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Abstract: In this paper, we present a theoretical study on the maximum specific loss power in the
admissible biological limit (PsM)l for CoFe2O4 ferrimagnetic nanoparticles, as a possible candidate
in alternative and non-invasive cancer therapy by superparamagnetic hyperthermia. The heating
time of the nanoparticles (∆to) at the optimum temperature of approx. 43 ◦C for the efficient
destruction of tumor cells in a short period of time, was also studied. We found the maximum
specific loss power PsM (as a result of superparamegnetic relaxation in CoFe2O4 nanoparticles) for
very small diameters of the nanoparticles (Do), situated in the range of 5.88–6.67 nm, and with the
limit frequencies (fl) in the very wide range of values of 83–1000 kHz, respectively. Additionally,
the optimal heating temperature (To) of 43 ◦C was obtained for a very wide range of values of the
magnetic field H, of 5–60 kA/m, and the corresponding optimal heating times (∆to) were found in
very short time intervals in the range of ~0.3–44 s, depending on the volume packing fraction (ε) of the
nanoparticles. The obtained results, as well as the very wide range of values for the amplitude H and
the frequency f of the external alternating magnetic field for which superparamagnetic hyperthermia
can be obtained, which are great practical benefits in the case of hyperthermia, demonstrate that
CoFe2O4 nanoparticles can be successfully used in the therapy of cancer by superaparamagnetic
hyperthermia. In addition, the very small size of magnetic nanoparticles (only a few nm) will lead to
two major benefits in cancer therapy via superparamagnetic hyperthermia, namely: (i) the possibility
of intracellular therapy which is much more effective due to the ability to destroy tumor cells from
within and (ii) the reduced cell toxicity.

Keywords: cobalt ferrite nanoparticles; specific loss power; superparamagnetic hyperthermia; alter-
native cancer therapy

1. Introduction

Superparamagnetic hyperthermia (SPMHT) for alternative and noninvasive cancer
therapy uses magnetic nanoparticles that have a superparamagnetic behavior in an external
magnetic field [1–7]. By the effect of magnetic relaxation [2,8,9] in an alternating magnetic
field with amplitude H and frequency f of hundreds of kHz, the magnetic nanoparticles
are heated [1]. Thus, by introducing magnetic nanoparticles into the tumor by various
techniques using modern nanobiotechnology [10], and then heating them by magnetic
relaxation following the application of the magnetic field from the outside, the temperature
of approx. 43 ◦C required for the destruction of tumor cells can be obtained. So, super-
paramagnetic hyperthermia uses the natural thermal effect to destroy tumor cells, being
a new technique, alternative to classical techniques (chemo- and radiotherapy), and also
non-invasive, having low or even no toxicity [7,10–12] compared with classical techniques
that have a high degree of toxicity on the body.

Today, superparamagnetic hyperthermia is considered as the method of the future
in cancer therapy due to the very promising results obtained so far both in vitro, in vivo
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and in clinical trials [7,10,11,13–28]. However, the effectiveness and efficiency of super-
paramagnetic hyperthermia in destroying tumor cells depends very much on the magnetic
nanoparticles used for it. Most viable results have been obtained so far by using Fe3O4
nanoparticles (magnetite) [13–19,29–39], but also other magnetically soft ferromagnetic
nanoparticles (which have low magnetic anisotropy) [40–51].

However, magnetite nanoparticles, although they seem to be the most suitable in
terms of magnetic characteristics and efficiency in obtaining a high specific dissipated
power, they have a major disadvantage, namely: the size of the nanoparticles which is
too large, in the range of 14–17 nm, for obtaining superparamamagnetic hyperthermia
in optimal conditions [1,28,52,53]. This can cause problems of cellular toxicity, and to
reduce it requires the use of low concentrations of nanoparticles in therapy, which will
decrease the effectiveness of superparamagnetic hyperthermia. Elimination of this major
drawback could be done using CoFe2O4 ferrite nanoparticles, by replacing Fe2+ ions in the
lattice of magnetite (Fe3+[Fe2+, Fe3+]O4

2− [54] with Co2+ ions in the ratio of 1:1 (Fe3+[Co2+,
Fe3+]O4

2−. Thus, an inverse spinel will be obtained as in the case of magnetite having
the saturation magnetization (425 kA/m) close to that of the magnetite (480 kA/m), but a
considerably higher magnetic anisotropy: 200 kJ/m3 [55] compared to only 11 kJ/m3 [54]
in the case of magnetite. The slight decrease in magnetization in the case of cobalt ferrite
will not significantly influence in terms of superparamagnetic hyperthermia, but the large
increase in magnetic anisotropy (of ~18 times) will radically change the hyperthermic
behavior, both in terms of the specific loss power as well as of the heating temperature
of the nanoparticles. Thus, the high magnetic anisotropy in the case of cobalt ferrite
nanoparticles leads to obtaining a maximum heating rate for very small nanoparticles, of
the order of a few nm [1]. The reduced size of CoFe2O4 nanoparticles will have at least
two major beneficial effects in the superparamagnetic hyperthermia of tumors: (i) the
reduction of cellular toxicity [12] due to reduced nanoparticle size, and (ii) the possibility
of intracellular therapy by superparamagnetic hyperthermia [56]. These are two very
important issues to consider in magnetic hyperthermia in addition to increasing the specific
loss power, on which the effectiveness of tumor therapy greatly depends. Therefore, cobalt
ferrite nanoparticles are currently of particular scientific interest to be applied in magnetic
hyperthermia for cancer therapy [5,57–66].

