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J.; Wiśniewska, P.; Gdaniec, M.

Theoretical and Experimental Insights

into the Tandem Mannich—

Electrophilic Amination Reaction:

Synthesis of Safirinium Dyes. Appl.

Sci. 2021, 11, 5498. https://doi.org/

10.3390/app11125498

Academic Editor: Mariusz Mojzych

Received: 23 May 2021

Accepted: 10 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk,
107 Gen. J. Hallera Av., 80-416 Gdansk, Poland; paulina.wisniewska@gumed.edu.pl

2 Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk,
107 Gen. J. Hallera Av., 80-416 Gdansk, Poland; joanna.fedorowicz@gumed.edu.pl

3 Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; magdan@amu.edu.pl
* Correspondence: js@gumed.edu.pl

Abstract: Isoxazolo[3,4-b]pyridin-3(1H)-ones are ‘spring-loaded’ compounds that quantitatively react
with iminium salts derived from formaldehyde and secondary amines to yield fluorescent Safirinium
dyes. The mechanism and energetics of the above tandem Mannich–electrophilic amination reaction
have been investigated experimentally and using theoretical methods. The hybrid B3LYP functional
with GD3 empirical dispersion and range-separated hybrid functionalωB97XD, both combined with
a PCM model, were applied to acquire the energetic profiles of the studied reaction with respect to
the structure of secondary amine and isoxazolone used. Diastereoselectivity of the tandem reactions
involving iminium salt derived from L-proline has been rationalized theoretically by means of density
functional theory calculations.

Keywords: cationic dyes; DFT; electrophilic amination; isoxazolone; Mannich reaction; spring-loaded
reactants; triazolinium salts; tandem reaction; theoretical calculations

1. Introduction

The chemical reactions that feature pure kinetic-control of the outcome and utilize
‘spring-loaded’ reactants are of considerable interest in multiple applications that include
drug discovery, combinatorial chemistry, target-templated in situ chemistry, proteomics,
DNA research and bioconjugation techniques [1]. The commonly recognized high yielding,
thermodynamically favored and wide-in-scope reactions, such as nucleophilic ring opening
reactions of epoxides and aziridines, non-aldol type carbonyl reactions, and additions to
carbon–carbon multiple bonds, have been termed by K. B. Sharpless as “click chemistry” [2].

In the above context we have recently developed the tandem Mannich–electrophilic
amination reaction of fluorogenic 4,6-dimethylisoxazolo[3,4-b] pyridin-3(1H)-one or isoxa
zolo[3,4-b] quinolin-3(1H)-one with formaldehyde and secondary amines that leads to
zwitterionic UV-fluorescent Safirinium P and Q dyes, respectively [3,4]. The latter upon
esterification with N-hydroxy-succinimide (NHS) can serve as fluorescent amine-reactive
reagents which are useful as fixed charge derivatization reagents for micellar electroki-
netic chromatography (MEKC) and MS proteomic analyses [5], as well as for bioimaging
purposes such as stanning of bacterial cells and spores [4,6,7]. The tandem reactions
of non-fluorescent isoxazolones, formaldehyde and secondary amines, i.e., syntheses of
Safirinium dyes, proceed quantitatively, however the reaction rates strongly depend on
the substitution pattern, which results in reaction times ranging from several minutes to
dozens of hours [4]. The aim of the present study was to describe the tandem Mannich–
electrophilic amination reactions using commonly recognized theoretical quantum chemical
methods [8–10] and identify the steric factors that would limit applications of these pro-
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cesses in a fast and sensitive detection of formaldehyde and fluorescent derivatization of
secondary aliphatic amines.

2. Results and Discussion

First, we have proved that 4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (1) under-
goes 1,2 nucleophilic addition in a reaction with formaldehyde to afford hemiaminal 2,
the structure of which was unambiguously confirmed by single crystal X-ray analysis
(Figure 1). According to our previous studies, the same reaction performed in the presence
of secondary amine (HNR1R2) gives rise to the formation 2,2-dialkyl-5,7-dimethyl-2,3-
dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium-8-carboxylates (3a,b), i.e., Safirinium P dyes,
by means of the tandem Mannich—electrophilic amination reaction [4]. Hence, acidic
isoxazolone 1 in the presence of a base forms salts 1a,b which further react with formalde-
hyde to yield iminium salts 1a,b. Furthermore, the ambident nucleophile and iminium
cations give the Mannich addition products (aminals 1a,b) that spontaneously undergo
electrophilic amination reactions via the transition states 1a,b affording products 3a,b in a
quantitative manner.
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Figure 1. Molecular structure of 2. Displacement ellipsoids are shown at the 50% probability level.

