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Abstract: Pathological vocal folds are known to exhibit multiple oscillation patterns, depending
on tissue imbalance, subglottal pressure level, and other factors. This includes mid-phonation
changes due to bifurcations in the underlying voice source system. Knowledge of when changes
in oscillation patterns occur is helpful in the assessments of voice disorders, and the knowledge
could be transformed into useful objective measures. Mid-phonation bifurcations can occur in rapid
succession; hence, a fast classification of oscillation pattern is critical to minimize the averaging of
data across bifurcations. This paper proposes frequency-ratio based short-term measures, named
harmonic disturbance factor (HDF) and biphonic index (BI), towards the detection of the bifurcations.
For the evaluation of HDF and BI, a frequency selection algorithm for glottal source signals is devised,
and its efficacy is demonstrated with the glottal area waveforms of four cases, representing the wide
range of oscillatory behaviors. The HDF and BI exhibit clear transitions when the voice bifurcations
are apparent in the spectrograms. The presented proof-of-concept experiment’s outcomes warrant a
larger scale study to formalize the parameters of the frequency selection algorithm.

Keywords: voice signal classification; bifurcation in voice; pathological voice

1. Introduction

Normal healthy voice exhibits a nearly periodic behavior, which can be readily ob-
served in its acoustic or glottal source signals via spectral visualization techniques such as
spectrogram, power spectrum, or cepstrogram. Voice pathology, however, often introduces
interference to the vibration of vocal folds, forcing them to oscillate without collision or
out of sync or sometimes even chaotically [1,2]. Such disruptions directly translate to a loss
of voice quality, often described as hoarse, rough, breathy, or strained.

The pathological interference of vocal fold oscillation leads to an anomaly in voice
signals. To classify voice signals, the Workshop on Acoustic Voice Analysis [3] in 1994
recommended the use of the following voice signal types:

• Type I—nearly periodic;
• Type II—contain intermittency, strong subharmonics, or modulations; and
• Type III—chaotic or random.

These types are used throughout the paper. Classification of these types were sug-
gested to be done via visual inspection of the spectrogram of the voice signal under study.
To date, no commercial or publicly accessible software is available to classify the voice
types automatically, although there is a long-standing active research effort [4–8] applying
concepts from dynamical systems theory. This paper approaches this classification problem
based on the Type-II voice characteristics.

Type II encompasses a broad spectrum of voicing patterns. It could be summarized
as follows: A voice signal consists of clean tonal components but not all components
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belong to the harmonic series with an obvious speaking fundamental frequency. These
extraneous (or non-harmonic) tonal components, which could appear intermittently during
phonation, disturb the audibly pleasant harmonic composition of a healthy voice and
contribute to the perceived roughness in the voice [9]. The non-harmonic components
include period-n subharmonics and biphonia—the coexistence of two harmonic series
with unrelated fundamental frequencies. The pathological Type-II voice may also exhibit
intermittency or mid-phonation changes [10–12], switching between multiple modes of
oscillation, with or without non-harmonic components. The variation in oscillation modes
can be explained by the dynamic systems theory [10,13–15]. Dynamical systems may have
bifurcation points, where a small change in system parameters results in a large change
in system behavior. For the voice system, the system parameters include the subglottal
pressure and the vocal fold mass and stiffness. Bifurcation diagrams are often used to
visualize these bifurcation points.

With an asymmetric vocal fold model of superior nerve paralysis, a two-parameter
bifurcation diagram in the asymmetry factor and subglottal pressure (Figure 7 in [13])
suggests a large number of possible oscillation modes (or attractors of a dynamical system)
that represent all three voice types. There is one oscillation mode each for Type I and III,
and the rest are different Type-II modes with different phase-locking modes (i.e., different
subharmonic periods and biphonia frequency ratios) [15]. Asymmetric vocal folds vibration
mode can switch suddenly from Type I to Type II or III, or vice versa as the subglottal
pressure fluctuates during phonation. The model also suggests that severe asymmetry may
lead to multiple Type-II modes during phonation. These observations from the theoretical
model are in agreement with the observation of pathological voice, which can exhibit
mid-phonation voice change [10–12]. It is possible for the bifurcations to occur in a rapid
succession, and one such case is included in this paper (Case 3). Some of its oscillation
modes in its acoustic signal are captured in Figure 1.
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Figure 1. Snapshots of acoustic signal with mid-phonation bifurcation. At t0 = 0.2, the voice mostly presents Type-I
behavior. It is, however, preceded by a Type-II mode with substantial subharmonics at t0 = 0.1 and is then followed by
Type-II voice with strong biphonia at t0 = 0.3. Another mode of biphonia occurs later at t0 = 0.7: (a) time-domain plots
each over 100-ms window; (b) normalized power spectral density estimates (periodogram with Hamming window; only
showing below 1 kHz, range −50 to 0 dB) in decibel scale. Vertical dotted lines indicate the estimated harmonic frequencies
by Praat’s pitch estimator [16].