As a result, a systematic and in-depth study of the superparamamagnetic hyperther-
mia with CoFe2O4 nanoparticles is required in order to understand its use for the therapy
of tumors with increased efficiency and low or lack of toxicity. Only a few studies were
done so far on the use of cobalt ferrite nanoparticles in magnetic hyperthermia compared
to those related to magnetite, for example. Thus, the optimal conditions in which super-
paramagnetic hyperthermia can be obtained with CoFe2O4 nanoparticles were not yet
determined in order to obtain the maximum specific loss power that leads to an increase
in the efficacy of cobalt ferrite nanoparticles in tumor therapy and, at the same time, to a
reduction in the heating time of the nanoparticles at an optimal temperature of 43 ◦C in
order not to affect healthy tissues.

Therefore, in this paper, we present a systematic and complete study on the maximum
specific loss power (PsM)l within the allowable biological limit that can be obtained in
superparamagnetic hyperthermia using CoFe2O4 ferrite nanoparticles a promising candi-
date in cancer therapy with increased efficacy on tumors. We also determined the optimal
heating time (∆to) of the nanoparticles for the temperature of 43 ◦C in superparamagnetic
hyperthermia with CoFe2O4 nanoparticles in order to obtain the maximum efficiency in
destroying the tumor cells within the admissible biological limit so as not to damage
healthy tissues. At the same time, we established the maximum value of the magnetic field
up to which the linear approximation can be applied in superparamagnetic hyperthermia
in the case of CoFe2O4 nanoparticles.
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2. Basic Theoretical Aspects

The standard physical observables that indicate if different magnetic nanoparticles
can be used in superparamagnetic hyperthermia to destroy tumor cells are: specific loss
power Ps (or denoted symbolic SLP) and heating rate of nanoparticles ∆Ti/∆t, where Ti is
the temperature and t is the time, having in view that the specific absorption rate (SAR) [67]
for an adiabatic system is

SAR = c∆Ti/∆t (1)

where c is the specific heat capacity of the nanoparticles.
The specific loss power can be expressed by the formula [1,53]

Ps =
3πµ0χi

ρξ

(
cothξ − 1

ξ

)
2π f τ

1 + (2π f τ)2 f H2 (2)

where µ0 is the magnetic permeability of vacuum (4π × 10−7 H/m), f and H are the
frequency and the amplitude of magnetic field, ρ is the density of nanoparticle material.
The observable ξ in the above formula is the parameter of the Langevin function [68],
expressed as a function of the diameter of the nanoparticles (D) considered spherical.

ξ =
πµ0MsD3

6kBT
H (3)

that describing the magnetization of magnetic nanoparticles (M) in the external magnetic
field H [69],

M = Msat

(
cothξ − 1

ξ

)
(4)

where Msat is the saturation magnetization of the nanoparticle system. The observable ξ is
the initial magnetic susceptibility of magnetic nanoparticles [4,53], which is given by the
formula:

χi =
επµ0M2

s D3

18kBT
(5)

and strongly depends on the diameter of the magnetic nanoparticles (the diameter at the
third power). The observable τ in Equation (2) is the Néel magnetic relaxation time [2]

τ = τ0exp
(

πKD3

6kBT

)
(6)

where τ0 is a time constant with a value of 10−9 [70].
Formula given by Equation (2) was determined by taking into account the dependence

of static magnetic susceptibility on the external magnetic field applied when reaching high
values and the magnetic susceptibility can no longer be considered constant and equal to
the initial magnetic susceptibility (χi) [53].

In small amplitude fields the formula is simplified, being reduced to [53]

Ps =
πµ0χi

ρ

2π f τ

1 + (2π f τ)2 f H2 (7)

Taking into account the specific absorption rate given by Equation (1) and the specific
loss power in an adiabatic system (SAR = Ps) given by Equation (2) (or Equation (7)) it
is possible to obtain the heating temperature ∆Th of the nanoparticles in a finite time
interval ∆t.

∆Th =
1
c

Ps∆t (8)

In magnetic hyperthermia of tumors, the heating temperature must reach approx.
43 ◦C in a short period of time in order to be effective on tumor cells, leading to their
destruction at least by cellular apoptosis [7,10], and not to affect healthy cells. However,
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heating temperatures during magnetic hyperthermia can increase to values higher than
43 ◦C. In such cases, automatic control systems with an electronic reaction of the magnetic
field generator (reverse reaction) can be used which allows limiting and maintaining the
heating temperature constant at the required value of 43 ◦C.

In conclusion, if during the process of heating the magnetic nanoparticles in superpara-
magnetic hyperthermia a temperature of least 42.5–43 ◦C is obtained in a short period of
time so that the healthy cells are not affected, then those nanoparticles could be successfully
used in cancer therapy via superparamagnetic hyperthermia.

