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Abstract: The problem of control synthesis is considered as machine learning control. The paper
proposes a mathematical formulation of machine learning control, discusses approaches of supervised
and unsupervised learning by symbolic regression methods. The principle of small variation of the
basic solution is presented to set up the neighbourhood of the search and to increase search efficiency
of symbolic regression methods. Different symbolic regression methods such as genetic programming,
network operator, Cartesian and binary genetic programming are presented in details. It is shown
on the computational example the possibilities of symbolic regression methods as unsupervised
machine learning control technique to the solution of MLC problem of control synthesis for obtaining
the stabilization system for a mobile robot.

Keywords: machine learning control; control synthesis; symbolic regression; genetic programming;
network operator; mobile robot

1. Introduction

From the moment of its appearance, when the first regulators for machines with steam
engines appeared, and in more than a century and a half of its development, the theory of
automatic control has come a long way of transformation from a scattered set of control
methods for mechanical, hydrodynamic and other systems to fundamental science. Almost
all scientific research in control was carried out within the framework of studying the
possibility of creating various innovative technical solutions from machine tools at the
inception stage to automatic flying and space vehicles or nuclear power plants. The 20th
century is famous for the creation of automatic control systems for industrial complexes
and production processes using computers. However, the 21st century prepares new
challenges associated with the emergence of universal objects, such as autonomous robots
and robotic systems, capable of autonomously performing completely different tasks in
different conditions and environments. Modern control systems must be able to quickly
change, refine, learn. This circumstance requires both the universalization and automation
of the very process of developing control systems that are not tied to the physics of the
control object, operating with laws and patterns that are valid for objects of any complexity
and nature. Machine learning control (MLC) meets these new challenges.

In control theory, two main tasks for machine learning are distinguished—the identifi-
cation of the control object model and the synthesis of the control system. In both cases,
the task involves finding an unknown function. The function can be set up to parameters,
then machine-learning techniques are used only to adjust the parameters [1]. In general
case, both the structure of the function and its parameters should be found.

Typically, machine learning implies the use of neural network technologies [2–6].
At first glance, it seems that a variety of neural network structures can satisfy any control
problems. However, in fact, the structure of the neural network is determined by the
developer and it is a given structure, in which only parameters are configured, while the
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structure itself remains unchanged. It is difficult to even guess whether this structure is
optimal for a given task. In addition, for complex tasks, a neural network has a complex
structure, and for a development engineer who is used to describing objects and systems
with some functions that have physical meaning and geometric representation, working
with a neural network seems to be a kind of black box. Inspite of the popularity of the
neural networks, tutorials on machine learning [7,8] indicate that neural networks are only
part of machine learning and there are other learning technologies.

Today, more and more examples appear on the application of symbolic regression
methods to MLC problems. Symbolic regression methods look for a control function in the
form of code. The variety of symbolic regression methods is defined by different ways of
coding functions. The search for the optimal control function is carried out on the code
space using evolutionary algorithms. The genetic programming (GP) [9] was the first
symbolic regression method capable to search for mathematical expressions. Now there is
a variety of such methods [10–16].

The present paper is focused on the application of symbolic regression to the solution
of the control synthesis. The successful solutions of applied control problems have so far
been demonstrated mainly by the method of genetic programming [17–19]. In this paper,
we want to show that there are many different symbolic regression methods that can cope
with solving MLC problems. For this purpose, the mathematical formulation of the ML
is introduced in Section 2 either for supervised machine learning or unsupervised one
(or commonly known reinforcement learning). Then the problem of control synthesis is
addressed as MLC.

All methods of symbolic regression can search for functions, so they can automate the
process of synthesis of control systems, but very little are used in this direction, in view of
a number of difficulties. One such setback is a complexity of the search space. The search is
organized on the non-numerical space of codes of functions where only some symbolic
metric can be set such as the Levenshtein, Hamming or Jaro distance. However, the
estimation of the solutions during the search is performed in the space of functions with
absolutely another metric. It turns out that the search process is carried out on the space of
function codes, where there is no single metric. To overcome the mentioned difficulty of the
search space complexity, the paper discusses how the convergence of symbolic regression
methods can be significantly accelerated for solution of control synthesis problem through
the application of the principle of small variations of the basic solution (Section 3).