Appl. Sci. 2021, 11, 5469 3 of 14

There are objective parameters that explicitly target the spectral features of Type-II
voice. In the context of digital telephone systems, subharmonic-to-harmonic ratio [17,18]
was introduced to improve the pitch determination performance and was later applied to
assess the pathological subharmonics [19]. The Degree of Subharmonics (DSH) parameter
in the Multi-Dimensional Voice Program (MDVP) [20] measures the percentage of time
the subharmonic is present. Aichinger et al. [21] devised the Diplophonia Diagram, which
characterizes the signal under study by the residuals of two modeling outcomes using
single harmonic series vs. two harmonic series. Awan and Awan [22] proposed a tandem of
cepstrum peak prominence measures to quantify the degree of presence of subharmonics
and demonstrated an 82.2% correct classification of rough vs. non-rough voice.

Kramer et al. [23] studied the relationship between cycle-to-cycle variability in the
fundamental frequency F0 and percentage of low F0 estimates on connected speech to
the perceived roughness. Kramer’s work is unique among others because it focuses on
the frequency measure rather than measures based on signal strength or power. This
remark from their work is noteworthy: “Because the presence of subharmonics is the main
source of both pitch perception and F0 detection errors, it seems reasonable to exploit
errors in F0 detection for quantitative measurement of pathologic voices.” For Type-I voice,
F0 detection error seldom happens (assuming clean signal) while Type II induces error
because of the strong non-harmonic content residing near the first harmonic (relative to the
second harmonic frequency). In the case of biphonia, there exist two different F0s that are
close in both frequency and power. This leads to the seed idea for this paper: the spectral
peak characteristics are vastly different between Type-I and Type-II voices, and analyzing
the relative positions of the peaks may result in differentiating Type-I and Type-II signals.

We apply this idea towards detecting mid-phonation bifurcations, especially between
Type I and Type II. The voice type detection scheme can also be devised from Type-III
signals, namely by deploying the methods based on dynamical systems analysis and chaos
theory. There are a number of studies available, exploring different methodologies, e.g.,
correlation dimensions [4,5,24–26], Lyapunov exponent [4,25], diffusive chaos [6], nonlin-
ear energy difference ratio [7], recurrence quantification measures [27,28], and intrinsic
dimension [5]. To detect mid-phonation bifurcations, these methods are challenged by
their data duration requirements. Typical analysis durations range from 0.2 to 2 s, while
the bifurcations could occur at a more frequent rate, as shown in Figure 1.

Main Concept

This paper focuses on the detection of mid-phonation bifurcations in pathological
voice. The underlying motivation for such detection scheme is twofold. First, automatic
segmentation of voice signal helps the selection of voice analysis methods and objective
parameters. For example, the perturbation analysis is limited to Type-I signals [3]. Second,
the detection outcomes (e.g., the number of mid-phonation bifurcations) can be used as
objective measures, similar to MDVP’s DSH measure but targeting broader Type-II char-
acteristics. Frequent mid-phonation voice change can be perceived as poor voice quality,
possibly worse than consistent Type-II or Type-III voice. As such, objective measures of
bifurcations are potential strong contributors to objective voice assessment tools.

To be able to detect frequent bifurcations as seen in Figure 1, a signal window length
of shorter than 100 ms is desired. Two measures, named harmonic disturbance factor
(HDF) and biphonia index (BI), are proposed to be used for this task. The biphonic and
subharmonic spectral contents of Type-II voice are shown to have at least comparable
strength to the second harmonic of such voice [29]. This observation leads to a family of
voice parameters based on the frequencies of the spectral peaks. The basic premise here
is to pick two spectral peaks: one, labeled f0, which corresponds to F0 of the voice, and
another, labeled f1, which is indicative of the active voice type (Type I vs. Type II/III).
The selection strategy of the second peak is critical, and this paper proposes a strategy
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for glottal source signals. Given these peaks, the ratio of these two frequencies is used to
normalize the effect of the fundamental frequency; this ratio is defined as:

γ =
f1

f0
. (1)

