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Abstract: With the increase in renewable energy connected to the grid, new challenges arise due
to its variable supply of power. Therefore, it is crucial to develop new methods of storing energy.
Hydrogen can fulfil the role of energy storage and even act as an energy carrier, since it has a much
higher energetic density than batteries and can be easily stored. Considering that the offshore wind
sector is facing significant growth and technical advances, hydrogen has the potential to be combined
with offshore wind energy to aid in overcoming disadvantages such as the high installation cost
of electrical transmission systems and transmission losses. This paper aims to outline and discuss
the main features of the integration of hydrogen solutions in offshore wind power and to offer a
literature review of the current state of hydrogen production from offshore wind. The paper provides a
summary of the technologies involved in hydrogen production along with an analysis of two possible
hydrogen producing systems from offshore wind energy. The analysis covers the system components,
including hydrogen storage, the system configuration (i.e., offshore vs. onshore electrolyzer), and the
potential uses of hydrogen, e.g., Power to Mobility, Power to Power, and Power to Gas.

Keywords: green hydrogen; offshore wind; techno-economic analysis; water electrolysis;
grid integration

1. Introduction

Hydrogen is a gas that can be easily produced using electrolysis and that has several
potential applications, ranging from an energy source for transportation to being mixed
into the natural gas grid, along with current applications in fuel refining and fertilizer
production. Historically, hydrogen production is based on fossil fuels and emits a large
amount of CO2; however, in the last decades, significant advances have been made in
electrolysis and renewable energy production, making possible the production of green
hydrogen at a reasonable price point.

Furthermore, with governments pushing the reduction of carbon emissions and
lowering the dependence on fossil fuels, the demand for green hydrogen has risen quickly
and is expected to rise substantially in the coming years. With the help of incentives and
policies, green hydrogen is undergoing significant investigation around the world, with
the objective of producing hydrogen without carbon emissions that, with a small incentive,
can compete with traditional hydrogen production methods.

Fuel cells are devices that use hydrogen to produce electricity, with the only by-
products being water and heat. In recent years, fuel cells have also experienced significant
advancements; they are starting to be used in commercial applications like passenger cars,
trucks, buses, and grid-connected dispatchable power plants. One of the reasons electrical
grids are still dependent on fossil fuels is due to their ability to regulate power production.
Since typical renewable energy sources like wind and solar energy are intermittent, their
power output can’t be regulated (hydroelectric dams with reservoirs provide some flexibil-
ity but ultimately are dependent on rainfall upstream). Hydrogen can serve as an energy
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storage solution, where dispatchable fuel cells that run on green hydrogen can produce
power when needed without any carbon emissions.

Wind power produces roughly 5% of the world’s electricity [1], with most installations
onshore. However, higher wind speeds and more consistent wind can be found offshore,
which leads to higher energy production per turbine installed; the disadvantages are higher
cost and technical challenges due to the rough sea conditions to which the equipment
is subjected. One of the challenges is transporting the electricity back to shore, since
traditional AC power cables have higher capacitance and thus higher losses than overhead
lines, and more recent High Voltage Direct Current (HVDC) systems are expensive due
to the converter stations necessary at each end of the transmission line. Considering
that the transportation of gas in a pipeline suffers much smaller losses (<0.1%) [2,3] than
electricity passing through an offshore cable, a case can be made for the production of
hydrogen offshore, with pipelines to transport it to shore. From an economic perspective,
the cost per unit length of an offshore pipeline is higher than an offshore cable. However,
the pipeline’s energy transmission capacity is greater than the cable, resulting in lower
normalized pipeline capital costs compared to an equivalent offshore electrical cable to
transmit the same energy [3].

Two system configurations can be found: the first consists of an offshore wind farm,
offshore electrolyzer, and onshore hydrogen storage, while in the second system the
electrolyzer is located onshore. A fuel cell can be added in both systems to provide
electricity in high-demand periods and act as frequency control for the grid. For the
first system, the electricity generated by the wind turbines travels a short distance to the
electrolyzer platform, where hydrogen is produced, compressed, and transported to shore
in a pipeline. On the other hand, for the second system, the electricity is transmitted to
shore by a traditional cable, where a choice can be made: sell the electricity directly to
the grid or produce hydrogen. This is known as a hybrid system, where the operator can
control the amount of power being sold to the grid or fed into the electrolyzer, even being
able to buy electricity from the grid to produce hydrogen during periods of extremely
low electricity prices, which provides load flexibility to the grid operator as well. Since
the source of the electricity powering the electrolyzer is wind farms, no carbon is emitted
during the production of hydrogen.

This paper is concerned with hydrogen production using electricity coming from
offshore wind farms, i.e., green hydrogen production. The paper offers an overview of the
current situation on the subject by highlighting the main features of the technologies used
by the different components of the hydrogen production system as well as an outline of
the system configuration options (offshore vs. onshore electrolyzer location) and potential
uses of hydrogen. Moreover, the paper reviews the main recent research topics related
to the subject through a thorough literature review, including state-of-the-art reports and
journal papers. The aim is to point out directions of future developments in green hydrogen
production from wind power and other renewables.

The remainder of the paper is organized as follows. In Section 2, a discussion of the
system components used for hydrogen production from offshore wind power is offered.
The system configurations, i.e., the option between the offshore and onshore location of
the electrolyzer, are discussed in Section 3. A summary of the main hydrogen uses is
presented in Section 4. Section 5 contains a literature review of the main subject areas being
investigated, including a comparison regarding the Levelized Cost of Hydrogen (LCOH)
produced from different renewable energy sources. Finally, in the last section, the main
conclusions of the work performed are drawn.
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2. System Components

The hydrogen production system is composed of the offshore wind farm, for electricity
production, the electrolyzer, for hydrogen production, and the hydrogen storage system.

2.1. Offshore Wind

When analysing fixed bottom wind turbines or floating turbines the main differences
are cost and the locations where each technology can be implemented. The fixed bottom
is the most used technology by a significant margin, with 24,952 MW installed in Europe,
compared to only 62 MW of floating wind installed in Europe at the end of 2020 [4]; thus, it
is the most cost-effective solution in offshore wind farms. However, floating wind prices
are expected to lower rapidly in the next few years and allow access to much deeper waters;
this will be useful in countries that do not have shallow water far from shore. The water
depth around Europe is assessed in [5]; only the North Sea, Irish Sea, and a few other areas
have a somewhat shallow depth where fixed bottom foundations can be installed. On the
other hand, the water around the Iberian Peninsula and southern Europe can get be much
deeper not too distant from the shore.

The report in [6] shows a projection of the Levelized Cost Of Energy (LCOE) of
both bottom fixed and floating wind until 2050. The report indicates a current LCOE of
175 €/MWh for floating and 90 €/MWh for fixed bottom technologies. In 2050, these two
figures are estimated to converge to 35 €/MWh.

The installation of fixed bottom wind turbines involves the use of a specialized boat
capable of burying the foundations deep in the seabed, along with a crane to assemble the
tower, nacelle, and individual blades. Comparing with floating wind, this newer approach
can be fully assembled on land or dry dock and afterward be towed by a regular tugboat
to the project’s location. This much simpler installation can be another factor in lowering
the costs; when more floating substructures are built, economies of scale have their effect.
Europe is the leader in offshore wind power, and most of the installed power is in the
North Sea (79%, according to WindEurope [4]), a location with high wind speed [5] and
relatively shallow water and thus a good candidate for fixed bottom installations.

Around 80% of offshore wind resources are located in waters deeper than 60 m (where
fixed bottom installations are not feasible), and average wind speeds increase further from
shore [7]. To access this potential, floating wind currently represents the best approach;
with the number of installations planned in the coming years, the future of floating wind is
looking bright.