In order to get a better insight into the above chemical transformations, we have
performed theoretical studies with use of DFT B3LYP [11] and ωB97X-D [12] methods
as well as a Polarizable Continuum Model (IEF-PCM) [13] implemented in a Gaussian
16 software package [14]. The stationary structures that pertain to the chemical entities
presented in Scheme 1 were optimized to confirm that all ground structures, except for
the transition states, have only real frequencies. The relative energy comparisons in water
and methanol solutions are given in Table 1. As a general observation, pure B3LYP/PCM
density functional without empirical dispersion failed to reasonably reproduce the inves-
tigated chemical transformations since the reaction products 2 and 3a,b were found to
be thermodynamically unfavorable in water and methanol with the Gibbs free energies
for the latter solvent of 0.6, 5.8, and 0.3 kcal/mol, respectively. This theoretical approach
predicted also relatively high energy barriers for the electrophilic amination processes
by means of high Gibbs free energies of 28.4 and 22.7 kcal/mol for the transition states
1a,b in methanol. Since the correct determination of large molecular structures and their
properties require inclusion of the van der Waals interactions between molecules, we have
added to the B3LYP/6-31+G(d) functional Grimme’s empirical dispersion corrections [15],
which were found to reliable in describing large molecular systems [16]. Consequently, the
results obtained show that formation Safirinum P dye (3a) is thermodynamically favorable
with ∆G values of −4.0 and −3.1 kcal/mol for reactions carried in water and methanol,
respectively. Similarly, the application of dispersion corrections significantly lowered the
calculated electrophilic amination barriers revealing transition states with ∆G values of 19.1
and 19.5 kcal/mol. The reaction of sterically constrained 1-methylenepyrrolidinium salt 1b
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is considerably faster and more exothermic than that involving unconstrained iminium salt
1a (19.5 vs. 15.8 kcal/mol and −3.1 vs. −7.6 kcal/mol). Finally, utilization of larger basis
set, i.e., 6-311+G(d,p), or application of a range-separated hybrid functional ωB97X-Dand
results in a further reduction of the discussed ∆G values by ca. 4 kcal/mol.
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Scheme 1. The reaction of isoxazolone 1 with formaldehyde and synthesis of Safirinium P dyes 3a,b by means of the tandem
Mannich–electrophilic amination reaction.

Table 1. The relative electronic (plain text) and Gibbs free (italics) energies (kcal/mol) of subsequent stages of the tandem
Mannich—electrophilic amination reactions calculated by DFT/PCM methods.

Reaction
Product and

Solvent

DFT/
Basis Set 1H-1 7H-1 2 Salt 1 Iminium

Salt 1 Aminal 1 Transition
State 1 3

3a
H2O

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0.4 0 −13.6 2.1 5.6 −5.0 11.6 −11.8
0.4 0 1.0 3.8 8.6 11.9 28.2 5.2
0.5 0 −16.5 1.8 4.5 −13.6 1.9 −21.7
0.5 0 −1.8 3.9 7.5 3.2 19.1 −4.0

B3LYP-D3/
6−311+G(d,p)

0.3 0 −17.1 3.1 1.4 −16.4 −0.9 −24.9
0 0.9 −2.6 4.9 4.3 1.0 16.1 −7.0

3a
MeOH

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0.2 0 −13.9 3.8 7.3 −5.0 11.8 −11.0
0 0 0.6 6.6 10.2 11.7 28.4 5.8

0.3 0 −16.8 3.5 6.1 −17.7 2.2 −20.8
0.4 0 −2.0 6.0 9.3 3.7 19.5 −3.1

3b
MeOH

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0.2 0 −13.9 3.1 3.2 −10.4 7.1 −16.0
0 0 0.6 6.1 5.4 5.3 22.7 0.3