Methods of symbolic regression are discussed in Section 4. The example section
provides a detailed description of four most effective symbolic regression methods and
their application to control synthesis for a mobile robot as unsupervised machine learn-
ing control.

2. Problem Statement of Control Synthesis as MLC

In general, machine learning aims to establish some functional dependency that
determines the relationship between input and output data. MLC is aimed to design a
control law for some object to achieve given goals optimally in terms of some formulated
functional. The control law in general case is a multi-dimensional vector-function that
should be defined.

Today machine learning, especially in the field of control, is mostly used for the
optimal tuning of parameters, like the parameters of a neural network or some given
regulator. As a result of learning, an estimate of the unknown parameter vector is received.

With the new possibilities that symbolic regression methods open up in machine
learning, we are now able to define more broadly a machine learning problem that is to
find an unknown function, including both the optimal structure and its parameters.

For this, let us introduce the following definitions.
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Definition 1. A set of computational procedures, that transforms a vector x from an input space
X to a vector y from an output space Y, and there isn’t any mathematical expression y = f(x) for
them, is called an unknown function.

Denote the unknown function between input vector x and output vector y as

y = α(x). (1)

The unknown function (1) can be presented as some device, or collection of experi-
mental results. It is called a black box, because the exact description of it is not known.

Let a set of input vectors be determined

X̃ = {x1, . . . , xN} ⊆ X. (2)

For every input vector, an output vector is determined by the unknown function (1)

Ỹ = {y1 = α(x1), . . . , yN = α(xN)} ⊆ Y. (3)

Definition 2. A pair of sets of compatible dimensions

(X̃, Ỹ) (4)

is called a training set if X̃ ⊆ X, Ỹ ⊆ Y and it is assumed that there is a one-to-one mapping
X→ Y.

Therefore, from the search of the unknown control function perspective, machine
learning can be divided into two main classes: supervised learning, when there is a training
sample, and unsupervised, when there is no training sample but some estimate function is
given. So machine learning problems can be formulated as follows.

Definition 3. Unsupervised machine learning consists in finding a function

y = β(x, q), (5)

and parameters q, q = [q1 . . . qp]T , such that for some given estimate γ : Y → R1, ∀x ∈ X it
is true

‖γ(y)− γ(β(x, q))‖ ≤ δ, (6)

where δ is a small positive value.

In machine learning control problems, such an evaluation criterion is a functional.

Definition 4. Supervised machine learning consists in building a training set (4) and finding a
function (5) such that if the total error for the training set is less than the given value ε

N

∑
i=1
‖yi − β(xi, q)‖ ≤ ε, (7)

then for ∀x∗ not included in the training set x∗ /∈ X̃ the following inequation is fulfilled

‖y∗ − β(x∗, q)‖ ≤ δ, (8)

where y∗ = α(x∗).

The function β(x, q) in (5) includes a vector of parameters q. Often in the control tasks
the structure of this function is defined beforehand on the basis of experience or intuitively,
and it is necessary to find only values of some parameters, for example, coefficients of a PID
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controller [20,21] or parameters of some feedback NN-based controller [22–24]. Symbolic
regression methods allow to search for both the very structure of the control function and
its parameters.

The problem of finding a control function (or a control law) that depends on the state
of an object in control theory is called a control synthesis problem. For example, the design
task of a feedback controller is a control synthesis problem since such controllers produce
control signal based on the object state. The search of such a control function should be
considered as machine learning control problem.

Consider the formal statement of control synthesis problem.
A mathematical model of control object is given

ẋ = f(x, u), (9)

where x is a vector of the state space, x ∈ Rn, u is a vector of control, u ∈ U ⊆ Rm, U is a
compact set, m ≤ n. We limit our analysis to all those control problems where U is compact,
because this encompasses real examples of control problems where the control is bounded,
not infinite, and the boundary values also belong to the admissible control.

An area of initial conditions is given

X0 ⊆ Rn. (10)

A terminal conditions is given

x(t f ) = x f ∈ Rn, (11)

where t f is a time of reaching the terminal condition from the initial area. This time isn’t
given, but is limited, t f =≤ t+, t+ is a given limited time of reaching the terminal condition.

It is necessary to find one control function in the form

u = h(x) ∈ U, (12)

where h(x) : Rn → Rm, that makes the object described by the dynamic model

ẋ = f(x, h(x)), (13)

achieve the terminal goal x f ∈ Rn from any initial condition x0,i ∈ X0 ⊆ Rn with the
optimal value of the given quality criterion.