The first floating wind farm ever built on a commercial level is Hywind Scotland [8,9],
composed of 5 turbines of 6 MW each, supported by a spar buoy. It has been producing
energy since 2017. The buoys are 78 m in length and are attached to the seabed by 3 moor-
ing lines. Although this is a simple design, added installation problems can arise from
the dimensions of the buoy, such as the inability to be assembled on a simple port. More
specifically, for hydrogen production, the individual electrolyzer approach is not as straight-
forward due to the cylindrical shape of a spar buoy, which limits the amount of space
available to install an electrolyzer and the remaining infrastructure. Consequently, this
structure requires more substantial modifications when compared to a semi-submersible
platform, making the latter the most cost-competitive floating platform for an individual
electrolyzer project [10].

One of the first wind farms deployed on a commercial level using a semi-submersible
platform is WindFloat Atlantic in Viana do Castelo, Portugal. It was commissioned in
2020 [4] and is composed of 3 turbines of 8.4 MW each, supported by a semi-submersible
structure made of 3 cylindrical buoys 30 m high and 50 m apart. Some advantages of this
design are the simple assembly of the wind turbine on the structure in port and, due to
hydrogen production by individual electrolyzers, the unobstructed area of 1082 m2, with
some modifications. Several other projects using similar platform designs are planned in
the coming years [4].
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2.2. Electrolyzer Technologies

An electrolyzer is a device that receives DC electricity and demineralized water and
separates the hydrogen and oxygen atoms from the water molecule through a chemical
reaction, generating high purity oxygen and hydrogen. While different technologies for
electrolyzers operate in slightly different ways, all have an anode and cathode that are
separated by an electrolyte.

Currently, there are two technologies used in commercial applications for the produc-
tion of hydrogen: Alkaline Electrolyzer (AEL) and Proton Exchange Membrane Electrolyzer
(PEMEL) [11,12]. Another technology undergoing intense research and development is
Solid Oxide Electrolyzer (SOE), which promises high efficiencies and flexibility, but at the
cost of both high operating temperatures (700 to 900 ◦C) and durability [11,12].

2.2.1. Alkaline Electrolyzers

AELs are currently the cheapest technology and have the longest lifetime, due in part
to being the oldest of the technologies mentioned above [11,12]. This type of electrolyzer
has been used in the industry for roughly 100 years; thus, while further progress is expected,
both PEMEL and SOE development will surely be faster [11]. However, they cannot react
as fast to changes in production, require complex maintenance of the alkaline fluid, cannot
operate below a certain threshold for safety reasons, take longer to start, and present a rather
low current density when compared to PEMEL, around 5 times lower [13]. In addition, the
output pressure of the hydrogen produced is lower, which requires higher compression for
transport and storage, reducing the advantage the lower CAPEX provided initially.

Historically, this type of electrolyzer has been operated at almost constant power
while connected to the grid and recently has seen improvements in the ability to change
hydrogen production rate without relevant efficiency losses. One of the highest-powered
electrolyzers is a 4 MW module [14], which is claimed to have a dynamic response fast
enough to follow the production of a renewable power plant. Furthermore, it is also said
that the current density is double compared to the previous generation, that the output
pressure is 30 bar, and that it has increased longevity compared to newer technologies [15].

2.2.2. Proton Exchange Membrane Electrolyzers

PEMELs are more recent than AELs and come with several advantages, such as much
faster start-up times, higher current densities which lead to smaller electrolyzer footprints,
higher hydrogen purity (>99.8%), operation beyond nominal power, and higher output
pressure [11–13].

The report in [11] offers a comparison between the main features of PEMEL and AEL
in 2017 and projected to 2025. With regard to the AEL (PEMEL figures in brackets) efficiency,
an increase from the current 65% (57%) to 68% (64%) in 2025 is expected. At the same
time, a decrease in the AEL (PEMEL) CAPEX from the current 750 €/kW (1200 €/kW) to
480 €/kW (700 €/kW) is foreseen by 2025. As far as the electrical consumption is concerned,
some improvements are also to be expected. Currently, an AEL (PEMEL) consumes about
51 kWh (58 kWh) of electricity to produce 1 kg of hydrogen. The figure is foreseen to drop
to 49 kWh/kg (52 kWh/kg) by 2025.

When combined with a renewable power source, the ability to easily adjust the
power to suit the conditions and a quick start-up time are two great features that allow
this technology to extract the most out of intermittent power sources. During periods of
shutdown, low amounts of energy are required to maintain system operation [11,12]; this
is an important fact to consider if the electrolyzer is to be kept offshore or if it will not be
grid-connected. Furthermore, a backup power source must be provided if coupled with
a renewable power source, since the intermittent nature of this type of power does not
guarantee the necessary energy during shutdown periods.

Despite PEMELs having made significant progress in recent years in efficiency, output
pressure, ramp up and ramp down times, and CAPEX, they are still considerably more
expensive than AEL and do not have the same longevity [12]. The main reason for the high



Appl. Sci. 2021, 11, 5561 5 of 19

price is the significant amount of platinum needed to build the stack of the electrolyzer. The
efficiency curve in Figure 1 is a typical efficiency curve of a generic electrolyzer. It is based
on the average of efficiency curves of several commercial electrolyzers as taken from [11].
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2.2.3. Solid Oxide Electrolyzer

The SOE is the newest of the three technologies and currently is rarely used in com-
mercial applications due to the high operating temperatures (usually in the range of
700–900 ◦C) and lower longevity. This type of electrolyzer promises better efficiency than
all other technologies and unlike PEMEL does not require any precious metals, which
makes it possible to reach a lower CAPEX once the technology matures [12]. While the
high operating temperature is a disadvantage, especially for intermittent power sources, it
does not present as big an obstacle when coupled with nuclear or combined cycle power
plants. In the case of renewable energy, Concentrated Solar Power (CSP) accompanied with
an SOE is an option under study, since the waste heat from CSP can be used for heating
the SOE [11].

2.3. Hydrogen Storage

Storage of hydrogen is similar to natural gas, with a few key differences: mainly, when
some metals come in contact with hydrogen they can suffer hydrogen embrittlement, which
leads to increased degradation and chance of material failure [15]. Another difference
to consider is increased leakage, especially in underground natural structures such as
aquifers, but also in links between pipeline sections or links in valves, due to the small
size of the hydrogen molecule [15]. The bacterial reaction also constitutes a problem, since
some bacteria decompose hydrogen, leading to what can be considered losses, as the purity
of stored hydrogen decreases [2]. The main approaches in storing hydrogen are gaseous
storage and liquid storage; other approaches like chemical storage exist, but only on a
much smaller scale, so they won’t be considered.

Gaseous storage can be divided into two methods: fabricated tanks (usually metal)
and storage in natural underground structures like aquifers and salt caverns. Hydrogen
density has a nearly linear relation with pressure [16], so a greater storage pressure leads
to a smaller volume needed to store a certain amount of hydrogen gas. However, due to
material properties and operational costs, hydrogen is not stored at pressures higher than
100 bar [15], which corresponds to a density of roughly 7.8 kg/m3 [15].
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A simple model can be developed to compute the rough dimensions of the storage
facilities needed.

The flow rate of a typical 25 MW electrolyzer is Qn = 5000 Nm3/h [17]. To convert
the hydrogen flow rate (Qn) from Nm3/h to mass (M) in ton/day, Equation (1) is used.

M =
24Qn

11.1
× 10−3 (1)

In Equation (1), the factor 24 converts hours into days, the factor 11.1 comes from
knowing that 1 kg of hydrogen equals 11.1 Nm3 of hydrogen (Normal conditions are 0 ◦C
temperature and 1 atm pressure), and the factor 10−3 is to convert kg to ton.

The corresponding hydrogen volume V in m3/day is

V =
M

7.8 × 10−3 (2)

where 7.8 × 10−3 ton/m3 is the hydrogen density for a pressure of 100 bar at a temperature
of 20 ◦C.