Table 1 summarizes the expected behaviors of the three quantities: f0, f1, and γ. There
is a clear segmentation in the expected values with three caveats. First, the measures of
Type-III voice are expected to be random, and thus the estimates are inconsistent across
successive observation windows, unlike the other voice types. Second, f1 for the Type-II
voice with subharmonics could align with the proper pitch harmonic frequencies (n f0), in
which case it cannot be distinguished from Type I. Third, the strengths of the two spectral
peaks of biphonic voice could be similar, thus their fundamental frequency, f0,1 and f0,2,
assignments to f0 and f1 may switch back and forth across the phonation. With these
caveats in mind, two short-term parameters on the frequency ratio and its expectations for
each voice type are proposed as follows.

Table 1. Expectation of Frequency Estimates 1.

Voice Type f0 f1 γ

Type I F0 nF0, n ∈ {2, 3, . . .} n ≥ 2

Type II—Period-m Subharmonic F0
nF0/m,

n ∈ {1, 2, . . .}r {N} n/m � 1

Type II—Biphonia F0,1 F0,2, near F0,1 ∼ 1.0
Type III F0 if prevalent otherwise random Random Random

1 F0: fundamental frequency, F0,1, F0,2: fundamental frequencies of two competing harmonic series.

Harmonic Disturbance Factor (HDF): A short-term, narrowband voice measure to penalize if
f1 is not a higher harmonic frequency than f0. Given the frequency ratio γ defined in (1), the HDF
∈ [0.0, 2.0]r {1.0} is defined by:

HDF =


|2− γ| if γ ≤ 2,
|γ mod 1| if γ > 2 and (γ mod 1) ≤ 0.5,
|1− γ mod 1| otherwise

(2)

where (a mod b) is the modulo operator. The HDF is expected to be zero if the voice is Type I and
non-zero for Type-II voice.

Biphonia Index (BI): A short-term, narrowband voice measure to indicate the likelihood of
vocal folds vibrating with two unrelated frequencies. Given the frequency ratio γ defined in (1),
BI ∈ [0, 1) is defined by:

BI =


2γ− 1 if 0.5 < γ ≤ 1,
2γ−1 − 1 if 1 < γ ≤ 2,
0 otherwise.

(3)

The BI of Type-I voice is expected to vanish, although BI = 0 does not imply Type I, unlike HDF. Non-
zero BI strongly indicates biphonic Type-II voice if observed across multiple observation windows.

The HDF value cannot be near 1.0 as it is computed from two distinctive peaks, i.e.,
f0 6= f1. The proximity depends on the spectral resolution of the window function. The
modulo operators in the HDF guarantees not to penalize f1 if it is any of the valid harmonic
frequencies. On the other hand, the BI guarantees two possible cases (γ representing
F0,1/F0,2 vs. F0,2/F0,1) to yield the same BI measure. Table 2 lists examples of the expected
HDF and BI values for different Type-II voicings: 2 types of subharmonics and 3 biphonia
cases. The latter cases are specified with a ratio of integers, which signifies the ratio of the
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vibration rate. For example, 2:3 biphonia indicates that one part of the vocal folds vibrates
two cycles while the other vibrates three cycles.

Table 2. Expected HDF and BI values for different Type-II voicings.

Type-II Voice γ HDF BI

Period-2 subharmonic * 1/2, 3/2 3/2, 1/2 0, 1/3
Period-3 subharmonic * 2/3, 4/3 4/3, 2/3 1/3, 1/2
2:3 biphonia ** 2/3, 3/2 4/3, 1/2 1/3 ***
3:5 biphonia ** 3/5, 5/3 7/5, 1/3 1/5 ***
7:9 biphonia ** 7/9, 9/7 11/9, 5/9 5/9 ***

* 2 possible values: f0 = F0; f1 to be one of the nearest subharmonic frequencies to F0 over and under. ** 2 possible
values: 2 ways to assign F0’s of 2 harmonic series to f0 and f1. *** Both γ values yield in the same BI value.

The HDF and BI could be measured for any form of voice signal that contains the
oscillatory patterns of the vocal folds; for example, acoustic waveforms, electroglottogram,
and glottal area waveforms obtained from high-speed videoendoscopy. The acoustic signals,
however, require additional processing to account for the vocal tract effect.

2. Materials and Methods

In this paper, four case studies are presented to demonstrate the behaviors of HDF
and BI short-term parameters for the glottal area waveforms obtained from high-speed
videoendoscopy data. The selection algorithm for f0 and f1 is devised specifically for
glottal source signal, as detailed below.