0.3 0 −16.8 3.1 2.6 −17.4 −0.9 −24.1
0.4 0 −2.0 6.3 5.2 −0.9 15.8 −7.6

3a
H2O

ωB97X-Dand/
6-31+G(d)

ωB97X-Dand/
6-311+G(d,p)

0 0.1 −19.7 1.5 3.9 −18.6 3.6 −27.4
0 1.0 −4.8 3.1 7.0 −0.1 21.3 −8.6
0 0.3 −20.4 2.9 1.2 −21.5 0.8 −30.7
0 1.5 −6.3 4.1 3.6 3.7 17.9 −13.3

3a
MeOH

ωB97X-Dand/
6-31+G(d)

0 0.3 −20.1 3.4 5.6 −18.5 3.9 −26.5
0 1.2 −6.2 6.6 8.8 0 21.7 −8.7
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It should be pointed out that in all cases, except for pure B3LYP functional, the
formation of product 3 is thermodynamically favoured over the reversible production of
hemiaminal 2. Moreover, the heterocyclic system of 2 is virtually planar with the amino N7
atom of the 5-isoxazolone fragment showing a pyramidal arrangement of its bonds with
the sum of the three valence angles equal to 334.4◦. This value is consistent with relatively
long bonds formed by N7 to O8 and C6 (1.446 and 1.393 Å, respectively). Our survey of the
Cambridge Structural Database (CSD) [17] showed that for N-substituted 5-isoxasolones
the N-C bond lengths range from 1.33 to 1.43 Å. Such a broad range of the values shows
that the amino N atom can with ease change its hybridization state.

In our previous work, we have reported that isoxazolone 1 reacts with iminium salt
derived from L-proline only in the presence of a base, e.g., triethylamine (Scheme 2) [5].
Hence, the investigated tandem reaction is a base-promoted process, which in the case of
L-proline transformation leads to single diastereoisomer 3c.
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Scheme 2. The base promoted tandem reaction of isoxazolone 1 with iminium salt derived from L-proline and formaldehyde.

In order to investigate the nature of the diastereospecific reaction, we have completed
theoretical calculations for the reaction paths that lead to both products. Surprisingly, it
was found that the thermochemical factors do not favor formation of any of the examined
diastereoisomers 3c (Table 2).

Table 2. The relative electronic (plain text) and Gibbs free (italics) energies (kcal/mol) of subsequent stages of the tandem
Mannich—electrophilic amination reactions calculated by B3LYP and B3LYP-D3 methods.

Reaction
Product and

Solvent

DFT/
Basis Set 7H-1c Salt 1c Iminium

Salt 1c Aminal 1c Transition
State 1c 3c

3c (1R,2S)
MeOH

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0 2.7 7.5 0 16.8 −4.7
0 6.7 10.4 10.4 34.2 10.6
0 1.9 5.5 −7.2 11.6 −14.7
0 6.1 8.8 6.9 26.3 1.8

3c (1S,2S)
MeOH

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0 3.1 7.5 0.9 19.4 −4.4
0 6.1 10.4 14.3 35.9 10.9
0 3.1 5.5 −7.6 10.7 −14.5
0 6.3 8.8 6.8 27.0 1.9
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These results prompted us to investigate the structure of iminium zwitterion 1c using
quantum chemical calculations (B3LYP/6-31+G(d)). As shown in Figure 2, the highest den-
sities of the lowest unoccupied orbital (LUMO) can be found on the iminium carbon atom.
However, the carboxylate group strongly affects the topicity of this atom favoring Re-face re-
activity that results in formation of 1R,2S diastereoisomer 3c. An extensive literature review
has confirmed the proposed reasoning. Thus, 1-[(2-hydroxy-1-naphthyl)methyl]proline,
obtained via Mannich-type condensation from β-naphthol, L-proline and formaldehyde,
reacts with boron compounds with high diastereoselectivity [18].
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Next, we examined the reaction path that results in formation of 2,2-diethyl-1,2-
dihydro-[1,2,4]triazolo[4,3-a]quinolin-2-ium-4-carboxylate (6), i.e., Safirinium Q dye
(Scheme 3). The results obtained clearly indicate that isoxazolo[3,4-b]quinolin-3(1H)-one
(4) is more reactive than 4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (1) with respect
to the tandem Mannich–electrophilic amination process. Hence, the calculated transition
state energy barrier amounts to 14.3 or 16.2 kcal/mol in water and 14.4 or 16.7 kcal/mol
in methanol, when estimated with B3LYP-D3 and ωB97X-Dand methods, respectively
(Table 3). These values are ca. 4 kcal/mol lower than those estimated for the transition
state 1a. Analogous tendencies can be observed when comparing the estimated Gibbs free
energies for products 3a and 6.