J =
∫
· · ·

∫
X0

t f∫
t0

f0(x(t, x0), u(t))dx0
1 . . . dx0

ndt→ min
u∈U

. (14)

The described MLC problem of control synthesis can be solved as either supervised or
unsupervised machine learning control.

The supervised approach is machine learning with application of a training set. A train-
ing set for control synthesis problem can be obtained by constructing optimal trajectories
from multiple points of the given initial set. For this it is necessary to solve the optimal
control problem for each particular initial condition from x0,i ∈ X0 and to receive sets of
optimal controls

U0 = {v(t, x0,1), . . . , v(t, x0,K)}, (15)

and optimal trajectories
X̃ = {x̃(t, x0,1), . . . , x̃(t, x0,K)}. (16)
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Therefore, to solve the control synthesis problem and to find the control function in
the form (12) it is enough to approximate by any symbolic regression method the training
set (16) on a criterion

Jsynt =
K

∑
i=1

Mi

∑
j=0
‖x(tj, x0,i)− x̃(tj, x0,i)‖ → min

h(x)∈U
, (17)

where t0 = 0, x(t, x0,i) is a partial solution of the Equation (13) with the initial conditions
x0,i, x̃(t, x0,i) is a trajectory from (16), i ∈ {1, . . . , K}.

The unsupervised machine learning for control synthesis is a direct search of the
control function (12) on the basis of the quality criterion minimization. The difficulty here
is a huge and complex search area on a non-numerical space of codes of functions where
there is no single metric. As in the space of words: there is an alphabet and words can
be close, based on the assessment of symbols, but have completely different meanings,
based on the semantic assessment. The proximity of the names does not correspond to the
proximity of the meanings. The same is the case with the search on the space of function
codes. Function evaluation works with mappings. The search is carried out on codes. Thus,
the metric between the names of the functions does not correspond to the distances between
the values of the functions. Probably, this can explain the fact that symbolic regression
methods, despite the wide range of their capabilities, have not yet emerged as a powerful
tool in solving the problem of machine learning control. Most likely, the introduction
of additional mechanisms is required to facilitate and accelerate the search for optimal
solutions. One such mechanism can be a principle of small variations of the basic solution.

3. Small Variations of the Basic Solution

Searching for an optimal solution in the space of codes is complicated by the fact that
this space does not have a metric measure. For such search spaces it is impossible to use
evolutionary algorithms with arithmetic operations. Evolutionary algorithms are the search
engine in all symbolic regression methods. Most of known evolutionary algorithms include
arithmetic operations to transform possible solutions and produce evolution. Therefore,
genetic algorithm is a main searching algorithm on the space of codes, that doesn’t use
arithmetic operations in its steps.

Studies of this problem have led to the formulation of the principle of small variations
of the basic solution. According to this principle, the search for the mathematical expression
can be started in the neighbourhood of one given possible solution. This solution is coded
by a symbolic regression method and it is called a basic solution. The essence of the
principle is that for a code of function, many possible small variations are determined.
A small variation is such a minor change in the code that leads to the appearance of a
new possible solution. According to the principle, others possible solutions are coded as
sets of small variations of this basic solution. To obtain any other possible solution it is
necessary to apply a vector of small variations to the basic solution. Genetic operations are
applied to the vector of variations. After some generations the basic solution is changed
on the best current solution. Such an approach is very convenient for search of control
systems, because there are many specialists in control that can create good control system
intuitively or on the basis of their experience. This control system can be considered as a
basic solution.

The code of small variation is an integer vector with three or four components de-
pending on the method of symbolic regression. These components include information
about the location of the element to be changed and its new value.

For example, to record a small variation in Cartesian genetic programming it is enough
to use an integer vector with three components

w = [w1 w2 w3]
T , (18)
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where w1 is a number of column in the code, w2 is a number of line in the column w1, w3 is
a new value of element.

The vector of small variation in the network operator method consists of four elements

w = [w1 w2 w3 w4]
T , (19)

where w1 is a type of variation, w2 is the line number, w3 is the column number of the
network operator matrix, and w4 is a new value of an element.

