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Abstract: Epilepsy is a common neurological disease characterized by spontaneous recurrent seizures.
Resection of the epileptogenic tissue may be needed in approximately 25% of all cases due to ineffec-
tive treatment with anti-epileptic drugs. The surgical intervention depends on the correct detection
of epileptogenic zones. The detection relies on invasive diagnostic techniques such as Stereotactic
Electroencephalography (SEEG), which uses multi-modal fusion to aid localizing electrodes, using
pre-surgical magnetic resonance and intra-surgical computer tomography as the input images. More-
over, it is essential to know how to measure the performance of fusion methods in the presence
of external objects, such as electrodes. In this paper, a literature review is presented, applying the
methodology proposed by Kitchenham to determine the main techniques of multi-modal brain
image fusion, the most relevant performance metrics, and the main fusion tools. The search was
conducted using the databases and search engines of Scopus, IEEE, PubMed, Springer, and Google
Scholar, resulting in 15 primary source articles. The literature review found that rigid registration was
the most used technique when electrode localization in SEEG is required, which was the proposed
method in nine of the found articles. However, there is a lack of standard validation metrics, which
makes the performance measurement difficult when external objects are presented, caused primarily
by the absence of a gold-standard dataset for comparison.

Keywords: image fusion; stereotactic electroencephalography; computer tomography; magnetic
resonance imaging; image registration

1. Introduction

Epilepsy is a neurological disease affecting approximately 50 million people world-
wide [1]. Between 25% and 30% of cases are untreatable with anti-epileptic drugs [2,3]. In
those cases, resection of the seizure focus area may be necessary [4].

The resection surgery for pharmacoresistant epilepsy relies on the correct detection
of the epileptogenic tissue [5,6]. The detection depends on invasive diagnostic techniques
such as Stereotactic Electroencephalography (SEEG) [7]. SEEG measures electric signals
using deep electrodes implanted in the brain. The implantation is guided using a Magnetic
Resonance Image (MRI) with a stereotactic frame affixed to the head prior to the implan-
tation. After the implantation, a Computer Tomography (CT) image is taken to obtain
the localization of the electrodes, and finally, an image fusion is performed between the
pre-implantation MRI and the post-implantation CT. Image fusion is a powerful technique
because it synthesizes the localization of the electrodes and the structural anatomical in-
formation in a single image [8,9]. However, the presence of external objects may affect
the performance of fusion techniques. The literature review focuses primarily on fusion
techniques between images of MRI and CT, with special attention on the software tools,
evaluation metrics, and presence of external objects.
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The image fusion (Figure 1) maps images into the same coordinate system and then
blends the aligned result into an output image. Among the methods for image fusion,
characteristics such as imaging modalities determine the performance of a procedure.
For example, methods that use the Mean-Squared Difference (MSD) as the optimization
metric perform better in single-modality fusion [10,11]. Thus, it is essential to know the
performance of these techniques, especially in applications such as SEEG that involve
external objects.

Figure 1. Example of multi-modal image fusion between an MRI and a CT. The images were taken
from Patient 001 of the RIRE dataset [12].

This paper aims to present an overview of the main methods, tools, metrics, and
databases used in multi-modal image fusion. This review contributes to the literature by
summarizing the main techniques of image fusion, distinguishing between the two main
steps of registration and merging.

2. Materials and Methods

The literature review followed the methodology proposed by Kitchenham [13], which
is specific to software engineering. Moreover, Kitchenham’s method aligns with the
PRISMA methodology [14]. Table 1 illustrates the section defined by Kitchenham for
systematic literature reviews and the equivalent to the PRISMA checklist.

Table 1. The Kitchenham methodology vs. the PRISMA methodology.

Kitchenham Section PRISMA Section

Title Title

Executive summary or structured ab-
stract

Abstract

Background and review questions Introduction

Data sources Information sources

Search strategy and included and ex-
cluded studies

Search strategy

Study selection and quality assessment Selection process

Data extraction Data collection process and data items

Data synthesis Synthesis methods

Results Results
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The review included three steps: First the review planning was conducted using the
research questions. Second, the review was conducted by applying the search strategy.
Third, the collected information was synthesized to answer the research questions. The
next section presents details on the review stages.