2.1. Tonal Frequency Selection Algorithm for Glottal Source Signals

The computation of the HDF and BI hinges on a proper strategy for selecting the
two peaks, f0 and f1. The proposed approach is based on a periodogram, which is a
nonparametric power spectral density (PSD) estimate. The key assumption of the algorithm
is that the strongest spectral peak corresponds to the first harmonic of the voice signal (only
if its harmonic structure is apparent). This is a reasonable assumption for a glottal source
signal such as glottal area waveform. Note that this algorithm is not suitable for acoustic
signals because the vocal tract effect can cause acoustic signals to violate this assumption.

2.1.1. Signal Preparation

For each full input signals, the temporal locations of the voiced segments are marked.
In preparation, the input signal is first decimated (resampled) to form a narrowband signal,
capturing at least two harmonics (e.g., fs = 2000 samples/second is sufficient for normal
pitch around 100 to 250 Hz). This focuses the analysis on the low frequency contents and
reduces the necessary computational effort. The marked voiced segments in the resampled
signal are then broken into (possibly overlapped) short analysis windows, each containing
N voiced samples. In each window, these samples are linearly detrended to remove the dc
component as well as a gradual drift. Let X = {x0, x1, . . . , xN−1} denote the set of the N
contiguous detrended samples xn in an analysis window.

2.1.2. Main Algorithm

The PSD of the detrended samples X is estimated with a windowing function with
minimal sidelobe leakage. The use of such a windowing function is critical to avoid
erroneously picking sidelobe peaks as real spectral peaks. Additionally, sufficient zero-
padding is applied to obtain a denser representation of the underlying discrete-time Fourier
transform. Let the estimated PSD Pxx( f ) as a function of frequency f in Hz.

All spectral peaks in Pxx( f ) are identified with a simple peak-picking technique
followed by quadratic peak interpolation. Let Fall be the set of the frequencies of all the
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peaks. Note that Fall includes all the local peaks, possibly including those of the noise and
window sidelobe peaks. The first peak frequency is chosen at the global maxima:

f0 = argmax
f∈ Fall

Pxx( f ) P0 = Pxx( f0) (4)

Because X has been detrended, f0 > 0 is guaranteed, thus γ is finite, as per (1).
Denoting the remaining peaks by F1 = Fallr { f0}, the next strongest peak is detected

as a point of reference:

fref = argmax
f∈ F1

Pxx( f ), Pref = Pxx

(
fre f

)
(5)

This reference peak is used to form a threshold to define a set of candidates for the second
peak f1:

Fcan =
{

f : f ∈ F1, Pxx( f ) > ρPref, f > fg
}

, (6)

where ρ is a relative threshold parameter and fg is a minimum frequency parameter to
avoid selecting a spurious near-dc peak. Finally, the chosen candidate in Fcan is the one
such that its HDF value is closest to 1.0:

f1 = argmin
f∈ Fcan

|1−HDF( f )|. (7)

Here, HDF( f ) represents the HDF value computed from a given arbitrary f by γ = f / f0
and (2). This selection criterion favors the biphonic case (in which the other fundamental
frequency is closer to f0) followed by subharmonic frequencies, then by the harmonic
frequencies. For a Type-I voice, Fcan is expected to contain only the harmonic frequencies,
while a Type-II voice may produce Fcan with both non-harmonic and harmonic frequencies.
The selection strategy in (7) guarantees to pick non-harmonic frequencies if present.

2.2. Experiment Configurations

A glottal area waveform (which is a sequence of numbers of glottal pixels per frame)
of sustained /i/ phonation is obtained for each case and are prepared to fs = 2000
samples/second. See Appendix A for details of the source high-speed endoscopic data and
how the waveforms were generated. Each signal is processed over a 100-sample (50-ms)
sliding analysis window, offset by 10 samples (5 ms) at a time. Table 3 summarizes the
values chosen for all the analysis parameters. The Hamming windowing function is chosen
as it provides a good tradeoff between spectral resolution and sidelobe suppression for a
50-millisecond window. The relative threshold parameter ρ = 1/4 allows the PSD peaks
that are –6 dB below the reference peak to be considered for f1.

Table 3. Experiment Parameter Setup.