A linear variation of the hydrogen flow rate with the electrolyzer power was consid-
ered. This allowed us to obtain the flow rates for the electrolyzer power ranging from
25 MW to 1000 MW. Table 1 contains the electrolyzer power, flow rate, mass (Equation (1))
and volume (Equation (2)) of hydrogen produced per day if the electrolyzers are run at
full power.

Table 1. Electrolyzer power, flow rate, and mass and volume of hydrogen produced.

Power (MW) Flow Rate (Nm3/h)
Hydrogen Mass

(ton/day)
Hydrogen Volume

(m3/day)

25 5000 10.8 1386
100 20,000 43.2 5544
500 100,000 216 27,720

1000 200,000 432 55,440

The linear approximation used was based on a similar commercial 17.5 MW PEMEL
that produces 340 kg/h [18]. When linearly scaled to 25 MW, a production rate of
11.6 tons/day is achieved, a similar value to the one presented in Table 1 (which is
10.8 tons/day).

To estimate the dimensions of the cylindrical storage tanks, the equation for a cylin-
der’s volume (Equation (3)) was used, where V is the storage tank volume, h is the height,
and r is the radius.

V = h · π · r2 (3)

Table 2 contains the possible approximate radius and height for cylindrical tanks to be
able to store all the hydrogen produced during 24 h with the electrolyzers at full power.

Table 2. Possible approximate dimensions for gaseous storage facilities.

Power (MW) Hydrogen Volume
(m3/day) Cylinder Radius (m) Cylinder Height (m)

25 1386 9 6
100 5544 13 11
500 27,720 25 15
1000 55,440 30 20

Table 2 shows that even for large electrolyzer projects (1000 MW, for instance) the
required storage facilities are feasible, and the corresponding dimensions are reasonable
and therefore practicable.
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The most cost-effective and practical way of storing large quantities of hydrogen as
a gas is using underground natural structures. Aquifers are not as well sealed as salt
caverns, which leads to increased leakage [15,19]. While some leakage might be reasonable
when storing natural gas, due to the small size of the hydrogen molecule the leakage rate
increases significantly; for this reason, aquifers are not adequate to store hydrogen. Salt
caverns are the best underground storage structures for several reasons, including low
construction costs, low leakage rates, fast withdrawal and injection rates, and a harsh
environment for bacteria, which decreases unwanted bacterial activity [2,15,19]. Initial
research shows no significant difference between storing hydrogen compared to natural
gas in these structures, and pure hydrogen is already stored using this approach in Teeside,
the UK, and Texas, USA [2,19].

The second approach consists of storing liquid hydrogen in metal tanks, a process
similar to what is widely used for Liquified Natural Gas (LNG). The main advantage is
the high density in the liquid state of 70 kg/m3 [15], which is almost 10 times the density
of hydrogen in a gas state at a pressure of 100 bar. However, the liquefaction of hydrogen
is a very energy-intensive process, with anywhere from 6 to 10 kWh of electricity needed
to liquefy 1 kg [15,20] of hydrogen. The current installed liquefaction capacity is around
355 tons per day [15], below the necessary capacity needed for a 1 GW plant. The main
reasons for the low liquefaction capacity are the high initial investment associated with
liquefaction plants and the high energy consumption to liquefy the hydrogen.

3. System Configurations

There are two possible options for the system configuration related to the location of
the electrolyzer: it can be placed offshore, near the wind farm, or onshore, near the existing
grid coupling point.

3.1. Offshore Electrolyzer Scenario

One of the significant costs in an offshore wind farm is the equipment to bring the
electricity to shore, namely the cables, transformers, and power electronics. Considering
a High Voltage Alternating Current (HVAC) transmission system, losses are around 1%
to 5% for wind farms with nominal power from 500 to 1000 MW and located 50–100 km
from shore [21,22]. For a HVDC system, losses range from 2% to 4%, depending on
nominal power and distance [21,22]. However, hydrogen travelling through a pipeline
has considerably lower losses, under 0.1% [2,3], along with reduced initial costs for an
underwater pipeline compared to underwater electrical cables and the power electronics
needed. Figure 2 contains an overview of the centralized offshore electrolyzer system.
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PEMELs represent the best choice for this system due to the smaller footprint and
easier maintenance [11], which in an offshore scenario means the platform can be smaller
and the maintenance trips can be further apart.

Since the output pressure of a PEMEL is around 30 bar [11,17], additional compression
is required to export the hydrogen to shore. The hydrogen compressor and export pipeline
must be sized according to the distance to shore, operating pressure of the electrolyzer, flow
of hydrogen, and pressure drop along the pipeline. A study done by North Sea Energy [23]
estimated the required pipeline diameter and pressure, assuming an output pressure of
68 bar and 20 m/s maximum travel speed. The results show that for a 1 to 2 GW wind
farm located 50 to 200 km from shore, the minimum diameter of the pipeline ranges from
0.25 to 0.41 m, while the minimum input pressure ranges from 83 to 100 bar.

To size the PEMEL, the nominal power does not need to be equal to the wind farm’s
nominal power, since the wind farm might not spend large periods of time at nominal
power. From an economic point of view, the most interesting approach might be to slightly
undersize the electrolyzer, since the revenue lost when the wind farm is at nominal power
could be lower than the additional cost of a more powerful electrolyzer [6]. Furthermore,
the energy used in purifying the water and compressing the hydrogen for transmission,
along with the wake and array losses, lowers the actual available power for the elec-
trolyzer [24].

A backup power source must be provided for the electrolyzer during periods of
shutdown, when the electrolyzer must consume a small amount of power to remain in
stand-by mode [11]. Periods of shutdown are not common and do not last long, due to the
PEMEL capability of being able to start operating at 1% nominal power, although with
low efficiency.

Two electrolyzer configurations are possible: a unique centralized electrolyzer fed
by the whole wind park or individual electrolyzers, one per wind turbine. The details of
each configuration are given below. The main components for the centralized electrolyzer
system are the same as for the individual electrolyzer system, since the operating principle
is similar. The components are

• PEMEL and the supporting electronics
• AC-DC rectifiers (possibly already included in electrolyzer)
• Desalination unit and reservoir for desalinated water
• Seawater pumps
• Export pipeline
• Backup power source
• Communication equipment

3.1.1. Centralized Electrolyzer

In a centralized electrolyzer system, the individual installation of the wind turbines
is the same as a typical offshore wind farm, with turbines in strategic places to minimize
losses by the wake effect. The power produced by each individual turbine is transmitted to
a central platform through regular underwater cables; while voltages can differ, newer and
higher power turbines, such as the Haliade-X 13 MW [25], operate at 66 kV.

Once the electrical power reaches the central platform, most of it can be rectified to DC;
the other part is used to power the seawater pumps and hydrogen compressor in AC. The
DC power is used mainly to produce hydrogen but also to power the backup power source
and the supporting systems. The produced hydrogen exits the electrolyzer at high purity
and with a pressure of 30 bar, so the next step is compressing it to the desired pipeline input
pressure. After being compressed, the hydrogen is fed into the export pipeline, where it is
transmitted to the shore.
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3.1.2. Individual Electrolyzers

When sufficient wind is present, most of the electricity is fed into the rectifiers to
power the electrolyzers and possibly refill the backup power source. The remaining power
is used to power the seawater pumps, which need AC electricity. In the case of no offshore
compression, the produced hydrogen exits the electrolyzer and is exported by a small
dimension pipeline to a subsea collection manifold, which receives the hydrogen produced
by each turbine-electrolyzer system and exports it to shore using a bigger diameter pipeline.
However, if offshore compression is needed, the hydrogen exits the electrolyzer and is
exported by a small dimension pipeline to a collection manifold in a platform, compressed
to a desired pressure, and exported to shore by a pipeline.