3. Results and Discussion
3.1. Characteristic Observables of CoFe2O4 Nanoparticles and Study Method

The specific parameters of interest of the magnetic material of the CoFe2O4 ferrimag-
netic nanoparticles are shown in Table 1. These are: spontaneous magnetization of the
material Ms, magnetocrystalline anisotropy constant K, material density ρ and specific heat
c [1,54,55].

Table 1. Characteristic observables of the CoFe2O4 ferrite nanoparticles and parameters of magnetic field.

Ms
(×103 A m−1)

K
(×103 J m−3)

ρ

(×103 kg·m−3)
c

(Jkg−1 K−1) ε
H

(×103 A m−1)
f

(×103 Hz)
D

(×10−9 m)

425 200 5.29 700 0.01–0.15 5–180 50–1000 1–20

For the study of the specific loss power and heating temperature of CoFe2O4 nanopar-
ticles, we used a professional 3D powerful software tool for calculation. We used the
formulas in Section 1, and a spatial graphical representation in order to capture all the
details through a simultaneous representation of the observables of interest as a function
of two variables: the parameters of the harmonic alternating magnetic field (amplitude
H and frequency f) and the basic characteristics of the magnetic nanoparticles (diameter
D and volume packing fraction ε) given in Table 1. Given that, in practice, magnetic
hyperthermia is most often in the range of 100–500 kHz and for magnetic fields in the
range of 10–40 kA/m, we have extended these ranges to study possible valid results that
could be obtained outside the ranges used up to now. Additionally, for the diameter of
nanoparticles D, for the same reason, the range of 1–20 nm was chosen, considering the
known values for magnetite and γ-Fe2O3 nanoparticle diameters (~15–20 nm). For the
spontaneous magnetization and magnetic anisotropy constant in Table 1 we considered
the standard values for CoFe2O4 ferrite [54,55], having in view the following reasons. In
the case of magnetic nanoparticles, and even more for ferromagnetic and ferrimagnetic
ones in which the exchange and superexchange interactions are strong, for small sizes of
nanoparticles an important contribution of surface effects (spin canting, broken exchange
bonds, etc.) can occur to magnetic saturation [71–73] and magnetic anisotropy [74–76],
depending on the type and size of nanoparticles. This contribution can be manifested
by a surface magnetic anisotropy [77–80] and decreased magnetic saturation [71–73,81].
Additionally, if the magnetic nanoparticles are not spherical there may be an important
contribution of the shape of the nanoparticles to magnetic anisotropy if the nanoparticles
deviate much from the spherical shape (e.g., magnetic nanoparticles are elongated) [82].
Thus, for magnetic anisotropy an effective magnetic anisotropy constant (Keff) should
be considered as a contribution of the magnetocrystalline anisotropy constant (K), the
surface anisotropy constant (Ks) and the shape anisotropy constant (Ksh) (Keff = K + Ks
+ Ksh) [78,80]. However, in the case of our study we considered spherical nanoparticles
(Ksh = 0), a condition fulfilled in most practical cases. Additionally, in the case of cobalt
ferrite nanoparticles, the magnetocrystalline anisotropy constant (K = 2 × 105 J/m3 [54]) is
much larger than the surface anisotropy constant (Ks), which in general can be found in the
range 1–5 × 104 J/m3 [78–80], depending on the size and type of nanoparticles. Therefore,
in the case of CoFe2O4 ferrite nanoparticles the most important contribution to magnetic
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anisotropy is given by the magnetocrystalline component (Keff~K) [83], as we will consider
in this paper (Table 1) [55]. Additionally, the surface effects and spins disorder in surface
layer of nanoparticles can significantly reduce the spontaneous/saturation magnetization at
room temperature. However, the concrete value of the decrease of spontaneous/saturation
magnetization depends on many other factors, besides the size of the nanoparticles, such
as the type of magnetic material, the preparation conditions of the sample, the surfac-
tation or not of the nanoparticles, different heat treatments, previous history of sample,
etc. Therefore, it is difficult to predict an exact value of the spontaneous magnetization
of nanoparticles. Thus, in order not to introduce ambiguities in this theoretical study, we
consider in the calculations the standard value of the spontaneous magnetization (Ms) at
room temperature (20 ◦C) of the CoFe2O4 ferrite (Table 1) [54]. Of course, in the case of
concrete applications, it is beneficial to determine experimentally a priori the values of
spontaneous/saturation magnetization and effective magnetic anisotropy of nanoparticles
for better accuracy.

In our study, we considered two fundamental observables used in superrparamagnetic
hyperthermia: (i) the specific loss power (Ps) (Equation (2) with Equations (3), (5)–(7))
and (ii) the heating temperature (Th) (Equation (8)) for CoFe2O4 nanoparticles, which
are key parameters in the analysis of the efficacy and effectiveness of superparamagnetic
hyperthermia for cancer therapy.