2.1. Planning

Based on the necessity for multi-modal image fusion in diagnostic exams with external
objects, such as SEEG, where errors in the fusion could lead to inaccurate detection of the
epileptogenic tissue, the following research questions were proposed, focusing mainly on
the multi-modal fusion between CT and MRI:

(i) What are the existing methods of brain image fusion using CT and MRI?
(ii) What are the tools used to fuse multi-modal brain images?
(iii) What are the metrics used to validate and compare image fusion methods?

2.2. Conducting the Review

The databases and search engines of Scopus, IEEE, PubMed, Springer, and Google
Scholar were useful to conduct the review, because they include articles from the medical
and engineering area. The following keywords were used to select articles about multi-
modal brain image fusion: “image registration”, “image fusion”, “medical imaging”,
“brain”, “neuroimaging”, “computer tomography”, “CT”, “magnetic resonance imaging”,
and “MRI”. The dates of the selected articles were between January 2010 and April 2021,
obtaining a total of 1111 papers in the first stage. Afterwards, the following inclusion
criteria were used: (i) studies about multi-modal image fusion or registration; (ii) studies
that used brain images; and (iii) studies that specified the registration and merging method.
This stage resulted in a total of 361 papers. Finally, two exclusion criteria were used: (i)
studies without validation of the procedure; and (ii) studies that did not use CT or MRI.
The final stage returned a total of 15 papers (Table 2 and Figure 2).

Figure 2. Flow diagram for the literature review. Red dotted squares represent the excluded papers.
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Table 2. The fifteen original research articles selected.

Paper Method Image Source Validation Software Platform

[15] Rigid image registration Retrospective Image Registration Evalua-
tion (RIRE) Target Registration Error (TRE) Elastix ITK

[16] Rigid Image registration 2D slices from the RIRE Rotation and translation error MATLAB

[17] Rigid image registration Image from ten patients with pharmacore-
sistant epilepsy

Error in the localization of electrodes
measured in mm ITK

[18] Non-rigid image registration Image from five patients with pharma-
coresistant epilepsy

Error in the localization of electrodes
measured in mm BrainLab

[19] Rigid image registration Image from 20 datasets of Deep Brain
Stimulation (DBS) studies Target area registration error C++

[20] Rigid image registration CT and MRI images from seven patients
with epilepsy.

Error in the localization of electrodes
measured in mm MATLAB SPM

[21] Rigid image registration Image from five patients with pharma-
coresistant epilepsy

Euclidean distance between the loca-
tion estimated procedure and deter-
mined by visual inspection

MATLAB SPM

[22]
Automatic method to evaluate and
quantify the multi-modal image regis-
tration accuracy

Porcine skull dataset and RIRE Electrode localization accuracy mea-
sured in mm MATLAB

[23]
Quantify the registration accuracy in
SEEG, from pre-implantation MRI and
post-implantation CT

Image from 14 patients with pharmacore-
sistant epilepsy

Error in the localization of electrodes
measured in mm FSL

[24] Multi-modal image fusion Two image datasets of CT and MRI
Peak-Signal-to-Noise-Ratio (PSNR),
Mean-Squared Error (MSE), and En-
tropy (EN)

N/A

[25] Multi-modal image fusion
Nine pairs of MRI and CT images, from
patients with severe cardiovascular acci-
dent

Mutual Information (MI), Standard
Deviation (STD), Universal Image
Quality Index (UIQI), and Spatial
Frequency (SF)

MATLAB

[26] Multi-modal image fusion using Pulse-
Coupled Neural Network (PCNN) five pairs of MRI and CT images MI, SF, STD, EN, and Structural Sim-

ilarity Index (SSIM) MATLAB

[27] Multi-modal image fusion using WT
and neuro-fuzzy Two pairs of MRI and CT images EN, MI, and fusion factor N/A

[28]
Multi-modal image fusion using Dis-
crete Wavelet Transform (DWT) and
Guider Filter (GF)

14 pairs of MRI and CT images STD, average gradient, and edge
strength N/A

[29]
Multi-modal image fusion using
Non-Subsampled Shearlet Transform
(NSST)

10 pairs of medical grayscale images and
4 pairs of medical color images

EN, STD, MI, SSIM, and edge
strength MATLAB

Three criteria were used to evaluate the quality of the papers: (i) complete description
of the image fusion or registration method; (ii) complete description of the validation; and
(iii) complete description of the databases used for validation.

3. Results

This section is divided into three parts according to the research questions (Section 2.1):
methods of image fusion (Section 3.1), performance metrics (Section 3.2), and image fusion
tools (Section 3.3).