This approach becomes more viable as the nominal power of a turbine keeps increas-
ing, since more powerful electrolyzers can be installed individually, and economies of scale
can play their part [23]. In [23], it is projected that the price per MW of a PEMEL will
decrease from the current (2020) 0.75 M€/MW to 0.2 M€/MW by 2050. It is also projected
that at around 10 MW, the cost per MW of hydrogen production power starts decreasing at
a much slower rate, especially after the year 2030.

Since bottom fixed and some floating options, such as a spar buoy, require significant
modifications to be able to support the extra infrastructure, the semi-submersible platform
like the one used in WindFloat Atlantic is the best choice for the individual electrolyzer
approach [10]. To make the platform suitable for all the equipment, modifications need
to take place, such as creating a floor on which to put the equipment that is shielded
from waves and possible water splashing, as well as modifying the buoys and ballast to
accommodate the additional weight.

3.2. Onshore Electrolyzer Scenario

This approach is also known as a hybrid system, where the energy produced is
transmitted to shore as electricity in conventional cables; once onshore, the energy can be
sold directly to the grid or used to produce hydrogen. The main advantage of this system
is flexibility: when the market price for electricity is high, the investor can sell electricity
directly to the grid; when the market price is low or grid level curtailment must occur,
the energy can be redirected to an electrolyzer to produce hydrogen. Curtailment occurs
when the production of electricity is greater than the consumption, which leads to a need
to reduce the production. Figure 3 contains an overview of the onshore electrolyzer system.
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Since in this approach the electrolyzer will be onshore, it is possible to place the
electrolyzer and all other sensitive equipment inside a building, where they can be shel-
tered from the elements; this also provides a better work environment for the personnel
responsible for the operation and maintenance. Furthermore, since access to the elec-
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trolyzer is much simpler than if it was offshore, the increased maintenance requirements
and decreased power density of an AEL do not present as big an obstacle, so the reduced
CAPEX of this technology means both AEL and PEMEL are viable when the electrolyzer is
installed on land.

HVDC is a more expensive technology that only becomes interesting when wind
farms are located far from shore and/or have high nominal powers [26]. In the case of
HVAC, longer lines imply more powerful line-reactive compensators to account for the
capacitive losses, which in turn increases the cost. Since HVDC transmission does not
show capacitive losses—only ohmic losses occur—the transmission losses and costs are
significantly lower for HVDC. To summarize, transmission losses and costs are lower in the
case of HVDC, and even though the initial investment for HVDC transmission (stations and
equipment) is higher than HVAC, the difference in cost diminishes when the transmission
distance increases. The break-even distance for which HVDC becomes preferable is around
50–100 km for underground and underwater cables [26].

Regarding the source of water, the two possible options are connecting the electrolyzer
to the freshwater grid, an option that might not be viable due to environmental concerns in
areas with recurring droughts, like southern Europe, or installation of a desalination unit
next to the electrolyzer. Even though the water produced by a desalination unit is clean,
and the water in freshwater grids has been previously treated, further treatment such as
deionizing the water is still required for both options before being used in electrolysis [27].

4. Hydrogen Utilization

One of the properties of hydrogen that makes it so interesting is the wide array of
utilization cases. Historically, hydrogen production was based on fossil fuels, so there
wasn’t an incentive to adopt hydrogen as an energy source since it had a carbon footprint.
However, recent studies project significant cost reductions in electrolyzers in the coming
years [11,20,27], with the possibility of green hydrogen becoming competitive with hydro-
gen produced from fossil fuels. Hydrogen electrolysis can also be a great way of reducing
emissions, be it by working as energy storage to help when renewable resources are scarce
or by reducing emissions caused by other polluting ways of producing hydrogen. The use
cases for hydrogen can be divided into three main areas: generating electricity, Power to
Gas (P2G), and hydrogen as the end product.

4.1. Generating Electricity

Hydrogen currently represents the best non-fossil fuel for some heavy vehicles that
require large energy storage and fast recharge rates, such as long-haul trucks, buses, hybrid
trains designed to operate on both electrified and non-electrified train tracks, and even
for a common car, since refilling the hydrogen tank takes a few minutes and gives around
600 km of range [28]. This application is denominated as Power to Mobility (P2M).

For grid applications, the fast response time of some fuel cells makes them adequate
as dispatchable power plants for peak demand or for frequency control. This application is
denominated as Power to Power (P2P). Furthermore, some solid oxide systems can operate
with high efficiencies in both electrolyzer and fuel cell modes; however, it should be noted
this technology has not reached the commercial level yet [12,29].

The main fuel cell technologies are Polymer Electrolyte Membrane, also known as Pro-
ton Exchange Membrane (PEMFC), Alkaline (AFC), Phosphoric Acid (PAFC), Molten Car-
bonate (MCFC), and Solid Oxide (SOFC) [30]. The first two are considered low-temperature
fuel cells, and the remaining are high-temperature fuel cells. As far as the efficiencies are
concerned, they range from 40% (PAFC) to 60% (PEM, AFC, SOFC), with MCFC in be-
tween (50%).

Both AFC and PEMFC have quick start-up times; however, PEMFC presents greater
power density, so it is the primary choice to equip hydrogen-based vehicles. Due to this
emerging market, intensive research and development of PEMFC is being performed by
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car and bus manufacturers; consequently, cost reductions and increased durability are
expected in the coming years.

Most stationary installations of fuel cells are at high operating temperature [31], with
one example being the 50 MW Daesan Hydrogen-Fuel-Cell Power Generation that started
operating in South Korea in 2020. The plant is composed of 114 PAFC fuel cells and will
produce around 400,000 MWh of energy annually [32,33].

In the past few years, PAFC and MCFC have presented the highest growth rate,
though this is expected to change due to several companies offering PEMFC in the order of
>1 MW [31], some of them stackable modules.

4.2. Power to Gas

Hydrogen is a highly flammable gas, so it is possible to inject some hydrogen into the
natural gas grid without significant modifications to the grid or the systems that use natural
gas. This application is denominated as P2G. Some pilot projects already in operation
blend up to 20% hydrogen in localized natural gas grids such as small communities or
universities [34]. Several studies support the idea that a low concentration of hydrogen (up
to 15–20%) in the natural gas grid does not significantly increase the risk associated with
utilization of the gas [35,36].

Another approach is being studied at several locations, including Central do Ribatejo
in Portugal by EDP [37], where a 1 MW electrolyzer produces hydrogen during ramp down
periods and stores it at 300 bar (storage capacity of 400 kg, which is around 13 MWh).
The project plans to study the injection of hydrogen in the natural gas grid and the co-
combustion of hydrogen and natural gas in a regular gas turbine. This installation is part
of an international project named FLEXnCONFU, which aims to integrate hydrogen and
ammonia in the electrical grid [38].

4.3. Hydrogen as the End Product

Arguably the best industry to sell green hydrogen is the already existing industry for
hydrogen, predominantly used in refineries and for ammonia production. The estimated
demand in 2018 was above 80 million tons [27]. Since this industry is already in place, the
source of hydrogen can simply be gradually replaced by green hydrogen, especially as the
LCOH of green hydrogen continues to decrease.

While ammonia can be the end product, it can also act as a carrier of hydrogen in order
to facilitate transport with an equivalent hydrogen density of 122.4 kg/m3 at a temperature
of around 25 ◦C and a pressure of 10 to 20 bar. When compared to liquid hydrogen, the
density is roughly 75% higher, and it can be transported at ambient temperatures and low
pressures. The main disadvantage is the increased cost and complexity of producing the
ammonia and afterwards decomposing it to recoup the hydrogen [20].

5. State-of-the-Art Review

The annual production of hydrogen in the EU is roughly 9.75Mt; this is currently being
produced using carbon-intensive methods, which would require 290 TWh of electricity if
the hydrogen was produced solely from electrolysis, around 10% of current production
in the EU. In 2020, G. Kakoulaki et al. [39] concluded that the EU has enough renewable
energy resources spread throughout member countries to satisfy the hydrogen demand
solely using green hydrogen, thus allowing for decarbonization of the sector.