3.2. The Maximum Specific Loss Power in the Case of Superparamagnetic Hyperthermia with
CoFe2O4 Nanoparticles

The most important observable that allows the anticipation of the characteristics
that CoFe2O4 ferrimagnetic nanoparticles must have in order to be successfully used in
superparamagnetic hyperthermia for the destruction of tumor cells is the specific loss
power Ps (or SLP). Using Equation (2) and Equations (3), (5) and (6), with the values of the
characteristic parameters in Table 1, the specific loss power Ps was calculated as a function
of the diameter of nanoparticles (D) and the characteristic observables of magnetic field:
frequency (f) and amplitude (H). For this it was taken into account that the size of magnetic
nanoparticles is a key parameter in magnetic hyperthermia, therefore it was considered
primarily the dependence of the specific loss power Ps on the diameter D of nanoparticles.

Thus, the 3D dependence of the specific loss power (Ps) in the CoFe2O4 ferrimagnetic
nanoparticles as a function of the nanoparticle diameter (D) and the frequency of the
magnetic field (f) for the values included in the domains D = 1–20 nm and f = 100–1000 kHz
(Table 1), and for volume packing fraction ε = 0.15, having as parameter the amplitude of
magnetic field H (in the range specified in Table 1), is shown in Figure 1. Here two values
for H were considered: 15 kA/m (Figure 1a) and 30 kA/m (Figure 1b).

The obtained results show four very important aspects for the subsequent and efficient
application of superparamagnetic hyperthermia:

(i) The specific loss power Ps has a narrow maximum (PsM) for a very small value of the
diameter (D) of the CoFe2O4 nanoparticle of approx. 6–6.5 nm. This result is in good
agreement with the one obtained in [1,67].

However, the result is very different from that obtained for the magnetite nanoparticles
(Fe3O4), where the maximum specific loss power was obtained at a nanoparticle diameter
of ~16–17 nm [28,53]. This high difference in the diameters of magnetic nanoparticles is
due to the very high magnetic anisotropy of cobalt ferrite, which has a much higher mag-
netocrystalline anisotropy constant (200 kJ/m3) [55] than that of magnetite (11 kJ/m3) [54],
which makes the maximum loss power to be obtained at significantly lower values of the
CoFe2O4 nanoparticles diameter.
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The fact that CoFe2O4 nanoparticles are very small is a major advantage in terms of
magnetic hyperthermia, which can be achieved intracellularly, leading to a more efficient
destruction of tumor cells from within. The nanoparticles being so small can easily pene-
trate through the phospholipids membrane inside the cells (cytoplasm or even the nucleus),
thus destroying them more efficiently from inside.

(ii) There is a dependence of the maximum specific loss power PsM on the diameter of
the magnetic nanoparticles D as a function of the frequency of the magnetic field f
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(Figure 2), namely: the maximum power shifts from higher values to lower values of
the nanoparticle diameter when the magnetic field frequency increases from 100 kHz
to 1000 kHz. Table 2 shows some values for the diameters of CoFe2O4 nanoparticles
for which the maximum loss power is obtained for the frequency range limits (100 kHz
and 1000 kHz) as well as at the mid-value of those limits (500 kHz).

Table 2. The values of maximum specific loss power (PsM) and the corresponding diameter of
CoFe2O4 nanoparticles (DM) for three frequencies in the range of 100–1000 kHz, and H = 15 kA/m
and ε = 0.15.

PsM (W/g) f (kHz) DM (nm)

3.46 100 6.62
13.64 500 6.12
24.13 1000 5.88
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Therefore, given the size dependencies of the 3rd power of the nanoparticle diameter
in the initial magnetic susceptibility (Equation (5)), the Langevin parameter (Equation (3))
and the magnetic relaxation time (Equation (6)), for a precise calculation we must take
into account the diameter values corresponding to the frequencies identified (as in Table 2)
when calculating the maximum loss power PsM (Equation (2)), and then when calculating
the heating temperature of the nanoparticles ∆Th (Equation (8)). A small deviation of
the nanoparticle diameter from those values identified to be corresponding to the max-
imum will lead to lower values of the specific loss power, and implicitly of the heating
temperature.

(iii) The maximum loss power increases both with the amplitude and the frequency of
magnetic field as shown in Figure 3. However, the increase is more accentuated
with the increase of the magnetic field amplitude (see Figure 1a,b). However, for
the magnetic fields higher than 60–70 kA/m there is a limiting effect (saturation) of
increasing the specific loss power at frequencies above 600–700 kHz.
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(iv) The specific loss power for CoFe2O4 nanoparticles is significantly lower than in
the case of magnetite nanoparticles. However, if the power obtained under these
conditions were sufficient to heat the nanoparticles to an optimum temperature of
~43 ◦C, and in a relatively short period of time (see Section 3.5), then the reduced
power would not come as a disadvantage in the use of CoFe2O4 nanoparticles in
superparamagnetic hyperthermia for tumor therapy. In addition, we’ve shown a
major advantage in point (ii), regarding intracellular therapy, which will increase the
effectiveness of CoFe2O4 nanoparticles in the hyperthermic destruction of tumor cells,
much more efficiently from within.
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However, there is another important question that arises in these conditions, as follows:
what is the appropriate magnetic field in which the formula of specific loss power in the
linear approximation can be used? A detailed answer will be given in the next paragraph.