3.1. Methods of Image Fusion

Image fusion is a technique that composes an image with better information from
multiple inputs, which has two steps: registration and merging. The first step transforms
all input images into a common standard to represent the same object or phenomena, while
the second step merges all aligned images [30]. The article was organized taking the image
registration and image merging separately.
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3.1.1. Image Registration

Image registration consists of finding a transformation T such that it aligns a moving
image IM with a fixed image IF, by minimizing a cost function C, where the vector µ
contains the parameters for the transform (Equation (1)) [31,32].

µ = arg min
µ

C(Tµ; IF, IM). (1)

Figure 3 summarizes the procedure where a transformation was applied to IM. Then,
a similarity metric between IM and IF was optimized by updating the transform.

Figure 3. Registration procedure. (a) Input images for the registration. (b) Optimization of the
transformation for IM. (c) Measurement of the similarity metric to compare the transformed IM

with IF.

The registration procedure could be classified based on two criteria: (i) the transfor-
mation (Figure 3b), where the procedure was sub-classified into rigid and non-rigid; (ii) the
optimization metric, where the registration was sub-classified according to the similarity
metric (Figure 3c). Considering these criteria, first, the concept of transformation and
similarity metrics is presented, and then, the results are summarized.

Registration: Transformation

The first type of method is the rigid registration, which applies a single transformation
to the entire IM. This method can be categorized, depending on the transformation type
and degrees of freedom, into [31]:

(i) translation: translation only (three degrees of freedom in 3D);
(ii) Euler: rotation and translation (six degrees of freedom in 3D);
(iii) similarity: rotation, scaling, and translation (nine degrees of freedom in 3D);
(iv) affine: translation, rotation, scaling, and shearing (12 degrees of freedom in 3D).

These transformations define the degrees of freedom of the deformation model. The
affine transformation has the most degrees of freedom in comparison.

The second type of method is the non-rigid registration, which are computationally
more complex than rigid registration, since this requires finding local deformations of the
moving image. Non-rigid methods are sub-classified into two main categories based on
the deformation model: transformations derived from physical models and transformation
derived from interpolation and approximation models [33].
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Registration: Metrics

The metric or cost function is an essential part of the registration procedure, which
also determines the type of transformation and optimization [32,34]. The most common
metrics are:

(i) Mean-Squared Difference (MSD): measures the average gray difference between the
IF and IM voxels;

(ii) Correlation Coefficient (CC): measures the gray-level similarities between the IF and
IM voxels [35];

(iii) Normalized Correlation Coefficient (NCC): is the CC after normalizing the images;
(iv) Mutual Information (MI): measures the dependency between two variables (moving

and fixed image) and is calculated using the entropy, the probability joint histogram
distribution, and the Parzen window estimation [35];

(v) Normalized Mutual Information (NMI): an alternative to the MI metric that solves
the drawbacks such as misregistration in small overlapping regions [10].

The most common metrics in multi-modal brain registration are the MI and the NMI,
which rely on the probability distribution between the images [10,11].

Registration Methods Literature

Among the 15 selected original research articles, seven proposed methods for rigid
registration (Table 3). Taimouri’s method is an example of a non-rigid registration method
with the use of the MI to localize deep electrodes in SEEG [17]. This method uses the Insight
ToolKit (ITK), an open-source toolkit for medical image registration and segmentation [36].
Finally, the method was validated using images of ten patients, five males and five females,
aged between eight and seventeen years. For the accuracy measurement, a photograph of
the electrodes was taken from a digital camera, and then, the electrodes of the resulting MRI
were projected in the 2D photograph. The accuracy was the error between the electrodes
from the photography and the electrodes from the 3D MRI. While the method yielded a low
average localization error of 1.31 ± 0.69 mm for 385 electrodes, the accuracy measurement
procedure did not consider the error of the projection, which implies uncertainty if the
error comes from the registration or the projection procedure.

Table 3. Articles about multi-modal image registration methods.