Electrolyzers can play a role in adding flexibility to an electricity grid. A technical
analysis was conducted by D. Gusain et al. [40] to study the use of electrolyzers as flexi-
bility service providers. A model for large-scale PEMEL was developed, along with the
simulation of different use cases, to assess frequency regulation, flexibility provision, and
long-term impact analysis of a PEMEL connected to the CIGRE MV grid [41]. For the first
use case, the electrolyzer’s response was adequate, and even though the test had a 40 min
duration, no cell degradation took place. For the second case, the electrolyzer was used to
correct the difference between the expected power injection and the real power injected at



Appl. Sci. 2021, 11, 5561 12 of 19

a certain bus. The bus had a wind farm attached, so a forecast was made of the expected
power produced throughout the day. The results showed the electrolyzer ensured that
the real power was equal to the forecast power, which means an electrolyzer can be used
to provide flexibility to the grid operator. In the final case, the electrolyzer was run at a
constant current for a year; a drop in efficiency of 0.8% was calculated. Over a duration of
five years, the efficiency drop increased to 3.5%. The impact derived from these efficiency
drops must be taken into account in long-term strategies, so that the flexibility provided by
the electrolyzer is always correctly assessed.

The sizing of electrolyzers must weigh numerous factors, namely the power produced
by the wind farm and if there is a grid connection to provide power to the electrolyzer
during low wind periods. The main advantage of the grid connection is a more consistent
hydrogen production rate, and the main disadvantage is not being able to guarantee 100%
carbon-free hydrogen due to consuming power from the grid. José G. García Clúa et al. [42]
state that the ratio between the wind turbine’s nominal wind speed (vN) and the mean
wind speed (vm) of the installation site and the shape coefficient of a Weibull probability
function k are the main influences in sizing the nominal powers of the electrolyzer and the
wind turbine. The paper concludes that for vN/vm lower than 1.67, the electrolyzer makes
good use of the available turbine power; however, the wind potential of the site is not fully
exploited. On the other hand, for vN/vm greater than 1.77, the opposite happens. The
recommended operation point is vN/vm in the range of 1.67 to 1.77, since in this range a
balance between making good use of the available turbine power and exploiting the wind
potential of the location is struck.

A techno-economic analysis of grid-connected hydrogen production was performed
by T. Nguyen et al. [43], in which several electricity pricing schemes and hydrogen storage
solutions were analyzed. The pricing schemes considered were flat rates in five Cana-
dian provinces and real-time pricing in Germany, California, and Ontario. The study
concludes that a real-time pricing scheme yields lower LCOH, since the electrolyzer can
reduce consumption during periods of high energy prices, and that including storage is a
good alternative to increase flexibility, especially when underground storage can be imple-
mented. A capacity factor ranging between 0.9 and 1 was found to be optimal, since this
minimizes consumption during peak hours but ensures a high utilization of the CAPEX.
The lowest LCOH obtained was 2.49–2.74 €/kg for AEL (2.26–3.01 €/kg for PEMEL) with
underground storage in a real-time pricing scheme in Ontario; this is competitive with
hydrogen produced using Steam Methane Reform (SMR) with carbon capture, which is
around 2.51–3.45 €/kg.

A similar study on offshore hydrogen production with underground storage was
developed by Van Nguyen Dinh et al. [24], where the CAPEX and OPEX used were
consistent with the forecast for offshore wind power and electrolyzers in the year 2030.
The results show that for a 101.3 MW wind farm 15 km off the coast of Arklow, Ireland,
at a selling price of 5 €/kg, the Discounted Payback Period (DPB), considering storage
for 2, 7, 21, and 45 days of average hydrogen production, is 7.8, 8.6, 11.1, and 16.2 years,
respectively.

The wind potential in Patagonia is enormous, being anywhere from 4100 to 5200 full-
load hours on average, which leads to an LCOE of electricity as low as 25.6 €/MWh. In
2018, Philipp-Matthias Heuser et al. [44] analyzed a link between Japan and Patagonia,
where hydrogen is produced and liquefied in Patagonia and shipped to Japan. The analysis
estimated that the LCOH is 2.16 €/kg at the output of the electrolyzer, with an increase
of 0.57 €/kg after transport to the shipping port and a further 0.58 €/kg to liquefy the
hydrogen and store it in liquid form, which brings the final LCOH to 3.31 €/kg. The cost of
transport to Japan is 1.13 €/kg, so the cost of hydrogen upon arrival in Japan is 4.44 €/kg.

With the increasing presence of renewable energy in the grid, higher levels of curtail-
ment in renewable power plants will take place. Considering this reasoning, a study was
conducted to compare three scenarios using an offshore wind farm [45]: sell all electricity
to the grid (scenario 1), convert all electricity to hydrogen (scenario 2), or a hybrid system
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where electricity is sold to the grid when prices are high and converted to hydrogen when
curtailment occurs or electricity prices are low (scenario 3). A model was developed for a
504 MW wind farm located 14.5 km off the coast of Arklow, Ireland, and all three scenarios
were simulated. The results obtained were an LCOE in scenario 1 of 38.1 €/MWh for 0%
curtailment and 47.6 €/MWh for 20% curtailment, while the LCOH for scenario 2 was
3.77 €/kg. For scenario 3, if the hydrogen price was 4 €/kg, only at curtailment levels
higher than 17% could adding hydrogen generation provide an equal or higher Net Present
Value (NPV). If the hydrogen price was 4.25 €/kg, then the level of curtailment for which
hydrogen generation becomes profitable is 10%.

Another article comparing the three scenarios described above was written by Pengfei
Xiao et al. [46] in 2020, where the model was developed for a wind farm in Denmark. Here,
the electricity price for the first and third scenarios varied from 80 €/MWh to 160 €/MWh,
depending on the time of day, with the hydrogen price fixed at 6.27 €/kg in the scenarios
where hydrogen was produced. The article concluded that the hybrid approach yields
greater economic interest compared to the other scenarios, with most of the hydrogen being
produced at night when the electricity price is lower.

A slightly different approach was taken by Peng Hou et al. [47], where a 72 MW
offshore wind farm was considered for the production of hydrogen, with two possible
operating scenarios. In the first scenario, all of the energy was converted to hydrogen in an
electrolyzer, stored, and then converted back to electricity in a fuel cell to sell to the grid
during peak hours. In the second scenario, the electricity generated by the wind turbines
could be sold to the grid or fed into an electrolyzer, with the possibility of buying energy
from the grid when prices are extremely low. The electricity prices considered were the
electricity prices for Denmark in 2015. The study concluded that the first scenario was not
economically viable due to the low round-trip efficiency of the electrolyzer and fuel cell.
However, for the second scenario, considering a 50% capacity factor for the electrolyzer,
the DPB was 24.4, 5.5, and 2.6 years and the nominal power of the electrolyzer was 5.5,
13.5, and 23.4 MW for a hydrogen price of 2, 5, and 9 €/kg, respectively.

A model to determine the most suitable electrolyzer technology and to compare solar
and wind as the energy sources of a green hydrogen production system was developed
by Christian Schnuelle et al. [48]. Several scenarios were included in the article, such as
onshore and offshore wind as well as nominal powers of the electrolyzer of 40%, 60%,
or 80% of the respective power plant’s nominal power. All the renewable energy generation
profiles considered were measured in northwest Germany in 2017. Considering a fixed
electricity price, dependent on the installation chosen and typical annual load duration
curves, the authors state that AEL proved the most economically viable option, mainly due
to higher efficiencies and improved stack life, which reduces the investment in replacing
stacks and the lower initial investment. The lowest LCOH achieved was 4.33 €/kg. Despite
being more expensive, PEMEL offers an advantage regarding energy utilization, since it
can operate at lower power and better harness the renewable resources available.