Possible solutions are coded as sets of small variation vectors

Wi = {wi,1, . . . , wi,d} (20)

where d is a length or depth of variations.
Genetic algorithm performs evolution on the sets of small variation vectors.
For example, to perform the operation of crossover two possible solutions are selected

Wα = {wα,1, . . . , wα,d}
Wβ = {wβ,1, . . . , wβ,d} (21)

A point of crossover is determined randomly kc ∈ {1, . . . , d}.
New possible solutions are received by exchanging tails of the selected possible

solutions starting from the crossover point

Wγ = {wα,1, . . . , wα,kc , wβ,kc+1, . . . , wβ,d}
Wδ = {wβ,1, . . . , wβ,kc , wα,kc+1, . . . , wα,d} (22)

To receive the symbolic regression code of possible solution Gi and evaluate the
performance of this solution, the set of small variations is applied to the basic solution

Gi = wi,d ◦ . . . ◦wi,1 ◦G0, (23)

where G0 is a code of the basic solution.
Such an approach might seem like a double coding of the possible solutions but

it provides two benefits. First, the use of the basic solution provides a guideline for
searching in a complex space of functions and significantly speeds up the search. Secondly,
the application of the operations of the genetic algorithm not to the codes of possible
solutions directly, but to the vectors of variations, allows to always get the correct codes of
possible solutions without the need to introduce additional checks.

So the principle of small variations can be applied to any known symbolic regression
method to overcome challenges of solving control synthesis problem.

4. Symbolic Regression Methods

All methods of symbolic regression encode the mathematical expression and search for
optimal solution on the space of codes by the genetic algorithm. To encode a mathematical
expression it is needed to create the base sets of elementary functions. These sets will be
alphabets for codding, and their elements are letters for creating words or codes.

The base sets of functions can be combined by the number of arguments. The following
base sets are possible:

- a set of arguments or a set of functions without arguments

F0 = { f0,1, . . . , f0,n+p+v} = {x1, . . . , xn, q1, . . . , qp, e1, . . . , ev}, (24)

where x1,...,xn are variables, q1,...,qp are parameters, e1,...,ev are unit elements for
functions of two arguments;



Appl. Sci. 2021, 11, 5468 7 of 15

- a set of functions with one argument

F1 = { f1,1(z) = z, f1,2(z), . . . , f1,w(z)}, (25)

where f1,1(z) is an identity function that is often needed for codding;
- a set of functions with two arguments

F2 = { f2,1(z1, z2), . . . , f2,v(z1, z2)}. (26)

All functions with two arguments have to possess the following properties:
- be commutative

f2,i(z1, z2) = f2,i(z2, z1), i = 1, . . . , v (27)

- be associative
f2,i(z1, f (z2, z3)) = f2,i( f2,i(z1, z2), z3), (28)

- have a unit element
f2,i(z, ei) = f2,i(ei, z) = z, (29)

where ei is a unit element for the function, i = 1, . . . , v.

These base sets (24)–(26) are generally enough to describe any mathematical expression
of the control function based on the Kolmogorov–Arnold representation (or superposition)
theorem, which states that any complex function can be represented as a combination of
one-dimensional functions [25,26].

Let us consider an example of codding of a mathematical expression by different
symbolic regression methods.

Let the mathematical expression be given

y = (q1x2
1 + q2x2

2) exp(−q2x1) sin(q1x2 + x3). (30)

To present this mathematical expression the following base sets are enough:

- the set of arguments of the mathematical expression (30)

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = x3, f0,4 = q1, f0,5 = q2, f0,6 = 0, f0,7 = 1}; (31)

- the set of functions with one argument

F1 = { f1,1(z) = z, f1,2(z) = z2, f1,3(z) = −z, f1,4(z) = exp(z), f1,5(z) = sin(z)}; (32)

- the set of functions with two arguments

F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1z2}. (33)

4.1. The Genetic Programming

Genetic programming (GP) is the first invented and the most popular method of
symbolic regression [9].

GP codes the mathematical expression in the form of computational tree. Figure 1
shows the computational tree for the example mathematical expression (30).
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Figure 1. The computational tree for the function (30).

In the computer memory the mathematical expression is written in the form of an
ordered multi-set of integer vectors with two components, the first component is the
number of arguments of function, the second component is a function number.