Name Parameter Value

Sampling rate fs 2000
Window Size N 100 (50 milliseconds)

Window Offset Noffset 20 (10 milliseconds)
Window Function Hamming

Number of PSD Samples Nfft 1024
F1 Relative Threshold ρ 1/4 (0.25)
Minimum f2 frequency fg 25 Hz

2.3. Case Study Samples and Study Outcomes

Four cases are chosen to illustrate the parameters’ response to various voice types
and mid-phonation bifurcations, as shown in Table 4. All cases are of female voice. The
three cases with voice disorders (one case of unilateral vocal fold paralysis (UVFP) and
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two cases of polyp) exhibit mid-phonation bifurcations; Case 3 appears to have more than
10 observable bifurcations in 0.948 s. These pathological cases, as a result, have multiple
signal types: all exhibit Types I and II; Case 4, in addition, exhibits Type-III behavior.
For each case, the following short-term measurement outcomes are plotted: spectrogram,
frequencies of the selected and considered peaks ( f0, f1, F1), HDF, and BI.

Table 4. Descriptions of Cases Studied.

Voice Description # of Bifurcations Notes

Case 1 Type I 0 No Pathology
Case 2 Types I + II 2 UVFP, Biphonia
Case 3 Types I + II >10 Polyp, Biphonia + Subharmonics
Case 4 Types II + III 4 Polyp, f0 mostly present throughout

Next, two additional experiments are conducted to observe the performance of the
spectral peak selection algorithm as its parameters are varied, namely, the F1 threshold ρ
and the window size N. They are both tested with the Case 3 signal. The following four
threshold values are considered: ρ ∈ {1/2, 1/4, 1/8, 1/16}. In decibels, they correspond
to –3, –6, –9, and –12 dB below the second strongest spectral peak power. A more aggressive
(lower) threshold setting is expected to increase the incorrect f1 selection in the Type-I
window. Additionally, four window sizes are considered: N = 200 (100 ms), 150 (75 ms),
100 (50 ms), and 50 (25 ms). While a short window size is desirable for bifurcation detection,
too short of a window causes the mainlobes of harmonic peaks to be too wide to distinguish
them apart.

3. Results

Figure 2 shows the outcomes of the short-term analyses of the four cases under study,
and Figure 3a shows the histogram of HDF measurements. All the analysis windows with
their HDF values less than 0.1 (the first 2 bins) were perceptually identified to contain
Type-I signals. Figure 3b illustrates the estimated conditional normal pdfs for the two
detection hypotheses. Given these conditional pdfs, the false-alarm rate is chosen to be
0.01%, and the non-Type-I detection rate of the HDF-based detector is estimated as 99.9%.

Appl. Sci. 2021, 11, 5469 7 of 14 
 

signal types: all exhibit Types I and II; Case 4, in addition, exhibits Type-III behavior. For 
each case, the following short-term measurement outcomes are plotted: spectrogram, fre-
quencies of the selected and considered peaks (𝑓଴, 𝑓ଵ, ℱଵ), HDF, and BI. 

Table 4. Descriptions of Cases Studied. 

 Voice Description # of Bifurcations Notes 
Case 1 Type I 0 No Pathology 
Case 2 Types I + II 2 UVFP, Biphonia 
Case 3 Types I + II >10 Polyp, Biphonia + Subharmonics 
Case 4 Types II + III 4 Polyp, 𝑓଴ mostly present throughout 

Next, two additional experiments are conducted to observe the performance of the spec-
tral peak selection algorithm as its parameters are varied, namely, the ℱଵ threshold 𝜌 and 
the window size 𝑁. They are both tested with the Case 3 signal. The following four threshold 
values are considered: 𝜌 ∈ {1/2, 1/4, 1/8, 1/16}. In decibels, they correspond to –3, –6, –9, 
and –12 dB below the second strongest spectral peak power. A more aggressive (lower) thresh-
old setting is expected to increase the incorrect 𝑓ଵ selection in the Type-I window. Addition-
ally, four window sizes are considered: 𝑁 = 200 (100 ms), 150 (75 ms), 100 (50 ms), and 50 (25 
ms). While a short window size is desirable for bifurcation detection, too short of a window 
causes the mainlobes of harmonic peaks to be too wide to distinguish them apart. 

3. Results 
Figure 2 shows the outcomes of the short-term analyses of the four cases under study, 

and Figure 3a shows the histogram of HDF measurements. All the analysis windows with 
their HDF values less than 0.1 (the first 2 bins) were perceptually identified to contain 
Type-I signals. Figure 3b illustrates the estimated conditional normal pdfs for the two 
detection hypotheses. Given these conditional pdfs, the false-alarm rate is chosen to be 
0.01%, and the non-Type-I detection rate of the HDF-based detector is estimated as 99.9%. 