To compare the subject of this paper to other green hydrogen applications, two articles
regarding hydrogen production using solar energy were analyzed. The first considers
various locations in Morocco [49], with different types of Photovoltaic (PV) panel installa-
tions, from fixed to two-axis tracking, and a CSP installation. Even though fixed PV panels
produced the lowest LCOH of 4.74 €/kg, a better balance was achieved using one-axis
tracking, which produced 30% more hydrogen and a small LCOH increase to 4.88 €/kg.

The second article analyzed not only green hydrogen production using PV or CSP to
harness the solar energy in the Atacama Desert, Chile, but also the existing technologies
to transport hydrogen in a higher energy density—liquefied hydrogen and ammonia
carrier [20]. The lowest LCOH in 2018, 1.82 €/kg, was obtained using PV, a power purchase
agreement, and converting the electricity to hydrogen in an AEL. In 2025, LCOH reductions
are expected to be around 20% to 34%, higher in PEMEL than AEL, to a minimum value of
1.39 €/kg. The cost of liquefying hydrogen (1.28 €/kg) is lower than the cost to convert
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to and from ammonia (total 2.04 €/kg), but due to the higher energy density and ease of
transport, a case can be made for ammonia as a means of transporting hydrogen.

Both of the articles agree that despite CSP with thermal storage allowing for a much
higher capacity factor, which reduces the nominal power of the electrolyzer, the reduction in
CAPEX in the electrolyzer is smaller than the increase in CAPEX by using CSP instead of PV.

Regarding the applications of hydrogen, Rodica Loisel et al. [50] developed a model
with an offshore wind farm off the coast of Saint Nazaire, France. The paper simulated the
economic viability of each application individually, then combined the two applications (for
example, P2P and P2G), and presented a final scenario where all applications considered
were implemented. In all scenarios, the electrolyzer’s nominal power was considerably
lower than the wind farm nominal power; consequently, most of the energy produced was
sold directly to the electricity grid at wholesale prices, with the remaining energy being
reserved for secondary and tertiary reserves. The study concluded that the most econom-
ically viable approach was P2G, with a hydrogen price of 4.2 €/kg. However, even the
most profitable approach presents a negative NPV. It should be noted that combining many
applications led to a higher investment cost and ultimately reduced the project’s profit.

Focusing on P2P, where fuel cells can play a role as long-term energy storage and
fast-acting dispatchable power plants, a review of the main fuel cell technologies was
conducted in 2018 [51]. After analyzing each technology, the authors concluded that since
fuel cells do not have great electrical efficiencies (40% to 55%), the best way to harvest their
potential is to utilize the heat generated, either for heating in the case of low-temperature
fuel cells (PEMFC and AFC) or Combined Heat and Power (CHP) in the case of high-
temperature fuel cells (AFC, MCFC, and SOFC). Integrating CHP yields an increase of 10%
to 30% in efficiency. In addition, micro gas turbines can be used to provide further heat to
the combined cycle, which might also lead to an increase in efficiency.

A challenge associated with a high percentage of renewable power in electricity grids
is frequency containment, usually ensured by big synchronous generators in traditional
power plants due to their high inertia. PEMFC presents high current density and fast
response times; consequently, it might be an option to help maintain the grid frequency. To
assess the role this technology can play in frequency containment, F.A. Alshehri et al. [52]
developed a dynamic model to simulate PEMFC, validated that the model’s response
resembled the response shown in the existing literature, and compared the Frequency Con-
tainment Reserve (FCR) of PEMFC and synchronous generators. The scenarios consisted of
a 50 MW disturbance for different system inertia with values 100%, 50%, and 25%, for both
synchronous generators and PEMFC as FCR. For all scenarios, PEMFC provided the best
nadir (lowest frequency recorded) and a faster rate of frequency stabilization, while the
values representing Rate-of-Change-of-Frequency remained the same for both scenarios.

Continuing with the analysis for the viability of grid-connected fuel cells, an assess-
ment was conducted in 2013 [53]. The authors of the assessment concluded that the start-up
time of the fuel cell must be taken into account (around 10 min). Furthermore, the dynamic
loading on the system severely influences the longevity of the fuel cells; a load ranging
from 0–100% presented a much lower power output after 100 operating hours than a load
ranging from 40–100% after 400 operating hours. As long as some requirements and the
operating conditions mentioned above are respected, grid-connected fuel cells are viable.

In the past, green hydrogen production has not been able to compete with other
methods of producing hydrogen due to the increased cost. However, costs are rapidly
decreasing, and affordable green hydrogen can become a reality by the year 2030, as is
pointed out in several articles analyzed in this section. Both solar and wind have the
potential to be the renewable energy source used in the production of hydrogen, with
researchers on all continents studying different approaches. With the prospect of clean
hydrogen, innovative uses are also being studied, from P2G to grid-connected fuel cells and
electrolyzers to aid in grid stability and energy storage. In order to transport large quantities
of hydrogen, liquified hydrogen and ammonia carrier are technologies that are currently
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being developed and that show potential to further lower the cost of implementing green
hydrogen solutions.

Table 3 contains a summary of the LCOH observed throughout the literature review.
LCOH is calculated by adding all the expenses of the project (CAPEX and OPEX correctly
adjusted according to the rate of return) and dividing by the amount of hydrogen produced
by the electrolyzer in kg. The cost of hydrogen is influenced mainly by the electricity cost
and the cost of the required infrastructure, which means AEL typically has a lower LCOH
than PEMEL due to the lower cost. The same applies to the electricity source: the lower
LCOH values are observed in locations with low electricity prices, such as the electricity
grid in Ontario [43], solar PV in Chile [20], or onshore wind in Patagonia [44].

Table 3. Summary of LCOH.

Electricity Source AEL (€/kg) PEMEL (€/kg)

Grid 2.49–2.74 [43] 2.26–3.01 [43]
Solar PV 2.04–5.00 [20,48] 2.71–7.98 [20,48,49]

Solar CSP 3.03 [20] 3.79–8.5 [20,49]
Onshore Wind 4.33 [48] 2.73–6.61 [44,48]
Offshore Wind 9.17 [48] 3.77–11.75 [24,45,48,50]

The more economically viable electricity sources for producing green hydrogen are
solar PV and onshore wind, mainly because the LCOE of these two energy sources is
considerably lower than solar CSP and offshore wind. The LCOE is the factor that influences
the LCOH the most [20,45]; therefore, technologies with the lowest LCOE are the best suited
to being the electricity source in green hydrogen projects. More specifically, the lowest
LCOH for solar PV was found in the Atacama Desert in Chile [20], and the lowest LCOH
for onshore wind was found in Patagonia [44], two locations with abundant availability of
their respective renewable resources.

6. Conclusions

Hydrogen has several applications, including being mixed with natural gas in P2G,
powering vehicles in P2M, and providing energy storage and grid balancing services in
P2P. In the last decades, hydrogen has had carbon emissions associated with its production,
and for this reason its potential has not been fully explored. However, due to recent
advancements in electrolyzers and renewable energy, the cost competitiveness of green
hydrogen is quickly rising and is expected to match fossil-fuel-based hydrogen in the
coming years.

Compared to wind energy on land, offshore wind has higher wind speeds and is
more consistent, making it a more attractive resource to generate electricity. The main
drawbacks have been the higher cost and technical challenges associated with transmitting
the electricity to shore, though this has improved in the past years. Offshore wind farms are
increasing in size and are built further and further away from shore; nonetheless, they have
been experiencing LCOE reductions, almost reaching competitive values. Furthermore,
with the development of floating wind platforms, wind farms can be placed in deeper
waters, allowing more locations to be accessible for electricity generation.