The code of GP for the example is

CGP =

([
2
2

]
,
[

2
2

]
,
[

2
1

]
,
[

2
2

]
,
[

0
3

]
,

[
1
2

]
,
[

0
1

]
,
[

2
2

]
,
[

0
4

]
,
[

1
2

]
,
[

0
2

]
,[

1
4

]
,
[

2
2

]
,
[

0
3

]
,
[

1
3

]
,
[

0
1

]
,
[

1
5

]
,[

2
1

]
,
[

0
5

]
,
[

2
2

]
,
[

0
1

]
,
[

0
4

])
. (34)

Despite the popularity of the method, it has a computational weakness. The code
of GP has different length for different mathematical expressions. In this regard, other
methods considered below seem to us more attractive from a computational point of view.

4.2. The Network Operator

The network operator method (NOP) codes a mathematical expression in the form of
oriented graph [15]. Source-nodes correspond to arguments of the mathematical expression,
other nodes correspond to functions of two arguments, and arcs correspond to functions
with one argument.

The graph of NOP for the mathematical expression (30) is presented in Figure 2.

Figure 2. The NOP graph of the function (30).

In the graph (Figure 2), numbers near arcs are numbers of functions with one argument.
Numbers inside nodes (except source nodes) are numbers of functions with two arguments.
Numbers in upper parts of the nodes are the node numbers.
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In the computer memory the NOP-code of the mathematical expression is presented
in the form of an integer matrix. The NOP matrix of the mathematical expression (30) is

CNOP =



0 0 0 0 0 2 0 1 0 0 0 0
0 0 0 0 0 0 3 0 2 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 2 0 0 0 1 0 0
0 0 0 0 0 0 2 0 0 0 0 4
0 0 0 0 0 0 0 2 0 0 1 0
0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 0 0 0 0 2



(35)

In the matrix of NOP, each line corresponds to a node. Nonzero numbers in the main
diagonal are numbers of functions with two arguments. Other numbers are numbers of
functions with one argument.

4.3. Cartesian Genetic Programming

Cartesian genetic programming (CGP) encodes consecutive calls of elementary func-
tions [13]. To encode a call, the sets of elementary functions is united

F = F1 ∪ F2. (36)

For the example the following set of elementary functions is obtained

F = { f1(z) = z, f2(z) = z2, f3(z) = −z,

f5(z) = f4(z) = exp(z), sin(z), f6(z1, z2) = z1 + z2,

f7(z1, z2) = z1z2}.
(37)

CGP encodes every call in the form of an integer vector. The first component of this
code is a number of the element from the set (36). Other components are numbers of
elements from the set of arguments. As soon as the elementary function is calculated,
the result is included into the set of arguments (24) of the mathematical expression, there-
fore, after every calculation, the number of elements in the set of arguments is increased.
A number of components of integer vector is equal to the largest number of arguments and
plus one for function number.

To encode the example function (30) three components are enough. The CGP code of
the mathematical expression from the example has the following form.

CCGP =

 2
1
1

,

 7
8
3

,

 2
2
3

,

 7
10
4

,

 6
11
9

,

 3
1
2

,

 7
13
4

,

 4
14
1

,

 7
2
3

,

 6
16
5

,

 5
17
2

,

 7
18
12

,

 7
18
12

. (38)
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4.4. Binary Complete Genetic Programming

The binary complete genetic programming (BCGP), unlike the genetic programming,
has codes of the same length for different mathematical expressions [10]. The graph of
BCGP for the example (30) is presented in Figure 3. In the BCGP graph, nodes correspond
to functions with two arguments. Leaves correspond to arguments of the mathematical
expression. Arcs correspond to functions with one argument. Each level has a certain
number of elements equal to a power of two. In the code of BCGP extra functions are
entered for obtaining complete binary tree.

Figure 3. The BCGP graph of the function (30).

In the computer memory, the BCGP code is presented in the form of an integer array
with determined number of elements. The number of elements depends on the number of
levels in the complete binary tree.

The BCGP code for the example is

CBCGP = {1,
2,
1 1
1 2
1 1 4 5
2 2 2 2 1
1 1 1 1 3 1 1 1
1 1 1 1 1 1 1 2 1
2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
1 6 3 6 2 6 4 6 1 6 4 6 1 3 5 6}

(39)

The last level contains numbers of elements from the set of arguments (31), where 6 is
the number of unit element for the sum function f2,1(z1, z2) = z1 + z2.