Table 3. The relative electronic (plain text) and Gibbs free (italics) energies (kcal/mol) of subsequent stages of the tandem
Mannich—electrophilic amination reaction calculated by DFT/PCM methods.

Solvent DFT/
Basis Set 1H-4 9H-4 5 Salt 4 Iminium

Salt 4 Aminal 4 Transition
State 4 6

H2O

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

1.9 0 −11.8 2.9 6.5 −5.1 7.4 −17.3
1.9 0 2.7 3.6 8.5 11.0 23.0 −0.8
2.4 0 −14.7 3.0 5.7 −13.5 −1.4 −26.7
2.3 0 0 3.9 7.6 3.0 14.3 −9.0

MeOH

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

2.2 0 −11.9 5.0 8.5 −4.7 8.0 −16.1
2.1 0 2.6 6.9 10.5 11.4 23.6 0.5
2.2 0 −14.9 4.7 7.3 −25.9 −1.2 −25.9
2.2 0 −0.2 5.9 9.2 −8.2 14.4 −8.2

H2O ωB97X-Dand/
6-31+G(d)-

2.1 0 −17.5 3.2 5.7 −18.3 −0.1 −26.7
2.1 0 −2.7 4.0 7.5 −1.3 16.2 −9.0

MeOH
ωB97X-Dand/

6-31+G(d)-
2.4 0 −17.4 4.2 7.6 −18.1 0.3 −31.5
2.4 0 −2.5 6.1 9.4 −1.0 16.7 −13.5
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It should be pointed out that the obtained theoretical evaluations match the observed
chemical experiments. According to our previous report, reactions involving isoxazolone
1 are rather slow and require heat [4,19]. Conversely, tandem transformations involving
isoxazolone 4 are fast (Figure 3).
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Figure 3. The formation of Safirinium Q (6) from equimolar quantities (0.6 mmol/L) of isoxazolone
4, formaldehyde and diethylamine (absorbance at 370 nm vs. time).

Finally, we have evaluated the scope of the tandem reaction in terms of steric factors
that would limit its applications. As shown in Scheme 4, isoxazolone 4 has been subjected to
reactions with piperazine, homopiperazine and two N,N’-dialkylethylenediamines. Hence,
the reaction with the most sterically constrained piperazine gave rise to the formation
of a mono-derivative, i.e., 1H-spiro[1,2,4]triazolo[4,3-a]quinoline-2,1′-piperazin]-2-ium-4-
carboxylate (7) as a single product. On the contrary, the reactions with less constrained
diamines produced double Mannich-amination products 8a,b and 9. In order to ratio-
nalize the difference in reactivity of piperazine and homopiperazine we have performed
theoretical computations, analogical to the experiments presented above.
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Scheme 4. The reaction of isoxazolone 4 with with iminium salts derived from piperazine, homopiperazine and N1,N2-
dibenzylethane-1,2-diamine.

Albeit, the energy barriers for transformations A -> 9 and 7 -> B were found to be
comparable, the formation of product B (4.8 and −0.5 kcal/mol) was estimated to be
thermodynamically unfavored in comparison to the homopiperazine derivative 9 (1.3 and
−3.6 kcal/mol) (Table 4).

Table 4. The relative electronic (plain text) and Gibbs free (italics) energies (kcal/mol) of subsequent stages of the tandem
Mannich—electrophilic amination reactions calculated by DFT/PCM methods.