3.3. The Specific Loss Power in the Linear Approximation
3.3.1. Maximum Specific Loss Power

Using the formulas for the calculation of the specific loss power Ps given by Equation (2)
and Equation (7), the calculations made for the maximum specific loss power (PsM) at the
frequency of 500 kHz for two relatively distant magnetic field values, one usual of (a)
15 kA/m and the other relatively high (b) 60 kA/m, lead to the results shown in Figure 4.
Using Equation (7) we obtained the diagrams (a1) for the magnetic field of 15 kA/m and
the diagram (b1) for the magnetic field of 60 kA/m. Using Equation (2) we obtained the
diagrams (a2) for 15 kA/m and (b2) for 60 kA/m. The results show that there are no
noticeable differences between the maximums of the specific loss powers PsM obtained in
the case of Equation (2) and for the higher magnetic field of 60 kA/m (Figure 4b2).
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The explanation for this behavior which is very different from the case of magnetite
is the following: Co ferrite nanoparticles have high magnetic anisotropy [55,83] which
leads to a very small size of the nanoparticle diameter D which determines the maximum
specific loss power, as previously shown (Figure 1). The small size of the nanoparticles also
causes a low magnetic susceptibility (χ0), which also varies very little with the increase of
the magnetic field even when using very large magnetic fields of approx. 100 kA/m, as
seen in Figure 5.

Calculating the maximum loss powers (PsM) for those two cases (as in Figure 4), using
Equations (2) and (7), we find that the differences between them appear only at large values
of the magnetic field, over ~70 kA/m as shown in Figure 6. The yellow curve represents the
variation of the maximum specific loss power with the increase of the magnetic field up to
the value of 100 kA/m in the linear approximation given by Equation (7), considering the
magnetic susceptibility constant and equal to the initial one (χi). The green curve represents
the maximum specific loss power calculated using the formula given by Equation (2), when
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the susceptibility depends on the magnetic field. The maximum specific loss powers were
calculated at a frequency of 500 kHz and for the corresponding nanoparticle diameter of
6.12 nm.
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The explanation for this behavior in the case of CoFe2O4 nanoparticles which is very
different from that of magnetite is given in the next section.
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3.3.2. Magnetic Behavior of Small CoFe2O4 Nanoparticles and Linearity of Magnetization

When calculating the magnetization (M) in the case of CoFe2O4 nanoparticles using
Equation (4), where the parameter of the Langevin function is given by Equation (3), for an
average nanoparticle diameter of ~6 nm we obtained the curve M = f (H) shown in Figure 7a.
In our calculus, we took into account the saturation magnetization of the nanoparticles
expressed by

Msat = εMs (9)

where ε is the magnetic packing fraction (considered 0.15 as in all calculations made
until now) and Ms is spontaneous magnetization [54] (Table 1). The magnetization was
calculated up to a magnetic field close to saturation (500 kA/m) in order to register the
Langevin type variation of the magnetization.
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Using the data fit technique obtained with professional software and using a linear
function in the range of low fields, we find a very good linear dependence (red line)
of magnetization with the field (Figure 7b): M = α H, where α is the slope of the line.
Moreover, this linear dependence is well fulfilled up to large magnetic fields of ~60 kA/m.
In Figure 7b the confidence interval is marked with the light blue color.

Thus, the results obtained above show that the linear approximation in the case of
CoFe2O4 nanoparticles can be used up to large magnetic fields (up to 60 kA/m), compared
to magnetite, for example, where the field did not exceed 5 kA/m [53]. The obtained result
is also in agreement with the one shown in Figure 6, where it is clearly observed that up to
the magnetic field of ~60 kA/m the maximum specific loss power PsM can be calculated
in the linear approximation, and the Equation (7) can be used in this case instead of the
Equation (2).

All these results shows that the calculations for determining the specific loss power
in the case of CoFe2O4 nanoparticles are greatly simplified. Additionally, this is a great
advantage in the case of the practical implementation of superparamagnetic hyperthermia
because it is no longer necessary to know the magnetic susceptibility (χ0) as the nonlinear
field function χ0 = f (H),

χ0 = χi
3
ξ

(
cothξ − 1

ξ

)
(10)

where ξ and χi are given by the Equations (3) and (5).
This very different magnetic behavior in the case of CoFe2O4 nanoparticles is also

due to the small size (diameter) of the nanoparticles that are used in superparamagnetic
hyperthermia to obtain the maximum specific loss power (Figure 1). The small size of
CoFe2O4 nanoparticles is due to their very large magnetic anisotropy.

Under these conditions, the parentheses in Equation (4) can be approximated by

cothξ − 1
ξ
∼=

1
3

ξ (11)

and, therefore, the magnetic susceptibility used can be approximated with the initial one χi,

χ0 ∼= χi = const. (12)

which is constant (for a given diameter of the nanoparticle (Equation (3)).