Paper Transform Optimization Metric Optimization Method

[15] Rigid Mutual information, with curvelet-
based sampling Gradient descent

[16] Rigid Interaction energy and the mutual in-
formation Genetic Algorithm (GA)

[17] Rigid Mutual information Powell’s method

[18] Non-rigid N/A N/A

[19] Rigid Normalized Gradient Fields (NGFs) Multilevel Gauss–Newton approach

[20] Rigid Normalized Mutual Information (NMI) Gradient descent

[21] Rigid Mutual information Gradient descent

Stieglitz et al. [18] used non-rigid transformation with MRI and CT to evaluate if the
registration improved the localization of the SEEG electrodes. For the registration, Stieglitz
used BrainLab iPlan, which is a radiosurgery planning software for rigid registration,
and for non-rigid registration, the Automated Elastic image Fusion algorithm (AEF) and
the Guided Elastic image Fusion algorithm (GEF) were used. The non-rigid registration
improved the fusion, but there were unclear results in the localization of the electrodes,
caused mainly by the evaluation method, which measured the localization performance
using the distance between the electrodes and the brain cortex and not the real position of
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the electrodes in the brain. Another cause for the unclear results was the lack of images for
the validation, which was present in other studies that used intracranial electrodes, such as
the method proposed by Dykstra et al. [21] or the method proposed by Hermesa et al. [20],
which used the MI and the NMI, respectively, for the registration.

The MI and the NMI also have some drawbacks due to Shannon’s entropy, which as-
sumes voxel value independence, but images lack this characteristic. However, a change in
the sampling reduces this problem by selecting the less dependent voxel. With this premise,
Freiman et al. [15] in 2011 proposed a sampling method using the curvelet transform, which
is an extension of the wavelet transform, more suitable for two-dimensional and three-
dimensional signals. Freiman et al. used a sampling method with a rigid registration, using
the Retrospective Image Registration Evaluation database (RIRE), a public database used
to validate registration methods. The method yields better results in the Target Registration
Error (TRE) compared to methods based on uniform and gradient-based sampling.

Some authors have used metrics different from the previous ones, such as the multi-
modal registration procedure proposed by Panda et al. [16]. Panda et al.’s method uses
Evolutionary Rigid-Body Docking (ERBD) algorithms, which is a docking technique that
predicts the optimal configuration between two molecules. This registration takes the input
images as molecules and minimizes the energy between the images using evolutionary
algorithms. The ERBD composes the energy from two metrics: the interaction energy and
the MI. Panda et al. developed this method using MATLAB, and it only works with 2D
images, causing difficulties in the validation for the use of only a few slices of a patient
from the RIRE dataset. For clinical use, this method requires a further development and
validation for 3D images.

Another example of a registration procedure using a metric different from the MI is
the method proposed by Rühaak et al. [19]. This method uses the Normalized Gradient
Field distance (NGF), which works on the assumption that two images are similar if a
change in intensity happens in the same locations (edges). Rühaak et al. developed this
method using C++ and validated it with images from 20 DBS studies, measuring the error
against the manual registration with three experts, yielding an average registration error
of 0.95 ± 0.29 mm. The proposed method by Rühaak et al. can be implemented in other
studies that use external objects such as SEEG, and the validation method can be applied
to evaluate the registration performance. However, this validation method could lead to
subjective error due to the manual registration.

The disadvantages of the MI are the susceptibility to local minimum convergence
and the joint density calculation complexity. Computing the smoothest cost function with
different kernels in the Parzen window probability estimation reduces the first problem [10].
The last problem can be decreased using a different similarity metric, such as the Normal-
ized Gradient Fields (NGFs), which measure the angle between two image gradients in
specific locations. The NGF is faster to compute and has a similar performance to the MI
registration methods [37,38].

3.1.2. Image Merging Methods

Merging is the process of combining the aligned images. These methods are classified
into three categories: Multi-Scale (MSD), non-Multi-Scale (non-MSD), and hybrids [39].
This section presents an overview of these methods. Table 4 shows the found articles about
emerging methods.
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Table 4. Articles about multi-modal image merging.