Reaction DFT/
Basis Set Zwitterion Salt Iminium Salt Aminal Transition

State Product

A -> 9
B3LYP

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0 7.9 17.6 −5.0 18.0 −5.1
0 9.2 19.7 11.1 33.8 12.4
0 7.7 17.0 −12.9 7.5 −17.5
0 9.9 19.4 3.5 24.3 1.3

A -> 9
ωB97XD

ωB97X-Dand/
6-31+G(d)

0 7.8 16.6 −17.1 6.8 −22.5
0 9.3 18.4 −0.5 22.9 −3.6

7 -> B
B3LYP

B3LYP/
6-31+G(d)

B3LYP-D3/
6-31+G(d)

0 7.8 16.4 −7.1 12.7 −3.3
0 9.3 18.3 9.9 28.3 12.5
0 7.9 15.9 −16.1 3.0 −14.4
0 9.4 17.4 2.7 19.9 4.8

7 -> B
ωB97XD

ωB97X-Dand/
6-31+G(d)

0 4.2 7.6 −20.5 5.6 −19.0
0 6.1 9.4 −3.2 22.8 −0.5
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The structure of ethylenediamine derivative 8b has been confirmed by single crystal
X-ray analysis (Figures 4 and 5). The symmetrical internal quaternary salt 8b crystallizes as
a pentahydrate. The asymmetric part of the unit cell consists of two halves of 8b occupying
special positions of Ci symmetry, two molecules of 8b adopting a non-crystallographic
Ci-symmetric conformation and located in general positions and 15 water molecules. The
-CH2-N-CH2-CH2-N-CH2- fragment of all molecules is fully extended. In crystal, π-π
stacking interactions between the quinoline systems of 8b organize the molecules into two
symmetry independent columns along the [11-1] direction. The water molecules forming a
1D assembly via O-H·O hydrogen bond along [11-1] occupy a channel formed between
four such columns and bind to the carboxylate groups of 8b (Figure 5). Since 1H NMR
spectra of compounds 8a,b and 9 reveal single molecules, the absolute configurations at
the quaternary nitrogen atoms in 8a and 9 have been assigned analogously to the meso
isomer 8b, for which 2R2′S configuration has been proven by single crystal X-ray analysis.
However, it cannot be ruled out that the reaction mechanisms that underlay the formation
of compounds 8a and 9 are different to that of 8b, and hence, these derivatives are obtained
as pure enantiomers or their racemic mixtures.
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3. Conclusions

In summary, we have shown that isoxazolo[3,4-b]pyridin-3(1H)-ones form hemiami-
nals with formaldehyde at the N1 nitrogen atoms. The results of theoretical studies carried
out using DFT and PCM methods indicate that the same reaction performed in the presence
of secondary amine leads to thermodynamically favored 2,3-dihydro-[1,2,4]triazolo[4,3-
a]pyridin-2-ium-8-carboxylates (Safirinium dyes). It was demonstrated that theoretical
replication of previously reported reactivity of isoxazolones, i.e., the tandem Mannich–
electrophilic amination reaction, can be accomplished by application of B3LYP functional
augmented with Grimme’s empirical dispersion (B3LYP-D3), as well utilization of range-
separated hybrid functional ωB97X-Dand. Furthermore, it was demonstrated that diastere-
oselectivity of the tandem reactions involving L-proline results from asymmetric LUMO
distribution within the iminium salt. Finally, the performed experiments with a set of
ethylenediamine derivatives proved that the studied tandem reactivity of isoxazolones with
secondary amines is of a general nature and can be only hampered in sterically constrained
starting materials such as N-substituted piperazine.

4. Experimental
4.1. Chemistry
4.1.1. Materials and Methods

Chemicals were obtained from commercial sources and were used without further
purification. All NMR experiments were performed at 25 ◦C on Bruker Avance II HD
400 MHz spectrometer. 1H NMR data were internally referenced to CD3OD (3.31 ppm),
DMSO-D6 (2.50 ppm) or TMS (0.00 ppm). The IR (KBr pellets) spectra were recorded on
a Thermo Scientific Nicolet 380 FT-IR spectrometer. The mass spectra were recorded on
a Shimadzu single quadrupole LCMS 2010 EV mass spectrometer. Melting points were
determined on an X-4 melting point apparatus with a microscope and were uncorrected.
Elemental analysis was performed with Vario El Cube CHNS, Elementar. Analytical TLC
was performed on silica gel Merck 60 F254 plates (0.25 mm) with UV light visualization
(mobile phase: CHCl3/MeOH 0.9:0.1 v/v). 4,6-Dimethylisoxazolo[3,4-b]pyridin-3(1H)-
one (1) and isoxazolo[3,4-b]quinolin-3(1H)-one (4) were obtained according to previously
described procedures [3,4,20].