5. Computational Experiment

Now let us consider the solution of the control synthesis problem as MLC with the
considered symbolic regression methods. Consider the problem of stabilization system
synthesis for a mobile robot Khepera II [27]. The mathematical model of the control object is

ẋ1 = 0.5(u1 + u2) cos(x3),
ẋ2 = 0.5(u1 + u2) sin(x3),
ẋ3 = 0.5(u1 − u2),

(40)
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where x = [x1 x2 x3]
T is a vector of state, u = [u1 u2]

T is a control vector.
The control has restrictions

− 10 ≤ ui ≤ 10, i = 1, 2. (41)

The given set of initial conditions included 26 elements:

X̄0 = {[−2.5 − 2.5 − 5π/12]T , [−2.5 − 2.5 0]T ,

[−2.5 − 2.5 5π/12]T , [−2.5 0 − 5π/12]T ,

[−2.5 0 0]T , [−2.5 0 5π/12]T , [−2.5 2.5 − 5π/12]T ,

[−2.5 2.5 0]T , [−2.5 2.5 5π/12]T , [0 − 2.5 − 5π/12]T ,

[0 − 2.5 0]T , [0 − 2.5 5π/12]T , [0 0 − 5π/12]T , (42)

[0 0 5π/12]T , [0 2.5 − 5π/12]T , [0 2.5 0]T ,

[0 2.5 5π/12]T , [2.5 − 2.5 − 5π/12]T ,

[2.5 − 2.5 0]T , [2.5 − 2.5 5π/12]T ,

[2.5 0 − 5π/12]T , [2.5 0 0]T ,

2.5 0 5π/12]T , [2.5 2.5 − 5π/12]T ,

[2.5 2.5 0]T , [2.5 2.5 5π/12]T}.

The terminal conditions were set as one point

x∗ = [x∗1 x∗2 x∗3 ]
T = [0 0 0]T . (43)

It is necessary to find a control function in the form

ui = hi(x∗1 − x1, x∗2 − x2, x∗3 − x3, r1, r2, r3), (44)

where r1, r2, r3 are constant parameters, i = 1, 2, such that a robot from all 26 initial
conditions (42) got to terminal condition (43) with minimal total time and high accuracy.

For solution of this problem, the network operator method, the Cartesian genetic
programming, and the complete binary genetic programming were used with the principle
of small variation of the basic solution.

Proportional controllers for each variable were used as a basic solution in all algo-
rithms. The operations of addition and multiplication were used as binary operations,
and a set of 28 smooth elementary functions was used as unary operations. The description
of these functions can be found in the supplementary material to [28].

The network operator found the following control law

ui =


10, if ũi > 10
−10, if ũi < −10
ũi, otherwise

, i = 1, 2, (45)

where

ũ1 = ρ16(A) + sgn(x∗3 − x3) + ρ19(r3(x∗3 − x3)) +
3√D + (ρ23(A) + D)−1, (46)

ũ2 = ρ23(sin(x∗1 − x1) + ρ19(r2(x∗2 − x2))+

tanh(r1(x∗1 − x1)) + r2(x∗2 − x2) + r3(x∗3 − x3))+

ũ1 + sgn(x∗1 − x1) + ρ16(A) + arctan(B) + sin(E), (47)

A = x∗1 − x1 + tanh(tanh(r1(x∗1 − x1))+
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r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3))+