Two hydrogen production systems based on offshore wind energy are currently
proposed, in which not only are electricity and hydrogen produced but grid balancing
services are provided, such as frequency control. The first system utilizes an offshore
electrolyzer; hydrogen is produced, compressed, and transported in a pipeline to shore.
The main advantages are the reduced cost of a submarine pipeline compared to a submarine
electrical cable and supporting power electronics, along with the reduction in transmission
losses of gas in a pipeline (0.1%) in comparison to conventional wind farms (up to 5%). In
the second system, the electrolyzer is located on land, so the electricity generated offshore
is transmitted through an electrical cable to land. Once the electricity reaches the shore, it
can be sold directly as electricity when the price is high during peak periods or can be fed
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into an electrolyzer to produce hydrogen when the electricity prices are low or curtailment
must occur. The advantage is the increased flexibility provided to the operator, with the
option of selling electricity or producing hydrogen, depending on the most economically
viable choice.

The literature shows the decreasing costs for green hydrogen production, both for
wind and solar energy, along with the forecast of how the technology is expected to
evolve: less expensive, longer lasting, and more efficient electrolyzers. Furthermore, the
integration of fuel cells and electrolyzers at a grid level can aid in overcoming some of the
challenges of generating electricity from renewable energy sources, like frequency control
and energy storage.
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Nomenclature

AEL Alkaline Electrolyzer
AFC Alkaline Fuel Cell
CHP Combined Heat and Power
CSP Concentrated Solar Power
DPB Discounted Payback Period
FCR Frequency Containment Reserve
HVAC High Voltage Alternating Current
HVDC High Voltage Direct Current
LCOE Levelized Cost Of Energy
LCOH Levelized Cost Of Hydrogen
LNG Liquified Natural Gas
MCFC Molten Carbonate Fuel Cell
NPV Net Present Value
P2G Power to Gas
P2M Power to Mobility
P2P Power to Power
PAFC Phosphoric Acid Fuel Cell
PEMEL Proton Exchange Membrane Electrolyzer
PEMFC Proton Exchange Membrane Fuel Cell
PV Photovoltaic
SDGs United Nations Sustainable Development Goals
SMR Steam Methane Reform
SOE Solid Oxide Electrolyzer
SOFC Solid Oxide Fuel Cell



Appl. Sci. 2021, 11, 5561 17 of 19

References
1. IEA. Key World Energy Statistics; IEA: Paris, France, 2020. Available online: https://www.iea.org/reports/key-world-energy-

statistics-2020 (accessed on 7 April 2021).
2. Panfilov, M. 4—Underground and pipeline hydrogen storage. In Compendium of Hydrogen Energy, Woodhead Publishing Series in

Energy; Gupta, R.B., Basile, A., Veziroglu, T.N., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 91–115. [CrossRef]
3. Miao, B.; Giordano, L.; Chan, S.H. Long-distance renewable hydrogen transmission via cables and pipelines. Int. J. Hydrogen

Energy 2021, in press. [CrossRef]
4. WindEurope. Offshore Wind in Europe: Key Trends and Statistics 2020. 2021. Available online: https://windeurope.org/

intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/ (accessed on 7 April 2021).
5. The European Marine Observation and Data Network (EMODnet). Available online: https://portal.emodnet-bathymetry.eu/

(accessed on 7 April 2021).
6. Offshore Renewable Energy (ORE) Catapult. Offshore Wind and Hydrogen: Solving the Integration Challenge. 2020. Avail-

able online: https://ore.catapult.org.uk/?orecatapultreports=offshore-wind-and-hydrogen-solving-the-integration-challenge
(accessed on 7 April 2021).

7. Airborne WindEurope. High-altitude Wind Energy Map Published. Available online: https://airbornewindeurope.org/
resources/high-altitude-wind-energy-map-published-2/ (accessed on 7 April 2021).

8. Equinor. Hywind Scotland. Available online: https://www.equinor.com/en/what-we-do/floating-wind/hywind-scotland.html
(accessed on 7 April 2021).

9. WindEurope. Offshore Wind in Europe: Key Trends and Statistics 2017. 2018. Available online: https://windeurope.org/
intelligence-platform/product/the-european-offshore-wind-industry-key-trends-and-statistics-2017/ (accessed on 7 April 2021).

10. ERM. Dolphyn Hydrogen Phase 1—Final Report. October 2019. Available online: https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/866375/Phase_1_-_ERM_-_Dolphyn.pdf (accessed on 26 April 2021).

11. IRENA. Hydrogen from Renewable Power: Technology Outlook for the Energy Transition. 2018. Available online: https:
//irena.org/publications/2018/Sep/Hydrogen-from-renewable-power (accessed on 7 April 2021).

12. Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-
gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [CrossRef]

13. Guo, Y.; Li, G.; Zhou, J.; Liu, Y. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production
by PEM electrolysis. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 042022. [CrossRef]

14. McPhy. Augmented McLyzer. Available online: https://mcphy.com/en/equipment-services/electrolyzers/augmented/ (ac-
cessed on 7 April 2021).

15. Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [CrossRef]
16. Dagdougui, H.; Sacile, R.; Bersani, C.; Ouammi, A. Chapter 4—hydrogen storage and distribution: Implementation scenarios.

In Hydrogen Infrastructure for Energy Applications; Dagdougui, H., Sacile, R., Bersani, C., Ouammi, A., Eds.; Academic Press:
Cambridge, MA, USA, 2018; pp. 37–52. [CrossRef]

17. Hydrogenics. Large Scale PEM Electrolysis: Technology Status and Upscaling Strategies. Available online: https://www.google.
com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjz7KHVme3vAhVECxoKHSUdCCkQFjACegQIAxAD&
url=http%3A%2F%2Fhybalance.eu%2Fwp-content%2Fuploads%2F2019%2F10%2FLarge-scale-PEM-electrolysis.pdf&usg=
AOvVaw1YjdSYyby88zmNHVsqeAsz (accessed on 7 April 2021).

18. Siemens. Decarbonizing Energy with Green Hydrogen: Technology Available and Proven in Production Today. Available
online: https://assets.new.siemens.com/siemens/assets/api/uuid:390d0f48-499e-4451-a3c2-faa30c5bafe7/version:15984425
87/power-to-x-technical-paper-siemens-short.pdf (accessed on 29 May 2021).

19. Kruck, O.; Crotogino, F.; Prelicz, R.; Rudolph, T. Overview on all known underground storage technologies for hydrogen. In
Project HyUnder–Assessment of the Potential, the Actors and Relevant Business Cases for Large Scale and Seasonal Storage
of Renewable Electricity by Hydrogen Underground Storage in Europe. Report D. 2013, Volume 3. Available online: http:
//hyunder.eu/wp-content/uploads/2016/01/D3.1_Overview-of-all-known-underground-storage-technologies.pdf (accessed
on 26 April 2021).