3.4. Maximum Specific Loss Power in Superparamagnetic Hyperthermia under Optimal
Conditions and within Biologically Permissible Limits

The efficiency of the method of superparamagnetic hyperthermia with CoFe2O4
ferrimagnetic nanoparticles must be analyzed withing the biologically permissible limits of
a magnetic field that does not affect healthy tissues. Thus, taking into account the values
for the amplitude and frequency of the magnetic field corresponding to the admissible
biological limit [84],

H· fl ≤ 5 × 109
(

Am−1Hz
)

(13)

where fl is the limit frequency, and using the 3D representations for the specific loss powers
as in Figure 1, the maximum values of Ps and the corresponding optimal diameters (Dop)
of the CoFe2O4 nanoparticles were determined that lead to a maximum power (PsM)l. The
values of (PsM)l have been determined for a very wide range of values of the amplitude of
the magnetic field (5–180 kA/m). The identified values are shown in Table 3.
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Table 3. The values of maximum specific loss power (PsM)l for the optimal diameter (Do) of CoFe2O4

nanoparticles at the admissible biological limit for the parameters of magnetic field H and fl (the
limit frequency) resulting from the condition given by Equation (13).

No. H (kA/m) fl (kHz) Do (nm) (PsM)l (W/g)

1 5 1000 5.88 2.69 (+0.48)
2 15 334 6.25 9.73 (+0.43)
3 30 167 6.46 21.26 (+0.15)
4 45 111 6.58 32.70 (+0.02)
5 60 83 6.67 43.36 (+0.07)
6 75 67 6.72 53.43 (−0.30)
7 90 56 6.77 62.04 (−0.40)
8 100 50 6.80 66.46 (+0.14)
9 120 42 6.84 75.19 (−0.31)

10 135 37 6.88 79.50 (+0.27)
11 150 33 6.91 82.87 (+0.80)
12 165 30 6.93 86.27 (+0.47)
13 180 28 6.95 89.99 (−0.89)

The dependence of the maximum specific loss power (PsM)l in the admissible biologi-
cal limit (Equation (13)) as a function of the amplitude of magnetic field (H) is shown in
Figure 8. The mean values of the function (PsM)l are shown in figure by the red fit curve,
and the predict limits interval is shown by the light blue color.
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While analyzing this dependence, it was observed that, in the case of CoFe2O4 nanopar-
ticles, the maximum specific loss power (PsM)l increases proportionally with the increase
of the magnetic field up to 90–100 kA/m. Above these values, the maximum specific loss
power tends towards saturation.

Therefore, exploring different values for the magnetic field higher than 100 kA/m is
not recommended for practical use, at least for two reasons: (i) the power gain is reduced
more and more as the field increases, decreasing its efficiency, and (ii) obtaining large
magnetic fields at frequencies in the order of hundreds of kHz is difficult to achieve in
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practice. In addition, considering the results from Section 3.3.2 and even Section 3.3.1, we
recommend the use of a magnetic field up to the maximum limit of 60 kA/m, respectively in
the range 5–60 kA/m. This is the optimal range, shown by the green color in Table 3, which
can be used with maximum efficiency in the case of superparamagnetic hyperthermia with
CoFe2O4 ferrimagnetic nanoparticles. The optimal values corresponding to the diameter of
the magnetic nanoparticles Dop and the limit frequency of the magnetic field fl are given in
Table 3.

Comparing these results with those obtained in the case of magnetite nanoparti-
cles [53], having 10–25 kA/m for the amplitude of the magnetic field and 200–500 kHz
for the frequency, we find that in the case of CoFe2O4 nanoparticles we’ve achieved a
much wider range for both the magnetic field and frequency, respectively 5–60 kA/m and
83–1000 kHz. This is of great practical advantage, as having a very wide range of values
for the magnetic field and frequency in which superparamagnetic hyperthermia can be
efficiently obtained for nanoparticles with sizes in the range 5.88–6.67 nm.

Such a major advantage of the CoFe2O4 nanoparticles together with obtaining in-
tracellular hyperthermia due to the very small sizes of these nanoparticles can make the
superparamagnetic hyperthermia with CoFe2O4 ferrite nanoparticles more versatile than
the one with Fe3O4 nanoparticles, although the latter has been mostly used so far in
cancer therapy.

However, under these conditions, there’s still another matter that should be verified
in order to be able to support without a doubt the versatility of the superparamagnetic
hyperthermia with CoFe2O4 nanoparticles, namely, if the power is significantly lower
in the case of CoFe2O4 nanoparticles compared to that obtained for Fe3O4 nanoparticles
would be sufficient to heat CoFe2O4 nanoparticles to the optimum temperature of 43 ◦C
used in hyperthemia for the effective destruction of tumor cells. This issue is presented
and discussed in the next section.