Paper Merging Category Method

[24] MSD Image fusion using Discrete Wavelet Transform (DWT) and Dis-
crete Ripple Transform (DRT);

[25] MSD Image fusion using Non-Subsampled Shearlet Transform (NSST)

[26] Non-MSD Pulse-Coupled Neural Network (PCNN)

[27] Hybrid Multi-modal image fusion using WT and neuro-fuzzy

[28] MSD Fusion using Discrete Wavelet Transform (DWT) and Guider Filter
(GF)

[29] MSD Image fusion using Non-Subsampled Shearlet Transform (NSST)

Multi-Scale Decomposition Methods

These are methods that transform an input image Ik, k ∈ {1, 2, ..., K} into a multi-scale
representation yk

l , l ∈ {1, 2, ..., L} [30]. The most common techniques are the pyramidal
and transform domain methods [39]. The first method decomposes the image into an array
of different scales, then combines decomposed images using fusion rules. The Laplacian
Pyramid Transform (LPT) and the local Laplacian Filter (LLF) are examples of pyramidal
methods. In contrast, the domain transform methods decompose an image into lower
approximations, then fuses every approximation into a single image. Examples of these
techniques are: (i) the Discrete Wavelet Transform (DWT); (ii) the Discrete Ripple Transform
(DRT); and (iii) the Non-Subsampled Shearlet Transform (NSST).

An example of a Multi-Scale Decomposition (MSD) is the proposed technique by
Patel et al., which combines the DWT and the DRT, which is robust to discontinuities in
edges and contours [24]. This method consists of the following steps:

1. Taking input images, specifically CT and MRI, and aligning them to the same magnitude;
2. Applying the DWT to align images;
3. Obtaining the wavelet coefficient map from the aligned images;
4. Applying the DRT to the wavelet coefficient maps and obtaining an initial fused image;
5. Applying the inverse DWT and obtaining the fused image.

Patel validated the algorithm against DWT methods using two pairs of MRI and
CT images. This validation uses the metric of the Root-Mean-Squared Error (RMSE) and
Peak-Signal-to-Noise-Ratio (PSNR), where Patel’s method exhibited the best performance
with a PSNR of 20.56 and an RMSE of 572.23. In contrast, the DWT obtained a PSNR
and RMSE of 17.27 and 1219.30, respectively [24]. The method proposed by Patel requires
further validation with more images, from any public multi-modal dataset.

Extensions to the DWT are used to reduce some problems of the DWT, such as disconti-
nuities in the edge and contours presented in two-dimensional signals [40]. One example of
these extensions is the NSST, which improves the preservation of multi-dimensional signal
features [40]. Based on this, Padma Ganasala and Vinod Kumar developed a framework for
multi-modal medical image fusion in 2014 [25]. This framework uses the NSST to obtain
the high and low frequency components of an image, to combine them separately, and then
reconstruct the fused image using the inverse NSST.

Padma and Vinod tested their method using nine pairs of MRI and CT images, from
patients with a severe cardiovascular accident. This method was compared against four
different fusion algorithms: (i) image fusion in the Intensity-Hue-Saturation (IHS) space;
(ii) Non-Subsampled Contourlet Transform Fusion (NSCT); (iii) image fusion using the
NSST in the IHS color space; and (iv) image fusion based on NSCT in the IHS color space.
The result showed that the method of Padma and Vinod achieved the best performance
in the MI, with a score of 2.99. In comparison, the closest method in performance was the
NSCT technique in the IHS color space with an MI of 84.28.

Another example of the NSST for image fusion is the method proposed by Nair et al. in
2021 [29]. Nair et al. used a non-rigid registration with B-splines to align the input images
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and used MATLAB to implement the algorithm. For the validation, ten pairs of grayscale
and four pairs of color images were used. This method uses objective and subjective
performance metrics to validate it against a non-denoising fusion method. Nair et al.’s
study demonstrated that denoising the image improves the fusion procedure at the cost of
increased execution time.

Another example of MSD, which solves some drawbacks of the DWT, is the proposed
method by Na et al. [28]. Na et al. used a Guided Filter (GF), a technique that takes
two inputs, an original image and a guided image, to obtain an output image with the
information of the input image and some characteristics of the guided image. Na et al. used
the DWT to decompose the image and used the GF to improve the weighted maps using
the approximation coefficient from the inputs as the guided image. Na et al. validated
the procedure with 15 pairs of CT and MRI images against two DWT methods; one using
choose-max fusion and the second one using intuitionistic fuzzy inference fusion. The
validation was performed using the metrics of the standard deviation, average gradient,
and edge strength. The method of Na et al. showed better performance with all the
images. However, the method requires further validation because the comparison was
performed individually for every image pair, without using any statistical methodology
for the selected image sample.

Non-Multi-Scale Decomposition Methods

The non-MSDs are the methods outside the MSD category. Some examples of these
are the sub-space and the artificial neural network methods [30,39].