Figure 4 illustrates the Case 3 spectral peak selection outcomes with varying 
threshold level 𝜌  settings, and Figure 5 shows the Case 3 spectral peak selection 
outcomes with varying window size, 𝑁 . The color intensity of the spectrograms are 
shown in decibels with 50-dB dynamic range. 

  
(a) (b) 

Figure 2. Cont.



Appl. Sci. 2021, 11, 5469 8 of 14
Appl. Sci. 2021, 11, 5469 8 of 14 
 

  
(c) (d) 

Figure 2. Spectrograms (color intensity range: 50 dB), detected 𝑓଴  and 𝑓ଵ  peak frequencies and 𝑓ଵ  candidates in ℱଵ , 
HDF’s, and BI’s of (a) Case 1 (Type I), (b) Case 2 (Types I and II), (c) Case 3 (Types I and II), and (d) Case 4 (Types I, II, 
and III). 

 
Figure 3. (a) Histogram of the HDF values of all four cases and (b) fitted conditional normal pdfs 
for Type-I signals (𝐻଴) and non-Type-I signals (𝐻ଵ). 

Figure 2. Spectrograms (color intensity range: 50 dB), detected f0 and f1 peak frequencies and f1 candidates in F1, HDF’s,
and BI’s of (a) Case 1 (Type I), (b) Case 2 (Types I and II), (c) Case 3 (Types I and II), and (d) Case 4 (Types I, II, and III).

Appl. Sci. 2021, 11, 5469 9 of 14 
 

 
Figure 3. (a) Histogram of the HDF values of all four cases and (b) fitted conditional normal pdfs 
for Type-I signals (𝐻଴) and non-Type-I signals (𝐻ଵ). 

 
Figure 4. Case 3 Spectrogram and peak selection outcomes computed at four different thresholds, 𝜌. Horizontal grid lines approximate the harmonic frequencies. * indicates the base configuration. 
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Figure 4 illustrates the Case 3 spectral peak selection outcomes with varying threshold
level ρ settings, and Figure 5 shows the Case 3 spectral peak selection outcomes with
varying window size, N. The color intensity of the spectrograms are shown in decibels
with 50-dB dynamic range.
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4. Discussion
4.1. Overall Impression of HDF and BI

The proposed HDF with the experiment configuration in Table 1 has demonstrated
excellent ability to distinguish Type-I segments from others, as shown in Figure 2, corre-
sponding well to visual cues that are present in the spectrograms. This includes both the
normal voice in Case 1 as well as during the Type-I segments in the pathological cases.
Visual observation of Figure 2 is confirmed by the HDF histogram in Figure 3, which illus-
trates a wide gap between Type-1 HDF values and those of other types. Further analysis of
the histogram predicts the 99.9% detection rate of non-Type-I voice signal while fixing the
false alarm rate at 0.01%. While this prediction is made with limited data, it still is a strong
indication of the HDF’s ability to detect non-Type-I signals reliably.

The BI (and to lesser extent HDF) are expected to maintain a fixed level for each
Type-II voicing mode. This is apparent in the three pathological cases, but most clearly
in Case 2 (Figure 2b). After the bifurcation at t = 0.1, the BI stays around 0.76 (which
corresponds to the “7:8” attractor notation of Steinecke and Herzel [13]) until the next
bifurcation at t = 0.37. Towards the end of this period, the HDF jumps between 0.875 and
1.143, which are reciprocal of each other, due to near-equal spectral peaks, causing f0 and
f1 to flipflop. This behavior is the reason to introduce the BI.

Case 3, whose acoustic signal is shown in Figure 1, exhibits numerous bifurcations. Its
spectrogram in Figure 2c indicates the voice mostly switches between Type I and biphonic
Type II. The HDF distinguishes Type-I and Type-II segments, including the momentary
returns to the Type-I signal amid biphonic Type-II phonation in t ∈ (0.6, 0.9) correctly. At
the beginning and end, period-2 subharmonic voicing is present, and the insensitivity of
the BI to the period-2 subharmonic is prevalent (as expected per Table 2).

Type-III voice is defined as random or chaotic, and Case 4 (Figure 2d) appears to
have such behavior between t = 0.1 and 0.4, as per visual inspection of the spectrogram,
although the speaking fundamental frequency F0 is observable throughout. As expected
from the Type-III signal, the spectrum over this Type-III segment consists of many peaks,
which gives an impression of randomness. Most notably, the number of candidates in F1 is
substantially higher than the other cases, which is an indication of the consistent presence
of noise-like disturbance. However, a closer inspection of the BI and the frequencies of the
peaks suggests that there is a consistent undertone of 7:9 mode (BI = 0.56) and thus has a
strong Type-II quality to it. Nonetheless, the expected higher variation of HDF and BI for
the Type-III signal is apparent from the Case 4 results.

