiGRU)

[7] DDoS

0.0015 0.0017 0.0068 Deep Neural Networks
(DNN)

[6], DDoS

0.0048 0.0618 0.0009 NB = 17 This approach (Decision
Tree), Port Scan

0.0082 0.0653 0.0038 γ = 28, C = 29 This approach (SVM), Port
Scan

0.0339 0.0571 0.0322 none This approach (Naive
Bayes), Port Scan

N/A 0.0094 0.0078 cost-sensitive differential
evolution classifier

[8], Port Scan

0.0051 0.004 0.0016 LSTM [9], Port Scan

The results obtained with the DDoS attack are confirmed by the results obtained by
the PortScan attack. The obtained FNR is better than the results obtained in literature
while the ER is also smaller than the results presented in other studies. In particular, our
approach achieves a similar ER to the results in [9], which uses a DL approach (i.e., LSTM).
On the other side, the FPR obtained with this approach is higher than the results obtained
in literature. Another result shown in Table 5 is that the Decision Tree algorithm has a
better detection performance than the SVM and Naive Bayes algorithms. This result is
consistent with [5] where the DT provided the optimal detection accuracy.

An evaluation of the use of all the GLCM angles was also implemented to validate the
adoption of only a limited set of GLCM angles as described in Section 3.3. The results are
provided in Table 6 using the Decision Tree algorithm. The results in Table 6 show that a
subset of the GLCM angles (as selected in this study) provides a better performance than
using all angles since the ERs for the subset are smaller than the ERs for all the GLCM
angles. The results are consistent for different values of WS and for both attacks of PortScan
and DDoS.

4.4. Computing Times

In the following Table 7, we report the computing time of the proposed approach with
the application of ML directly on the data set in a similar way to what was done in the
paper [5]. The approach proposed in this paper implements a dimensionality reduction
and the computing time to execute the machine learning algorithm on the reduced set is
minimal. On the other side, the time requested to calculate the GLCM is significant (34
s in average for the DDoS attack and 31 s in average for the PorScan attack) as shown in
Table 7. The average time needed to calculate the 2DDE entropy measure is also relatively
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high (63 s for the DDoS attack and 83 s for the PortScan attack). These calculated times are
based on WS = 100 since this was the window size with the minimum ER and the optimal
selection of features presented in Table 4. In this study, it was used a laptop with Intel i7
85550U CPU running at 1.8 GHz with 16 GBytes of RAM and no GPU.

Table 6. Comparison on the set of GLCM angles using Error Rate (ER): subset of angles used in this
study in comparison to the use of all the GLCM angles.

Attack and Set of
Angles

WS = 100 WS = 200 WS = 300 WS = 400 WS = 500

Port Scan (all angles:
128 features)

0.0081 0.0279 0.0311 0.0311 0.0292

Port Scan (subset of
angles: 64 features)

0.0048 0.0078 0.0098 0.0112 0.0125

DDoS (all angles:
128 features)

0.0026 0.0032 0.0045 0.0048 0.0062

DDoS (subset of an-
gles: 64 features)

0.0016 0.0029 0.0035 0.0046 0.0051

Table 7. Computing times in seconds (s).

Approach Step Computing Time (s) Attack

Decision Tree algo-
rithm execution

1 s DDoS

GLCM computation 34 s GLCM DDoS

2DDE computation 63 s GLCM DDoS

Decision Tree algo-
rithm execution

1 s PortScan

GLCM computation 31 s GLCM PortScan

2DDE computation 83 s GLCM PortScan

5. Conclusions

This study proposes a novel approach for IDS based on anomaly detection which is
based on the transformation of the network flows metrics into grayscale images. Then, the
Gray-Level Co-occurrence Matrices (GLCM) are calculated on the grayscale images and
features are calculated on the GLCM. Beyond the application of well known GLCM Haralick
features (i.e., contract, homogeneity, entropy), this paper proposes the novel application
of 2D Dispersion Entropy (2DDE) recently proposed in literature. The results show that
the application of 2DDE to GLCM significantly enhances the detection accuracy of the
proposed IDS. The approach is applied to the recently published CICIDS2017 data set for
two specific attacks: DDoS and Port Scan. The results of this approach are compared with
the results obtained by other studies on the same CICIDS2017 data set obtaining an Error
Rate (ER) which is higher or comparable with the results obtained with more sophisticated
approach based on Deep Learning, which requires considerable more computing resources
than our proposed approach. In addition, the False Negative Rate (FNR) obtained with
our approach is significantly better than all the other results obtained in literature. On
the other side, the False Positive Rate (FPR) is slightly worse than the results obtained in
literature. This may due to the possibility that the transformation of the network flows
features to gray level images and then GLCM-base features has the tendency to lose the
specific characteristics of the attack related traffic in comparison to the normal traffic.

Future developments will try to improve the FPR by adopting improvements of the
proposed approach in different directions. One direction would be to use Fuzzy Gray-
Level Co-occurrence Matrices since it has demonstrated a superior performance in some
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applications, but it has not been used in IDS problems. Another direction would be the
application of non linear GLCM where the quantization factor is calculated in a non linear
way. The significant number of hyperparameters to tune in the approach (both in the
GLCM definition and 2D dispersion entropy definition) is also a challenge to mitigate for a
practical deployment of this approach. One possibility to resolve the challenge would be to
investigate the application of meta-heuristics algorithms (e.g., particle swarm optimization)
to automatically tune the hyperparameters. Another possibility would be to investigate the
hyperparameters optimization in other data sets to generalize the selection of the optimal
values. Finally, the combination of GLCM together with Deep Learning algorithms will
also be considered. For example, Convolutional Neural Networks (CNN) could be applied
to the GLCM representations rather than the initial gray-scale images derived directly from
the network flows statistics.
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