The sub-space methods project a high-dimensional input image into a lower-dimensional
space, achieving better efficiency due to the fact that the manipulation of lower-dimensional
data requires less memory. A well-known example of sub-space techniques is the Principal
Component Analysis (PCA) method [30].

The artificial network methods use a mathematical model to process information,
which uses concepts inspired by biological neural networks, where the main advantage is
the capability to predict, analyze, and infer the information of a dataset [39].

The Pulse-Coupled Neural Network (PCNN) is one of the most-used NNs, which was
developed by Eckhorn, based on the cat visual cortex [41,42].

One example of the PCNN in image fusion is the technique developed by Xu et al.,
who used PCNN with the quantum-behaved particle swarm optimization [26]. Xu et al.
validated the method against five different fusion techniques, using five pairs of MRI and
CT images. The compared methods were: (i) Laplacian pyramid; (ii) the PCNN; (iii) the
dual-channel PCNN; (iv) the PCNN with differential evolution algorithms; and (v) the
dual-channel PCNN with PSO evolutionary learning. In the evaluation, the Xu technique
obtained better performance in the MI and Structural Similarity Index (SSIM), scoring 1.72
and 0.77, respectively.

Hybrid Methods

Lastly, some methods use a combination of MSD and non-MSD. These techniques
usually have better performance in feature preservation, but have a drawback in the
computing times. An example of a hybrid method is the approach of Kong et al., who used
the NSST with the PCNN to fuse MRI and CT images [43]. This method was compared
against the techniques of the DWT, NSST, PCNN, and NSCT, using the metrics of the RMSE,
PSNR, MI, and Structural Similarity Index (SSIM). The results evidenced that the Kong
method obtained the best performance, scoring 1.64, 43.84, 0.91, and 0.99 in the RMSE,
PSNR, MI, and SSIM, respectively. However, Kong et al.’s method had a drawback in the
computation time, with an execution time of 6.279 seconds, which was higher than the
method with the best-performing time, the DWT, with an execution time of 0.317 seconds.

Kavitha proposed a hybrid method in 2010, which uses the Integer Wavelet Transform
(IWT) and neuro-fuzzy algorithms to combine the wavelet coefficient maps [27]. Kavitha
tested his technique against the DWT methods, using two pairs of MRI and CT images.
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The results showed that the Kavitha method performed better, with a score of 13.005 and
0.051 in the EN and MI, respectively, which were superior to the DWT score of 5.514 and
0.046, respectively.

3.2. Performance Metrics

Neither of the techniques are perfect, and the performance depends on properties
such as the imaging modality. For this reason, it is necessary to compare and validate the
techniques in specific scenarios. This validation can be subjective or objective: the subjective
validation depends on the human visual evaluation, while the objective evaluation uses
quantitative performance metrics. Objective metrics are classified into two types: metric-
based with the resulting features and metric-based with signal distortion [44]. The first
category measures the transference of feature information into the fused image. Examples
of these metrics are the MI, SSIM, and the image quality index from Wang and Bovik
(Q) [45]. The second category measures the distortion in the fused image, for instance the
RMSE, the Standard Deviation (STD), the PSNR, and the Entropy (EN).

3.2.1. Entropy

The EN estimates the amount of information presented in the images that is calculated
with Equation (2), where Px is the probability of the intensity distribution of the pixel x and
N is the number of possible pixel values, 255 for an eight-bit image depth [39,44].

EN = −
N

∑
x=0

Pxln(Px), (2)

3.2.2. Mutual Information

This estimates the amount of information transferred from the source image into the
fused image. The MI is computed with Equation (3) [39].

MI(Ii, I f ) = H(Ii) + H(I f ) + H(Ii, I f ), (3)

where Ii is the input image, I f is the fused image, H(Ii, I f ) is the joint entropy between Ii
and I f , and H(Ii) and H(I f ) are the marginal entropy of Ii and I f , respectively.

3.2.3. Structural Similarity Index

This measures the preservation of the structural information, separating the image
into three components: luminance I, contrast C, and structure S. This metric is calculated
using Equation (4) [44].

SSIM(
(

Ii, I f

)
) =

(2µIi µI f + C1)(2σIi I f + C2)

(µ2
Ii
+ µ2

I f
+ C1)(σ

2
Ii
+ σ2

I f
+ C2)

, (4)

where Ii is the input image, I f is the fused image, and µIi and µI f are the mean of Ii and I f ,
respectively, σIi and σI f are the standard deviation of Ii and I f , respectively, and C1 and C1

are constants to avoid instability when µ2
Ii
+ µ2

I f
or σ2

Ii
+ σ2

I f
is close to zero [46].