4.1.2. Synthesis of 1-(hydroxymethyl)-4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (2)
and 1-(hydroxymethyl)isoxazolo[3,4-b]quinolin-3(1H)-one (5)

4,6-Dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (1) or isoxazolo[3,4-b]quinolin-3(1H)-
one (4) (1.9 mmol, 312 or 354 mg, respectively) was dissolved in methanol (20 mL), then 35%
water solution of formaldehyde (0.60 mL, 7.6 mmol) was added and the resulting mixture
was stirred for 4 h at room temperature. The precipitated solid was filtered off, washed
with diethyl ether (3 × 5 mL) and recrystallized from methanol prior to characterization.

1-(Hydroxymethyl)-4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (2). Yield: 80%
(0.296 g); m.p. 201–202 ◦C; 1H NMR (300 MHz, CD3OD): δ = 2.58 (s, 3H, CH3), 2.60 (s,
3H, CH3), 5.29 (s, 2H, CH2), 7.04 (s, 1H, CH); IR (KBr): 3383, 3003, 2960, 2842, 1748, 1616,
1590, 1445, 1371, 1177, 1061, 1034, 998, 883, 864, 805, 706, 656, 638 cm−1; MS (ESI) m/z:
195 [M+1]+.

1-(Hydroxymethyl)isoxazolo[3,4-b]quinolin-3(1H)-one (5). Yield: 54% (0.222 g); m.p.
237–242 ◦C; 1H NMR (300 MHz, DMSO-D6): δ = 4.79 (bs, 1H, OH), 5.31 (d, 2H, CH2), 7.65
(t, J = 8.1 Hz, 1H, CH), 7.79 (t, J = 8.1 Hz, 1H, CH), 8.03 (d, J = 8,1 Hz, 1H, CH), 8.23 (d,
J = 8,1 Hz, 1H, CH), 9.20 (s, 1H, CH); IR (KBr): 3302, 2921, 1771, 1627, 1506, 1427, 1356, 1171,
1125, 1090, 1057, 1028, 989, 934, 891, 766 cm−1; MS (ESI) m/z: 217 [M+1]+.

4.1.3. Synthesis of [1,2,4]triazolo[4,3-a]quinolin-2-ium-4-carboxylates (7–9)

Isoxazolo[3,4-b]quinolin-3(1H)-one (354 mg, 1.9 mmol) was dissolved in methanol
(20 mL), then 35% water solution of formaldehyde (0.60 mL, 7.6 mmol) and 0.85 mmol of the
corresponding amine was added (piperazine, homopiperazine, N,N’-dimethylethylenedia
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mine or N,N’-dibenzylethylenediamine). The mixture was stirred for 5 min at room
temperature. The progress of the reaction was monitored by TLC. The mixture was
evaporated under reduced pressure when the red color of the substrate disappeared.
The resulting solid was washed with acetone (3 × 5 mL). In the case of compound 7,
an additional equivalent (0.85 mmol) of piperazine was added since red isoxazolo[3,4-
b]quinolin-3(1H)-one was still present in the reaction mixture after 24 h of stirring.

1H-Spiro[1,2,4]triazolo[4,3-a]quinoline-2,1′-piperazin]-2-ium-4-carboxylate (7). Yield:
43% (0.232 g); m.p. 207–209 ◦C; 1H NMR (400 MHz, CD3OD): δ = 3.18–3.35 (m, 2H, CH2),
3.52–3.58 (m, 2H, CH2), 5.91 (s, 4H, CH2), 7.21 (d, 2H, J = 8.1 Hz, CH), 7.35 (t, 2H, J = 8.1 Hz,
CH), 7.87–7.72 (m, 2H, CH), 8.10 (s, 2H, CH); IR (KBr): 3408, 3264, 3040, 2997, 2956, 2918,
2848, 1633, 1589, 1569, 1541. 1457, 1353, 1297, 1223, 806, 761 cm−1; MS (ESI) m/z: 285
[M+1]+.

