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Abstract: Background: COVID assessment can be performed using the recently developed individual
risk score (prediction of severe respiratory failure in hospitalized patients with SARS-COV2 infection,
PREDI-CO score) based on High Resolution Computed Tomography. In this study, we evaluated the
possibility of automatizing this estimation using semi-supervised AI-based Radiomics, leveraging
the possibility of performing non-supervised segmentation of ground-glass areas. Methods: We
collected 92 from patients treated in the IRCCS Sant’Orsola-Malpighi Policlinic and public databases;
each lung was segmented using a pre-trained AI method; ground-glass opacity was identified using
a novel, non-supervised approach; radiomic measurements were collected and used to predict
clinically relevant scores, with particular focus on mortality and the PREDI-CO score. We compared
the prediction obtained through different machine learning approaches. Results: All the methods
obtained a well-balanced accuracy (70%) on the PREDI-CO score but did not obtain satisfying
results on other clinical characteristics due to unbalance between the classes. Conclusions: Semi-
supervised segmentation, implemented using a combination of non-supervised segmentation and
feature extraction, seems to be a viable approach for patient stratification and could be leveraged to
train more complex models. This would be useful in a high-demand situation similar to the current
pandemic to support gold-standard segmentation for AI training.

Keywords: radiomics; artificial intelligence; machine and deep learning; medical imaging

1. Introduction

Since the beginning of last year, the world has been facing a health emergency, the
pandemic caused by the novel Coronavirus, Sars-CoV2. Even up to the present date, many
aspects of the physiopathology of the COVID-19 infection are yet to be fully understood.
The diagnostic gold standards for Sars-CoV2 are the reverse transcription-polymerase chain
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reaction (rt-PCR) and the gene sequencing of sputum, throat swab and lower respiratory
tract secretion [1,2]. These tests have several limitations: a limited testing capacity related
to insufficient kits or laboratory supplies; a long reporting time, varying from 6 to 48 h;
a great variability in sensitivity, ranging from 37% to 71%. To circumvent these limitations,
imaging has emerged as an important tool to guide diagnosis, especially in cases of clinical-
laboratory discordances.

Imaging protocols directive from public health authorities are heterogeneous: chest
radiography is widely used, although it is not accurate in mild or early COVID-19 infection;
there is an improving interest in bedside lung ultrasound, but limited experiences are
reported in the literature [3]. Among imaging modalities, Computed Tomography (CT) is
the most sensitive (60–98%) acquisition technique, but it has low specificity in the early stage
of the disease [4]. For this reason, World Health Organization (WHO) and most radiologic
societies do not recommend performing screening CT (WHO characterizes COVID-19 as
a pandemic—11 March 2020). High-Resolution Computed Tomography (HRCT) proved
nonetheless to be a valuable aid to the clinical and epidemiological management of affected
patients, especially during shortages of the necessary reagents, long reporting time, and
the high operator-dependency [5–7].

There have been controversial publications about the role of chest CT imaging analysis
in the diagnosis and management of COVID-19 [8]. The identification of healthy lung
chest CTs from pneumonia cases has been deeply investigated in literature [9,10], but the
COVID-19 pandemic has posed the non-trivial problem of classifying different pulmonary
diseases. Patchy shadows or ground-glass opacities (GGOs) and consolidations (CSs)
are not exclusive of COVID-19 but might be also caused by pulmonary edema, bacterial
infection, other viral infection, or alveolar hemorrhage [11].

An initial prospective made by Huang et al. [12] on chest CT scans of patients affected
by COVID-19 has shown that the examined subjects have a bilateral GGO and CS. The
same medical results were also confirmed by other authors [13,14], who posed the basis
for the next quantification studies allowing a better characterization of the COVID-19
features. The classification between early-stage patients and progressive phases has been
thoroughly investigated [15–18], and all of them lead to the same conclusion: the main
COVID-19 features can be difficult to detect in early stages of the disease, and their correct
identification is strongly dependent on the radiologist’s expertise.

The role of HRCT in COVID-19 infection management is also controversial due to
the radiation exposure problem. Initially, the American College of Radiology (ACR) and
the Italian Society of Medical and Interventional radiology (SIRM) guidelines did not
recommend HRCT in the diagnostic workup, the former referring to 2018 guidelines for
acute respiratory illnesses [19–21]. With the increase of available evidence resulting from
clinical trials, a prognostic role of HRCT is now emerging, increasing its value beyond
the diagnosis [3,22]. Moreover, a study from Ria et al. evaluated the risk-benefit ratio of
radiation exposure in COVID-19 patients, stating that HRCT is justified in patients older
than 30 years [23].

The application of automated methods to support the clinicians in the analysis of a
large amount of data aims to remove the subjectivity of the measurement and improve
the time required for the diagnosis formulation [21,24,25]. Machine learning and deep
learning models applied in the medical research field are becoming more popular as the
basis for clinical decision support systems. Medical image segmentation plays a pivotal
role in the automation of these applications since a correct segmentation of anatomical
structures is a crucial step to improve the accuracy of the algorithms and to minimize
possible confounders.

In 2015, Mansoor et al. [26] proposed a classification of classical image processing seg-
mentation algorithms, where they divided them into four classes: (1) thresholding-based
methods [27]; (2) region-based methods [28,29]; (3) shape-based methods [30]; (4) neigh-
boring anatomy [31]. Deep learning models are outperforming all these techniques [32,33].
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Deep learning applications have achieved the most significant results also in the
COVID-19 literature [24,27,34–36], with extremely high classification performances and
low execution time. The drawback of these methods is the demand for labeled data: the
training of a deep learning model requires a vast amount of manual (or semi-automatic)
labelled data. This is problematic because data annotation is a very time-consuming
operation, dependent on the operator experience.