3.2.4. Universal Image Quality Index

The Universal Image Quality Index (UIQI) measures the structural similarities between
a source image and the fused image [45]. This metric is a specific form of the SSIM, when
C1 = C2 = 0, which is computed with Equation (5) [46].

Q =
4σIi I f µIi µI f

(µ2
Ii
+ µ2

I f
)(σ2

Ii
+ σ2

I f
)

, (5)
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3.2.5. Root-Mean-Squared Error

This measures the variance of the arithmetic square root [44]. The RMSE is computed
with Equation (6) for 2D images.

RMSE =

√√√√( M

∑
x=1

N

∑
y=1

[
Ii(x, y)− I f (x, y)

]2
)

, (6)

where Ii(x, y) and I f (x, y) are the pixel value of the input and fused images, respectively, in
the position x and y, and M and N are the width and the height of the image, respectively.

3.2.6. Standard Deviation

The Standard Deviation (STD) is the square of the RMSE and is computed with
Equation (7) [44].

STD = RMSE2, (7)

3.2.7. Peak-Signal-to-Noise Ratio

The PSNR is computed using the RMSE with Equation (8) [44].

PSNR = 10.Log

[
(M× N)

2

RMSE

]
, (8)

where M and N are the width and the height of the image, respectively.
The suggested method by Maurer et al. is also a powerful tool for the validation of

fusion algorithms [47]. This method requires fiducial markers to calculate the Fiducial
Registration Error (FRE) and the Target Registration Error (TRE). The FRE measures the
distance between corresponding fiducial markers after the registration, while the TRE
measures the distance between corresponding points different from the fiducials used
for the registration. The measurement of these metrics requires databases with fiducial
points, such as the RIRE project [12] or the Non-rigid Image Registration Evaluation
Project (NIREP) [48]. Some authors created automatic methods to quantify the registration
accuracy, which does not rely on databases. An example is the method proposed by
Hauler et al. [22], who used feature detectors to obtain matching points in the images and
compute the Euclidean distances between those points. Hauler’s method using the Harris
detector yielded comparable results to the use of the RIRE dataset, with the drawback of
being insensitive to the presence of large misregistration.

3.3. Image Fusion Tools

Image fusion is a complex procedure that requires the coding of the registration and
merging steps. For this reason, software tools were created to facilitate the implementation
of image fusion.

Table 5 shows the main tools in image fusion based on the investigation performed by
Keszei et al. [35].

Table 5. Image fusion tools.

Tools Open-
Source Operating System Language Software

Platform
3D Slicer yes Linux, macOS, Windows C++ ITK

Advanced Normalization Tools (ANTs) yes Linux, macOS, Windows C++, Python ITK

ART 3dwarper no Linux C++ N/A
Automated Image Registration (AIR) yes Linux, macOS, Windows C N/A
bUnwarpJ yes Linux, macOS, Windows Java N/A
DRAMMS yes Linux, macOS, Windows C++ N/A
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Table 5. Cont.

Tools Open-
Source Operating System Language Software

Platform
Drop no Linux, Windows C++, Java N/A
Elastix yes Linux, macOS, Windows C++, Python ITK

Flexible Algorithms for Image Registration
(FAIR) no macOS, Windows MATLAB MATLAB

FMRIB Software Library (FSL) no Linux, macOS, Windows C++ N/A
FMRIB’s Non-Linear Image Registration
Tool (FNIRT) no Linux, macOS C++ FSL

Gilles yes Linux, macOS, Windows C++ N/A
Hierarchical Attribute Matching Mechanism
for Elastic Registration (HAMMER) no Linux, Windows C N/A

Insight ToolKit (ITK) yes Linux, macOS, Windows C++, Python ITK
Kroon yes macOS, Windows MATLAB MATLAB

Medical Image Processing, Analysis, and
Visualization (MIPAV) yes Linux, macOS, Windows Java N/A

Medical Image Registration Toolkit (MIRTK) no Linux, macOS, Windows C N/A
Medical Imaging Toolkit (MITO) yes Windows C++ N/A
NiftyReg yes Linux, macOS, Windows C++ N/A
OsiriX yes macOS C++ N/A
Plastimatch yes Linux, macOS, Windows C++, C N/A
Statistical Parametric Mapping (SPM) yes macOS, Windows MATLAB MATLAB

Symmetric Log-Domain Diffeomorphic
Image Registration (SLDIR) yes Linux, macOS, Windows C++ ITK

4. Discussion

This study provided a literature review about multi-modal image fusion, using articles
between January 2010 and April 2021. The main techniques in image fusion and registration
were described, and an overview of the main validation metrics and tools used for image
fusion was given.