(2R,2′S)-2,2′-(Ethane-1,2-diyl)bis(2-methyl-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinolin-2-
ium-4-carboxylate) (8a). The product, which was obtained in the form of inner salt, was
quantitatively converted into a hydrochloride form to increase its solubility. Hence, prior
to spectral analysis, the solid was dissolved in MeOH, acidified to pH 3–4 with methano-
lic HCl solution and the resulting solution was evaporated under reduced pressure to
give 2,2′-(ethane-1,2-diyl)bis(4-carboxy-2-methyl-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinolin-
2-ium) dichloride. Yield: 72% (0.340 g); m.p. 237–239 ◦C; 1H NMR (400 MHz, DMSO-D6):
δ = 3.33 (s, 3H, CH3), 4.51–4.60 (m, 4H, CH2), 6.04 (d, J2 = 8.9 Hz, 2H, CH2), 6.20 (d,
J2 = 8.9 Hz, 2H, CH2), 7.22 (d, 2H, J = 7.9 Hz, CH), 7.43 (t, 2H, J = 7.9 Hz, CH), 7.84 (t, 2H,
J = 7.9 Hz, CH), 8.06 (d, 2H, J = 7.9 Hz, CH), 8.80 (s, 2H, CH); IR (KBr): 3438, 3055, 3021,
2967, 1723, 1616, 1571, 1541, 1456, 1313, 1222, 1200, 1167, 784, 765, 746, 705 cm−1; MS (ESI)
m/z: 243 [(M+2)/2]2+, 485 [M+1]+.

(2R,2′S)-2,2′-(Ethane-1,2-diyl)bis(2-benzyl-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinolin-2-
ium-4-carboxylate) (8b). Yield: 79% (0.49 g); m.p. 156–157 ◦C; 1H NMR (400 MHz, CD3OD):
δ = 4.61–4.76 (m, 4H, CH2), 4.95 (s, 4H, CH2), 6.08 (d, J2 = 9.6 Hz, 1H, CH2), 6.19 (d,
J2 = 9.6 Hz, 1H, CH2), 7.12–7.17 (m, 8H, CH), 7.33 (t, 2H, J = 7.7 Hz, CH), 7.59–7.62 (m,
4H, CH), 7.67 (t, 2H, J = 8.3 Hz, CH), 7.71 (d, 2H, J = 7.7 Hz, CH), 8.23 (s, 2H, CH);
IR (KBr): 3407, 3064, 3020, 1627, 1586, 1570, 1541, 1458, 1376, 1224, 807, 759, 705, 669,
595 cm−1; MS (ESI) m/z: 319 [(M+2)/2]2+, 637 [M+1]+; elemental analysis: calcd. (%) for
(%) C38H32N6O4x5H2O: C 62.80, H 5.82, N 11.56; found C 62.65, H 5.79, N 11.70.

(2S,2” S)-Dispiro[1H-[1,2,4]triazolo[4,3-a]quinoline-2,1′-[1,4]diazepan]-4′,2”-1H-1,2,
4]triazolo[4,3-a]quinoline]-1′,4′-diium-4,4”-dicarboxylate (9). Yield: 79% (0.373 g); m.p.
212–213 ◦C; 1H NMR (400 MHz, CD3OD): δ = 2.81–2.86 (m, 2H, CH2), 4.19–5.36 (m, 6H,
CH2), 5.29 (d, J = 14.9 Hz, 2H, CH2), 5.98 (d, J2 = 8.4 Hz, 2H, CH2), 6.14 (d, J2 = 8.4 Hz,
2H, CH2), 7.24 (d, 2H, J = 7.8 Hz, CH), 7.40 (t, 2H, J = 7.8Hz, CH), 7.75 (t, 2H, J = 7.8 Hz,
CH), 7.84 (d, 2H, J = 7.8 Hz, CH), 8.37 (s, 2H, CH); IR (KBr): 3442, 3004, 1637, 1587, 1568,
1533, 1456, 1399, 1351, 1337, 1225, 807, 762, 744 cm−1; MS (ESI) m/z: 249 [(M+2)/2]2+, 497
[M+1]+.