4.2. Sensitivity of HDF and the Proposed Frequency Selection Algorithm

The effectiveness of HDF and BI depends on the algorithm to select f0 and f1. The
proposed periodogram-based algorithm has been shown to provide consistently accurate
estimates to HDF and BI in the presented four cases. The configuration used (Table 1)
has been carefully chosen for the four cases presented in this paper, and the results in
Figures 4 and 5 illustrate the considerations needed for the parameter selection process.

Figure 4 shows how the frequency selection process is affected by the relative threshold
parameter ρ, which defines the f2 candidate selection threshold relative to the second
strongest peak in the spectrum. In general, more aggressive (lower) ρ yields more candidate
peaks, thus there is a higher likelihood of selecting non-harmonic peaks. With the base
configuration (ρ = 1/4), the algorithm misses the presence of a weak-but-consistent period-
doubling subharmonic present at the beginning, viz. t ∈ (0, 0.1). These subharmonic peaks
are –25 dB below the f0 peaks, as shown in Figure 6. By lowering the threshold (ρ = 1/8
and 1/16), these subharmonic peaks can be detected. However, lowering also causes the
detection of non-harmonic peaks during the following segment at t ∈ (0.1, 0.3), over which
visual inspection of the spectrogram suggests Type-I voicing. This leaves us a question:
How small of a subharmonic peak is considered perceptible?
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The selection threshold ρ for f1 ought to be drawn based on the audibility of the
signal component, which the spectral peaks represent. Orlikoff and Baken [30] suggest
that the power of non-harmonic peaks of the Type-I signal must be at least an order of
magnitude (or –10 dB) lower than that of the first harmonic. Under this guideline, the
observed subharmonics in Figure 6 are weak enough to be ignored (–25 dB under the first
harmonic). However, it may be too conservative as a –10 dB threshold leaves out the second
harmonic, which is –20 dB below the first harmonic and may have perceptual relevance.
Bergan and Titze [9] found that perception of roughness is consistently reported (albeit at a
five-out-of-ten rating) above 20% amplitude modulation. The amplitude modulation effect
that was tested in their study would introduce period-doubling subharmonics, but how
the 20% figure translates to the relative power of subharmonic peaks was not reported.
Future experimental study is necessary to identify the audible amount of subharmonics to
solidify the peak detection requirement.

Another factor regarding the performance of the frequency selection algorithm is the
analysis window length. There is a tradeoff between the frequency and time resolutions.
A longer window enables detection of closer spectral peaks but blurs the location of a
bifurcation (if present). Conversely, a change in time can be detected more precisely with a
shorter window but with an expense of lost frequency resolution. Both cases are presented
in Figure 5. During a consistently biphonic segment t ∈ (0.3, 0.5), the shortest window
length (N = 50) fails to detect the second fundamental frequency consistently due to the
insufficient spectral resolution. Meanwhile, during the segment t ∈ (0.6, 1.0), in which the
voice type switches rapidly, a wide window (N ≥ 100) bridges over the transitions and
reports biphonic frequencies throughout this segment. To determine the optimal window
size for general use, further experimentation with additional signal samples is needed.
Specifically, the algorithm and its configuration must be tested with a wider range of
speaking fundamental frequencies, including male voice, with which biphonic frequencies
are closer together by virtue of lower fundamental frequency.

4.3. Clinical Applications

The HDF and BI are short-term parameters, which are meant to be measured repeat-
edly over each voice sample. With the HDF ability to distinguish Type I and Type II/III, it
could be used in the automation of spectrogram visual inspection for clinical assessment.
Additionally, these measurements can be further processed to form objective parameters,
which are potentially clinically useful indicators for voice quality.

The clinical value of HDF and BI measurements themselves (or their means over
multiple windows) needs to be further investigated. These parameters are designed
primarily to detect bifurcations, i.e., to observe the changes in their values in time. They,
however, could be significant measures if different biphonic or subharmonic components
in voice are perceived differently and found to be contributing to severity of voice quality;
for example, period-doubling vs. period-tripling subharmonics and 2:3 biphonia vs. 3:5
biphonia. To the authors’ knowledge, there is no known related work in the literature.