Regarding the first research question, “What are the existing methods of brain image
fusion using CT and MRI?”, the procedure was divided into two steps: registration and
merging. This review found developments in the use of registration to localize electrodes
in SEEG. However, the lack of validation data with external objects was found to be a
common problem [17,18,20,21]. This problem led to the use of manual registration as a
gold-standard for validation, which produced unclear results for the possible subjective
errors. The use of datasets such as the RIRE or NIREP for validation can also lead to
unclear results due to the lack of external objects in the images. With respect to the image
merging techniques, there were methods related to machine learning algorithms. However,
there was a lack of developments specific to problems that require external objects in
multi-modal imaging.

Concerning the second research question, “What are the tools used to fuse multi-
modal brain images?”, twenty-two tools were found for the registration and fusion of
medical images, and from these, sixteen were open source. The most-used platforms for
the development of these tools were ITK and MATLAB, which were used by seven of the
found tools (Table 2).

As regards the third research question, “What are the metrics used to validate and
compare image fusion methods?”, the two main validation methods were: using tar-
gets/fiducial points and using specific quantitative metrics. The first one measures the
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registration procedure using target points to compute the error between the registered
moving image and a gold-standard. The necessity of target points causes difficulty in
the error calculation, mainly in problems that lack public gold-standard databases such
as SEEG.

From the articles found (Table 2), the image merging methods were validated using
metrics based on the resulting features and signal distortion. These metrics measure how
the information is transferred to the fused images. In contrast, the registration validations
measure the distortion in the resulting image, which commonly requires a gold-standard.
To the authors’ knowledge, the only gold-standard for multi-modal brain images are the
RIRE and NIREP datasets, which cannot be used in specific conditions such as Intracranial
Electroencephalography (iEEG). Some authors have used manually registered images [19]
or digital photos from the implantation of electrodes in the iEEG to obtain a 3D model of
the position of the electrodes and used it as the gold-standard [17,20].

Finally, this review documented the main techniques and tools for the multi-modal
fusion of brain images, specifically in the exam of SEEG. There is a lack of merging
method for this specific scenario and some problems in the validation methodology for the
registration procedure, caused by the lack of a gold-standard dataset with external objects.

5. Conclusions

Image fusion is a powerful tool used in the localization of epileptogenic tissue in
SEEG [17,18,20,21]. The methods for image fusion in SEEG focus mainly on the registration
procedure, with a lack of implementation. This review also revealed that the most common
platforms were MATLAB and ITK, which were used in nine of the found articles.

The literature search did not reveal a standard validation method when external objects
were present. This lack of standardization complicates the comparison of different fusion
techniques, which also causes unclear accuracy results related to electrode localization.
Based on this, it is necessary to create a standard validation method for medical images
that requires the localization of external objects, including a gold-standard dataset, similar
to the RIRE or NIREP.
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NCC Normalized Correlation Coefficient
MI Mutual Information
NMI Normalized Mutual Information
ITK Insight ToolKit
RIRE Retrospective Image Registration Evaluation Project
TRE Target Registration Error
ERBD Evolutionary Rigid-Body Docking
NGF Normalized Gradient Field distance
MSD Multi-scale Decomposition Methods
LPT Laplacian Pyramid Transform
DWT Discrete Wavelet Transforms
DRT Discrete Ripple Transform
NSST Non-Subsampled Shearlet Transform
RMSE Root Mean Square Error
PSNR Peak-Signal-to-Noise Ratio
HUE Intensity-Hue-Saturation
NSCT Non-Subsampled Contourlet Transform Fusion
Non-MSD Non-Multi-Scale Decomposition
PCA Principal Component Analysis
ANN Artificial Neural Network
PCNN Pulse-Coupled Neural Network
SSIM Structural Similarity Index
IWT Integer Wavelet Transform
EN Entropy
STD Standard deviation
NIREP Non-rigid Image Registration Evaluation Project
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