3.5. Heating Characteristics and Optimum Heating Time in the Case of Superparamagnetic
Hyperthermia with CoFe2O4 Nanoparticles

Using Equation (8) where the specific loss power Ps is given by Equation (2) or (7)
depending on the magnetic field used (as we have shown above), with the quantities ξ,
χi and τ given by Equations (3), (5) and (6), we calculated the variation of the heating
temperature (∆Th) of the CoFe2O4 nanoparticles and the heating time (∆to) to reach the
optimal heating temperature (To) of ~43 ◦C required in magnetic hyperthermia of cancer.
In the calculations we took into account the room temperature (Tr) of 25 ◦C as the initial
temperature at which the nanoparticles are found. In order to reach the optimum temper-
ature (To) of 43 ◦C it would be necessary to increase the heating temperature (∆Tho) by
18 ◦C compared to the room temperature (To = Tr + ∆Tho). At the same time, we took into
account in the calculations the dependence of the parameters in Equations (3), (5) and (6)
on the temperature increase above the room temperature. Thus, we calculated the variation
(increase) of the heating temperature ∆Th starting from the room temperature Tr (25 ◦C).
This increase must be at least 18 ◦C in order to reach the optimum temperature To of 43 ◦C.

The results obtained for the magnetic field of 5 kA/m and 60 kA/m (the limits of the
optimal range) in optimal conditions, and within the admissible biological limit (according
to the values in Table 3) are shown in Figure 9. The results show that in both cases a ∆Th
increase of the temperature is obtained by more than 18 ◦C above the room temperature
(25 ◦C), thus reaching the optimal temperature of 43 ◦C for both values of the magnetic field.

For example, in the case of the magnetic field of 5 kA/m (Figure 9a) the temperature
∆Tho increased by 18 ◦C more than the room temperature and takes place in the ∆to time
interval of 5.01 s. The maximum heating temperature variation (∆Thm) of 42.43 ◦C is
reached after time interval ∆tm of 23.63 s. However, if the magnetic field has a high value
of 60 kA/m (Figure 9b) the temperature variation of 18 ◦C is obtained faster, in a shorter
period of time (∆to) of only 0.35 s, and the maximum heating temperature (∆Thm) in this
case is lower, being 26.74 ◦C compared to 42.43 ◦C as in the previous case, a value that is
reached in a period of time (∆tm) of only 0.92 s.
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Thus, when the magnetic field increases to 60 kA/m a significant reduction in the
heating time of the nanoparticles is obtained, approx. 14 times lower, which is greatly
advantageous in terms of the hyperthermic effect (heating must be done in the shortest
possible time so as not to affect healthy cells). However, in this case, there is also a decrease
in the maximum temperature reached, from 42.43 ◦C to 26.74 ◦C, mainly due to the decrease
in the frequency limit from 1000 kHz to 83 kHz used in this case. However, this does not
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affect the hyperthermic effect, increasing the temperature by 18 ◦C above room temperature
being achieved, and the optimal temperature of 43 ◦C being obtained.

Using 3D representations such as those in Figure 9 for the optimal conditions in Table
3 (field values in the range 5–60 kA/m, limit frequencies in the range 83–1000 kHz and the
optimal diameter of nanoparticles in the range 5.88–6.67 nm) we determined all values
for the optimal time intervals (∆to) (marked in green) necessary to reach the optimum
temperature of 43 ◦C (increase with ∆Tho = 18 ◦C above room temperature), as well as the
values of the maximum temperature ∆Thm that is reached and the times ∆tm required for
this. The values obtained are shown in Table 4.

Table 4. The values of the optimal heating times (∆to) of the CoFe2O4 nanoparticles under the optimal
parameters given in Table 3, for the volume fraction of 0.15. The table also shows the values of the
maximum variation of the heating temperature (∆Thm) of the nanoparticles and their corresponding
durations (∆tm) under the given conditions.

H (kA/m) fl (kHz) Do (nm) ∆Thm (◦C) ∆tm (s) * ∆Tho (◦C) ** ∆to (s)

5 1000 5.88 42.43 23.33 18 5.01
15 334 6.25 33.35 5.18 18 1.45
30 167 6.46 29.29 2.09 18 0.69
45 111 6.58 27.48 1.27 18 0.46
60 83 6.67 26.74 0.92 18 0.35

* ∆Tho = 43–25 ◦C; ** (±0.01).

However, considering that in practice smaller packing fractions can be used, in order
to check the heating efficiency in these cases we also considered another much smaller
fraction, namely ε = 0.017. The results obtained in this case are shown in Figure 10 for
the same magnetic fields as in the previous case: 5 kA/m (Figure 10a) and 60 kA/m
(Figure 10b).

The results show that even in these cases the optimal heating of CoFe2O4 nanoparticles
can be obtained at the optimum temperature (To) of 43 ◦C, only that this will be done
in a longer time interval (∆to). For example, in the case of a magnetic field of 5 kA/m
(Figure 10a), a heating of the nanoparticles by 18 ◦C in addition to the room temperature
(25 ◦C) in order to reach the optimal value of 43 ◦C, will be made in a time interval (optimal)
∆to of ~44 s compared to only ~5 s in the previous case.

The optimal values for the time intervals (∆to) determined in this case for different
values of the magnetic field in the range of 5–60 kA/m, in the optimal conditions and in
the biologically admissible limits, are given in Table 5. From the table it is observed that
increasing the amplitude of the applied magnetic field leads to a decrease in the heating
time, as we expected.