20. Gallardo, F.I.; Ferrario, A.M.; Lamagna, M.; Bocci, E.; Garcia, D.A.; Baeza-Jeria, T.E. A techno-economic analysis of solar hydrogen
production by electrolysis in the north of Chile and the case of exportation from Atacama desert to Japan. Int. J. Hydrogen Energy
2021, 46, 13709–13728. [CrossRef]

21. Negra, N.B.; Todorovic, J.; Ackermann, T. Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind
farms. Electr. Power Syst. Res. 2006, 76, 916–927. [CrossRef]

22. Papadopoulos, A.; Rodrigues, S.; Kontos, E.; Todorcevic, T.; Bauer, P.; Pinto, R.T. Collection and transmission losses of offshore
wind farms for optimization purposes. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE),
Montreal, QC, Canada, 20–24 September 2015; pp. 6724–6732. [CrossRef]

23. North Sea Energy. A Vision on Hydrogen Potential from the North Sea. 2019. Available online: https://north-sea-energy.
eu/static/29bef9235ee0548a2425dea4356a2f1e/NSE3-D1.6-D1.7-D1.8-Offshore-Hydrogen-Roadmap-linked-to-national-
hydrogen-grid.pdf (accessed on 7 April 2021).

https://www.iea.org/reports/key-world-energy-statistics-2020
https://www.iea.org/reports/key-world-energy-statistics-2020
http://doi.org/10.1016/B978-1-78242-362-1.00004-3
http://doi.org/10.1016/j.ijhydene.2021.03.067
https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/
https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/
https://portal.emodnet-bathymetry.eu/
https://ore.catapult.org.uk/?orecatapultreports=offshore-wind-and-hydrogen-solving-the-integration-challenge
https://airbornewindeurope.org/resources/high-altitude-wind-energy-map-published-2/
https://airbornewindeurope.org/resources/high-altitude-wind-energy-map-published-2/
https://www.equinor.com/en/what-we-do/floating-wind/hywind-scotland.html
https://windeurope.org/intelligence-platform/product/the-european-offshore-wind-industry-key-trends-and-statistics-2017/
https://windeurope.org/intelligence-platform/product/the-european-offshore-wind-industry-key-trends-and-statistics-2017/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866375/Phase_1_-_ERM_-_Dolphyn.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866375/Phase_1_-_ERM_-_Dolphyn.pdf
https://irena.org/publications/2018/Sep/Hydrogen-from-renewable-power
https://irena.org/publications/2018/Sep/Hydrogen-from-renewable-power
http://doi.org/10.1016/j.rser.2017.09.003
http://doi.org/10.1088/1755-1315/371/4/042022
https://mcphy.com/en/equipment-services/electrolyzers/augmented/
http://doi.org/10.1016/j.ijhydene.2019.03.063
http://doi.org/10.1016/B978-0-12-812036-1.00004-4
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjz7KHVme3vAhVECxoKHSUdCCkQFjACegQIAxAD&url=http%3A%2F%2Fhybalance.eu%2Fwp-content%2Fuploads%2F2019%2F10%2FLarge-scale-PEM-electrolysis.pdf&usg=AOvVaw1YjdSYyby88zmNHVsqeAsz
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjz7KHVme3vAhVECxoKHSUdCCkQFjACegQIAxAD&url=http%3A%2F%2Fhybalance.eu%2Fwp-content%2Fuploads%2F2019%2F10%2FLarge-scale-PEM-electrolysis.pdf&usg=AOvVaw1YjdSYyby88zmNHVsqeAsz
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjz7KHVme3vAhVECxoKHSUdCCkQFjACegQIAxAD&url=http%3A%2F%2Fhybalance.eu%2Fwp-content%2Fuploads%2F2019%2F10%2FLarge-scale-PEM-electrolysis.pdf&usg=AOvVaw1YjdSYyby88zmNHVsqeAsz
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjz7KHVme3vAhVECxoKHSUdCCkQFjACegQIAxAD&url=http%3A%2F%2Fhybalance.eu%2Fwp-content%2Fuploads%2F2019%2F10%2FLarge-scale-PEM-electrolysis.pdf&usg=AOvVaw1YjdSYyby88zmNHVsqeAsz
https://assets.new.siemens.com/siemens/assets/api/uuid:390d0f48-499e-4451-a3c2-faa30c5bafe7/version:1598442587/power-to-x-technical-paper-siemens-short.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:390d0f48-499e-4451-a3c2-faa30c5bafe7/version:1598442587/power-to-x-technical-paper-siemens-short.pdf
http://hyunder.eu/wp-content/uploads/2016/01/D3.1_Overview-of-all-known-underground-storage-technologies.pdf
http://hyunder.eu/wp-content/uploads/2016/01/D3.1_Overview-of-all-known-underground-storage-technologies.pdf
http://doi.org/10.1016/j.ijhydene.2020.07.050
http://doi.org/10.1016/j.epsr.2005.11.004
http://doi.org/10.1109/ECCE.2015.7310601
https://north-sea-energy.eu/static/29bef9235ee0548a2425dea4356a2f1e/NSE3-D1.6-D1.7-D1.8-Offshore-Hydrogen-Roadmap-linked-to-national-hydrogen-grid.pdf
https://north-sea-energy.eu/static/29bef9235ee0548a2425dea4356a2f1e/NSE3-D1.6-D1.7-D1.8-Offshore-Hydrogen-Roadmap-linked-to-national-hydrogen-grid.pdf
https://north-sea-energy.eu/static/29bef9235ee0548a2425dea4356a2f1e/NSE3-D1.6-D1.7-D1.8-Offshore-Hydrogen-Roadmap-linked-to-national-hydrogen-grid.pdf


Appl. Sci. 2021, 11, 5561 18 of 19

24. Dinh, V.N.; Leahy, P.; McKeogh, E.; Murphy, J.; Cummins, V. Development of a viability assessment model for hydrogen
production from dedicated offshore wind farms. Int. J. Hydrogen Energy 2020, in press. [CrossRef]

25. General Electric. Switch It Up: This Tech Helps Take the World’s Largest Offshore Wind Turbine to a New Level. 2018. Available
online: https://www.ge.com/news/reports/switch-tech-helps-take-worlds-largest-offshore-wind-turbine-new-level (accessed
on 7 April 2021).

26. Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC transmission: Technology review, market trends and future
outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [CrossRef]

27. IRENA. Green Hydrogen Cost Reduction: Scaling Up Electrolyzers to Meet the 1.5 ◦C Climate Goal. 2020. Available online:
https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction (accessed on 7 April 2021).

28. Toyota. 2021 Toyota Mirai. Available online: https://www.toyota.com/mirai/ (accessed on 29 May 2021).
29. Wood, A.; He, H.; Joia, T.; Brown, C.C. Reversible solid oxide fuel cell development at versa power systems. ECS Trans. 2015, 66,

23. [CrossRef]
30. US. Department of Energy. Comparison of Fuel Cell Technologies. 2016. Available online: https://www.energy.gov/eere/

fuelcells/comparison-fuel-cell-technologies (accessed on 7 April 2021).
31. Weidner, E.; Ortiz Cebolla, R.; Davies, J. Global Deployment of Large Capacity Stationary Fuel Cells–Drivers of, and Barriers to,

Stationary Fuel Cell Deployment; JRC115923; EUR 29693 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN
978-92-76-00841-5. [CrossRef]

32. Doosan starts installation of hydrogen-fueled 50 MW fuel cell power plant in South Korea. Fuel Cells Bull. 2018, 2018, 1. [CrossRef]
33. Fuel Cells Works. Daesan Hydrogen Fuel Cell Power Plant Completed with Help of Doosan Fuel Cells. Available online: https:

//fuelcellsworks.com/news/daesan-hydrogen-fuel-cell-power-plant-completed-with-help-of-doosan-fuel-cells/ (accessed on
26 April 2021).

34. HyDeploy. Available online: https://hydeploy.co.uk/ (accessed on 7 April 2021).
35. Melaina, M.W.; Antonia, O.; Penev, M. Blending hydrogen into natural gas pipeline networks: A review of key issues. Tech. Rep.

2013. [CrossRef]
36. Quarton, C.J.; Samsatli, S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic

assessments and systems modelling? Renew. Sustain. Energy Rev. 2018, 98, 302–316. [CrossRef]
37. EDP. FLEXnCONFU: Power-to-X to Increase the Flexibility of Thermal Plants. Available online: https://www.edp.com/en/

innovation/flexnconfu-power-to-increase-the-flexibility-of-thermal-plants (accessed on 26 April 2021).
38. FLEXnCONFU. Available online: https://flexnconfu.eu/demonstration/ (accessed on 29 May 2021).
39. Kakoulaki, G.; Kougias, I.; Taylor, N.; Dolci, F.; Moya, J.; Jager-Waldau, A. Green hydrogen in Europe—a regional assessment:

Substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 2021, 228, 113649. [CrossRef]
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