4.2. Theoretical Calculations

All theoretical calculations have been completed with the Gaussian 16 [14] package
pursuant to the following methodological procedure. For each chemical entity, the ground-
state structure has been obtained by a standard force-minimization process using default
G16 thresholds and algorithms. The vibrational spectra have been obtained to system-
atically check that all vibrational frequencies are real. Thus, each stationary point was
characterized by a frequency calculation, starting materials, intermediates and products
proving all positive frequencies and transition structures featuring a single negative (imag-
inary) frequency. The vibrational mode pertaining to the negative frequency was animated
in each case to confirm that it matched to the presumed concerted bond-making/breaking
mechanism. The transition states were also affirmed by intrinsic reaction coordinate (IRC)
calculations. The standard hybrid Becke-3–Lee-Yang-Parr functional (B3LYP) [11] with and
without Grimme’s empirical dispersion (GD3) [15,16], as well as range-separated hybrid
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functionalωB97X-Dand [12], were utilized for these calculations. The bulk solvent effects
were taken into account for the DFT calculations by means of a Polarizable Continuum
Model (IEF-PCM) [13]. Standard basis sets, i.e., 6-31+G(d) and 6-311+G(d,p), have been
used in the course of this project. The energies reported are given relative to the most
stable conformers of the reactants. Gibbs free energies (∆G) including zero point correction,
temperature correction, and vibrational energy were computed for standard conditions
(T = 298.15 K, P = 1.0 atm) using the harmonic oscillator approximation.

4.3. X-ray Crystallography

Diffraction experiments were carried out at room temperature with an Oxford Diffrac-
tion Xcalibur E diffractometer using Mo Kα radiation for 2 and at 131 K with an Oxford
Diffraction SuperNova diffractometer using Cu Kα radiation for 8b. Diffraction data were
processed with CrysAlisPro software [21]. In case of 2 the structure was determined from
a twinned specimen. The structures were solved with the program SHELXT [22] and
refined by full-matrix least-squares method on F2 with SHELXL-2018/3 [23] within the
Olex2 software [24]. Hydrogen atoms were placed in calculated positions and refined as
riding on their carriers, except that of the O-H group in 2 which was freely refined. CCDC
2082365-2082366 contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk).

Crystal data for 2 (C11H10NO, M = 172.20 g/mol): triclinic, space group P-1 (no. 2), a
= 7.7520(6) Å, b = 7.9402(6) Å, c = 8.0287(7) Å, α = 75.284(7)◦, β = 70.571(7)◦, γ = 81.744(6)◦,
V = 449.81(7) Å3, Z = 2, T = 293(2) K, µ(Mo Kα) = 0.082 mm−1, Dcalc = 1.271 g/cm3, 9045
reflections measured (6.52◦ ≤ 2Θ ≤ 50.02◦), unique 3294 (Rint = 0.031, Rsigma = 0.0292)
which were used in all calculations. The final R1 was 0.0361 (I > 2σ(I)) and wR2 was 0.0893
(all data). Hydrogen atoms of the methyl groups are disordered due to the rotation of the
methyl group around the C-C bond. The molecule of 2 is shown in Figure 1.

Crystal data for 8b (C38H32N6O4·5H2O, M = 726.77 g/mol): triclinic, space group P-1
(no. 2), a = 16.5969(5) Å, b = 18.1134(4) Å, c = 19.4666(6) Å, α = 104.252(2)◦, β = 95.940(3)◦,
γ = 105.512(2)◦, V = 5374.9(3) Å3, Z = 6, T = 131 K, µ(CuKα) = 0.806 mm−1, Dcalc = 1.347
g/cm3, 52232 reflections measured (4.762◦ ≤ 2Θ ≤ 136.5◦), 19659 unique (Rint = 0.0341,
Rsigma = 0.0394) which were used in all calculations. The final R1 was 0.0563 (I > 2σ(I)) and
wR2 was 0.1561 (all data). One of the carboxylate groups and one of the ethylene bridges
are disordered over two sites. The molecule of 8b is shown in Figure 4.
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