Table 5. The values of the optimal heating times (∆to) of the CoFe2O4 nanoparticles under the
optimal parameters given in Table 3, for the volume fraction of 0.017. The table also shows the
values of the maximum variation of the heating temperature (∆Thm) of the nanoparticles and their
corresponding durations (∆tm) under the given conditions.

H (kA/m) fl (kHz) Do (nm) ∆Thm (◦C) ∆tm (s) * ∆Tho (◦C) ** ∆to (s)

5 1000 5.88 41.99 212.07 18 44.19
15 334 6.25 33.06 46.57 18 12.80
30 167 6.46 28.81 18.15 18 6.14
45 111 6.58 27.28 11.15 18 4.08
60 83 6.67 26.72 8.08 18 3.07

* ∆Tho = 43–25 ◦C; ** (±0.01).
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Considering all the above results obtained for both ε of 0.017 and 0.15 we can say that
for all other values of ε in the range 0.017–0.15 the optimal heating of the nanoparticles
at temperatures of 43 ◦C will be possible. The optimal heating times (∆to) will be found
between the two limits given in Tables 4 and 5, for each value of the magnetic field. For
example, in the case of the applied magnetic field of 5 kA/m the optimal heating times of
the nanoparticles in order to reach the effective temperature of 43 ◦C will be in the range of
5.01–44.19 s, depending on the value of the volume fraction (ε).
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Also, according to the data in Tables 4 and 5, it results that the optimal heating times of
CoFe2O4 nanoparticles are quite short in all cases, being fulfilled the condition of magnetic
hyperthermia not to affect healthy cells.

In conclusion, according to the results obtained, we can say that in all cases considered
for the optimally established range (Table 3, values marked in green) an efficient heating of
CoFe2O4 nanoparticles will be obtained, and, therefore, these can be successfully used in
superparamagnetic hyperthermia. Even if the maximum specific loss power (PsM)l within
the admissible biological limit in the case of CoFe2O4 nanoparticles is significantly lower
(Table 3) than in the case of magnetite nanoparticles [28,53], still CoFe2O4 nanoparticles
can be used successfully in superparamagnetic hyperthermia, because under the optimal
conditions established by us the nanoparticles can be heated to the optimum temperature of
43 ◦C necessary in magnetic hyperthermia for the effective destruction of tumor cells. Thus,
the issue of efficient heating of CoFe2O4 nanoparticles under conditions of low specific loss
power (point (iv) of Section 3.2) has also been clarified.

4. Conclusions

In this paper we have demonstrated that small nanoparticles (5.88–6.67 nm) of
CoFe2O4 ferrite can be successfully used in superparamagnetic hyperthermia for alternative
cancer therapy, under the following optimal conditions for practical implementation:

(1) Obtaining the heating temperature of the nanoparticles at 43 ◦C for the amplitudes of
the magnetic field of 5–60 kA/m, the frequencies of the magnetic field of 83–1000 kHz,
and the diameters of the nanoparticles in the range 5.88–6.67 nm (Sections 3.4 and 3.5);

(2) Optimal heating of the nanoparticles, by 18 ◦C above room temperature (25 ◦C), in a
short period of time: 0.35–44.19 s, depending on the volume packing fractions;

(3) The use of the linear approximation up to large magnetic fields, of ~60–70 kA/m, for
the maximum specific loss power, which greatly simplifies the practical implementa-
tion of magnetic hyperthermia in the case of CoFe2O4 nanoparticles.

(4) Possible intracellular therapy due to the use of very small nanoparticles (5.88–6.67 nm)
of CoFe2O4 that lead to obtaining the optimal maximum specific loss power (PsMo), a
therapy that is much more effective in destroying tumor cells.

All optimal values of the amplitude (H) and frequency (f) of the magnetic field, the
optimal nanoparticle diameter (Do) and the optimal heating times (∆to) are given in Table 3
(values marked in green), and the graphic in Figure 8. The corresponding optimal times
are found in Tables 4 and 5, as well as Figures 9 and 10.

These all results, under the appropriate biocompatible of CoFe2O4 nanoparticles with
the biological tissue into which they are to be inserted, may make CoFe2O4 nanopar-
ticles more effective than magnetite (Fe3O4) in cancer therapy by superparamagnetic
hyperthermia.

Also, the possible use of magnetic fields in a very wide range of values for its am-
plitude and frequency (5–60 kA/m and 83–1000 kHz) in the case of superparamagnetic
hyperthermia with CoFe2O4 ferrite nanoparticles is another major practical advantage.
This will lead to eliminating the restrictive conditions in relation to the magnetic field used
so far in the case of magnetite (10–25 kA/m and 200–500 kHz [53]).

In addition, for greater accuracy in the practical application of magnetic hyperthermia,
it is recommended to determine experimentally a priori the effective magnetic anisotropy
and the spontaneous/saturation magnetization of nanoparticles to be used, give the pos-
sible surface effects in nanoparticles which could contribute to the modification of these
parameters.

All these will allow in practice to adjust on a case-by-case basis, the values used for
magnetic field parameters and nanoparticle sizes to obtain the maximum effect in super-
paramagnetic hyperthermia for each particular tissue for maximum efficacy in destroying
tumor cells.
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