sin(x∗1 − x1) + ρ19(r2(x∗2 − x+2))+

tanh(r1(x∗1 − x1)) + r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3),

B = ρ19(r2(x∗2 − x2)sgn(x∗1 − x1))+

tanh(r1(x∗1 − x1))+

r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3))+

arctan(r1(x∗1 − x1)) + ρ4(sin(x∗1 − x1)+

sgn(A) + 3

√
3
√

x∗1 − x1 + A + ρ4(r1(x∗1 − x1))+

tanh(z7) + r2(x∗2 − x2)sgn(x∗1 − x1)+

r3(x∗3 − x3) + sgn(z12) +
3
√

x∗1 − x1 + A,

C = ρ9(x∗3 − x3) + arctan(r1) + sgn(r1(x∗1 − x1))+

+ρ23(sin(x∗1 − x1) + B+

ρ19(r2(x∗2 − x2)sgn(x∗1 − x1))+

tanh(r1(x∗1 − x1))+

r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3)),

D = sin(r3(x∗3 − x3)) + sin(x∗1 − x1)+

ρ19(r2(x∗2 − x2)sgn(x∗1 − x1)+

tanh(r1(x∗1 − x1)) + r2(x∗2 − x2)sgn(x∗1 − x1)+

r3(x∗3 − x3) +
(

3
√

x∗1 − x1 + A
)3

+ tanh(C),

E = ρ16(A) + sgn(x∗3 − x3) + ρ19(r3(x∗3 − x3))+

3√D + (ρ23(A) + D)−1,

ρ16(z) =
{

z, if |z| < 1
sgn(z), otherwise

,

ρ19(z) = sgn(z) exp(−|z|),

ρ23(z) = z− z3, ρ4(z) = sgn(z)
√
|z|,

ρ9(z) =
{

1, if z > 0
0, otherwise

,

r1 = 14.72876, r2 = 2.02710, r3 = 4.02222.
The Cartesian genetic programming found the control law as (45), where

ũ1 = G + H + ρ(G), (48)

ũ2 = H − G− ρ(G), (49)

G = r1(x∗3 − x3) + σ((x∗1 − x1)(x∗2 − x2)),

H = 2(x∗1 − x1) + sgn(x∗1 − x1)r2,

ρ(α) =

{
sgn(α)B+, if |α| > − log(δ−)
sgn(α)(exp(|α|)− 1)

,
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σ(α) = sgn(α)
√
|α|,

r1 = 3.1094, r2 = 3.6289, B+ = 108, δ− = 10−8.
The complete binary genetic programming found the following solution (45), where

ũ1 = − exp(2r2)+(
(x∗3 − x3)sgn(x∗2 − x2)

√
|x∗2 − x2|

)3
+

(r1 + x∗3 − x3)(x∗1 − x1) cos(x∗3 − x3)+
(r1 + 1)sgn(x∗2 − x2)/(x∗3 − x3)×√
|(r1 + 1)(x∗2 − x2)/(x∗3 − x3)|,

(50)

ũ2 = (r2 + 1)(arctan((x∗2 − x2)/r2)−
sin(x∗3 − x3)) + (W3 −W)×
(r3

2 − r2 + 1− exp+(r1)),
(51)

W =
1− exp(x∗2 − x2)

1 + exp(x∗2 − x2)
+ sin(r1 + 1),

r1 = 3.9356, r2 = 2.6748.
The trajectories of the robot moving from eight initial conditions (52) to the terminal

position (43) are presented in Figures 4–6.

X̄0(8) = {[−2.5 − 2.5 − 5π/12]T , [−2.5 − 2.5 5π/12]T ,

[−2.5 2.5 − 5π/12]T , [−2.5 2.5 5π/12]T ,

[2.5 − 2.5 − 5π/12]T , [2.5 − 2.5 5π/12]T ,

[2.5 2.5 − 5π/12]T , [2.5 2.5 5π/12]T}. (52)

Figure 4. Trajectories of the robot with control law trained by NOP.

The goal of experiments was to show that computational symbolic regression methods
allow to obtain a control function that, when substituted into the right-hand sides of a
system of differential equations of the control object, makes this object stable. As a result, it
was demonstrated that various symbolic regression methods can successfully solve this
machine learning problem without laborious construction of a training set, basing only on
the criterion for minimizing the quality functional.
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Figure 5. Trajectories of the robot with control law trained CGP.

Figure 6. Trajectories of the robot with control law trained by BCGP.

6. Conclusions

The paper considered symbolic regression methods for machine learning control
tasks. The theoretical formalization of MLC is proposed. The paper focused on the control
synthesis problem as MLC. The scope of application of symbolic regression methods
for supervised and unsupervised machine learning is discussed. The principle of small
variations is considered to overcome the computational difficulties of symbolic regression
methods associated with the complexity of the search space. Computational example of
control synthesis for a mobile robot demonstrates the capabilities and prospects of such
symbolic regression methods as network operator, Cartesian genetic programming and
binary complete genetic programming as unsupervised machine learning control technique.
Thus, the presented possibilities of various methods of symbolic regression in the field
of machine learning control open up new perspectives in the field of control associated
with the departure from manual and analytical search for solutions and the transition to
machine search and machine learning control.
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