What is likely to be perceivable, on the other hand, is the occurrence rates of non-Type-
I voicing and of voice-type switching. This leads us to two viable objective parameters:
amount of harmonically disturbed phonation and the rate of bifurcation. The former
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quantifies how much time during phonation the voice exhibited non-Type-I behavior,
and the latter how often voice bifurcations occur. The cases in this paper demonstrated
promising signs for the HDF to serve these objective parameters. The HDF of Type-I voice
is tightly concentrated at zero. This allows reliable detection of non-Type-I short-term
phonation, and therefore the HDF is an excellent basis to form an effective parameter to
quantify the occurrence rate of non-Type-I voicing.

The alternate parameter, quantifying the occurrences of mid-phonation bifurcations, re-
quires additional analysis: distinguishing the three phonation types and detecting changes
within Type II. Both HDF and BI can contribute to this analysis. The HDF and BI measures
in each phase-locked Type-II segment are drawn from a fixed set of values, as illustrated in
Figure 2. As such, a transition to another Type-II mode is likely to introduce a discontinuity
in the HDF or BI measures. To detect transition away from a biphonic segment, the BI is
more a reliable solution than the HDF as the BI takes a unique value for each biphonic mode
(2:3, 3:5, etc.). Detection of Type III can be achieved by monitoring the variation of the HDF
(or BI) over several windows. Further development is required to better understand the im-
plementational limitations, such as noise characteristics and measurements in the windows
that bridge two distinctive modes. Additionally, a dedicated classifier for subharmonic
periodicity would complement HDF and BI and strengthen bifurcation detection.

This paper focused on glottal source signals, specifically on the glottal area waveforms
from high-speed videoendoscopic data. Other types of source signals, such as the elec-
troglottogram, could use the same algorithm if the first harmonic is the most dominant
harmonic. This condition is not satisfied by acoustic signals due to the vocal tract effect.
Thus, extending the HDF to general voice signals, especially acoustic signals, requires
a frequency selection algorithm that can identify the speaking fundamental frequency.
With such an algorithm, the HDF concept can be extended to the assessment of voicing
changes in connected speech, which is known to expose dysphonia more than sustained
phonation [23].

5. Conclusions

This paper proposes short-term parameters: the harmonic disturbance factor (HDF)
and the biphonia index (BI), both of which are based on the ratio of two tonal frequency
contents in the voice signal. The HDF and BI are intended to distinguish Type-I signals
from Type-II or Type-III signals. Four cases (one normal, three with pathology) are shown
to illustrate the behavior of the measures against a wide range of voicing behaviors, and the
HDF and BI have exhibited the intended outcomes. The preliminary analysis of the HDF-
based detector of non-Type-I voice signals is also presented, reporting a 99.9% detection
rate with fixed a 0.01% false-alarm rate. Potential applications of these parameters towards
objective clinical assessment are suggested.
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Appendix A. Description of High-speed Videoendoscopy (HSV) Data and Preparation
of Glottal Area Waveforms

The HSV data were collected at Louisiana State University (LSU) (Case 1) and at
Our Lady of the Lake Regional Medical Center (OLOL) (all other cases) with a rigid
70◦ endoscope (Model 9106, KayPENTAX) paired with an HSV system (Model 9700,
KayPENTAX, for Cases 1–3 and Model 9710 for Case 4) and a 300-watt cold light source
(CLV-U20, Olympus America Inc., Center Valley, PA, USA). During the recording, patients
were instructed to sustain /i/ with comfortable pitch and loudness while the laryngoscope
was placed in their oral cavity. All HSV videos are in 8-bit grayscale. For Cases 1–3, the
frame rate is 2000 frames-per-second (fps) with frame dimension of 120 pixels wide by 256
pixels high, while Case 4 was captured at 4000 fps with dimension 256 pixels by 512 pixels.
The use of the data in the study was approved by the Institutional Review Boards of
Louisiana State University and of OLOL.

Each set of HSV data typically contains two sustained /i/ phonations. A phonation
with best view angle and lighting were selected. The glottal area waveforms were extracted
from the HSV data following the procedure in [31]. The region growing segmentation
algorithm was employed to identify glottal pixels. To initialize the algorithm, a threshold
profile over all frames in each recording was manually set so consistent segmentation
results were obtained throughout the phonation. The glottal area waveform is a sequence
of the number of glottal pixels over all phonation frames. The Case 4 glottal area waveform
was then decimated by 2 to reduce its sampling rate to 2000 samples/second to match the
rest of the cases. Finally, the unvoiced samples were trimmed from the beginning and end
of the glottal area waveforms.
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