To overcome this issue, many authors, such as Wang et al. [34], proposed a different
approach, combining deep learning features with standard machine learning one, proving
the efficiency of this synergy. This approach could also increase the ability to explain the
model, potentially leading to an improvement in the understanding of the main features
of the COVID-19 disease. Wang et al. highlighted the irregularity and heterogeneous
intensities of the lung lesion textures as COVID-19 significant features. Concurrently, in
non-COVID-19 patients, Wang et al. found stronger uniformity of Hounsfield values in
the chest CT within the lesions. Both these features can be automatically quantified by a
machine learning algorithm, allowing stratification of the patients’ severity and removing
possible false positives. Other identified useful characteristics concern the geometry and
shape of the lesions [8,37].

For a more detailed stratification of patients, the Radiological Society of North America
(RSNA) released a consensus statement, endorsed by the Society of Thoracic Radiology and
the American College of Radiology (ACR), that classifies the CT appearance of COVID-19
pneumonia into four categories: “typical,” “atypical,” “undetermined,” and “negative” [38].
The “typical” pattern is characterized by the presence of round-shaped Ground-Glass Opac-
ities (GGO), usually bilateral with a sub-pleural location on the dorsal basal segments. The
GGO can be associated with “Crazy Paving” areas or other signs of organizing pneumonia.
The “undetermined” pattern is characterized by the absence of the “typical” pattern find-
ings, with diffuse GGO areas with a perihilar or unilateral distribution, with or without
consolidated areas. The “atypical” pattern is characterized by either the absence of the
“typical” or “undetermined” signs and the presence of lobar consolidations, “tree in bud,”
smooth thickening of the septa and pleural effusion; in this presentation, no GGO are
detectable. The “negative” pattern is characterized by the absence of pathological findings.
The “typical” and “negative” patterns have proven to be very accurate in identifying the
disease in patients with suspected COVID-19 infection [3].

Many authors have already proved an occasional discordance between HRCT and
rt-PCR. There have been observations of patients with a high clinical suspect of COVID-19
supported by epidemiological criteria and imaging, but with negative rt-PCR [39,40]. On
the other hand, there was evidence of patients with a positive rt-PCR and suggestive clinical
findings, that did not present pathological findings on HRCT [41]. The clinico-radiological
dissociation in asymptomatic individuals requires reconsidering the role of radiological
findings in the clinical management of these patients [42].

To improve the reliability of radiological examination, several authors presented
Texture Analysis of the CT scans as a valuable tool to aid the diagnosis [43–45] and to
identify clinically severe patients [46]. Texture Analysis can identify putative features that
are not part of the RSNA criteria, such as enlargement of pulmonary vessels [47–51], and
that could be overlooked during the human visual inspection, such as fine characteristics
of the GGO areas [52]. Currently, only a few methods exist to automatically process
HRCT scans and quantify the extent of the pulmonary involvement [32,53]. From the
clinical point of view, the disease can be assessed with the newly developed PREDI-CO
(prediction of severe respiratory failure in hospitalized patients with SARS-COV2 infection),
which considers clinical parameters predictive of severe respiratory failure in hospitalized
patients, and is defined as the sum of the following conditions:

• age ≥ 70 years
• obesity BMI ≥ 30 kg/m2

• fever at hospitalization ≥ 38 ◦C
• respiratory rate ≥ 22 breaths/minute
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• lymphocyte count ≤ 900 cells/mm3

• creatinine ≥ 1 mg/dl
• C-reactive protein ≥ 10 mg/dl
• lactate dehydrogenase ≥ 350 IU/l.

This score outperforms in the stratification of patients the well-established qSOFA,
SOFA, CURB-65, and MEWS scores; this is due to the fact that the PREDI-CO score was
designed and validated ad-hoc for this purpose [54].

In the current work, we aim to automatize the evaluation of the PREDI-CO score and
several radiomic features using a novel, non-supervised image processing pipeline.

2. Materials and Methods
2.1. Patients Selection

This study involves 92 CT scans of patients affected by COVID-19. 10 of these scans
come from the public dataset “COVID-19 CT Lung and Infection Segmentation Dataset”
published on Zenodo [55]. Left lung, right lung, and infections are labeled by two radiolo-
gists and verified by an expert radiologist (with more than 10 years of experience). These
scans were used to validate the segmentation performances of the implemented pipeline.

Department of Diagnostic and Preventive Medicine of the IRCCS Policlinic Sant’Orsola-
Malpighi provided the remaining 82 scans. The selected patients are composed for the
66.3% by male, the age distribution (min/median/max) is 35/60/89. For each patient,
experts ascertained the presence of ground-glass opacities (100%), consolidation (10%),
crazy paving (53%), multifocal GGO (multiple locations affected by GGO, 32%), peripheral
GGO (presence of GGO areas exclusively far away from the trachea, 23%), and roundish
GGO (GGO characterized by round regular shapes, 12%). Moreover, each patient was
assigned the PREDI-CO score value estimated by two radiologists.

In IRCCS Policlinic Sant’Orsola-Malpighi, HRCT exams were performed with the fol-
lowing parameters: two different Multi-Slices CT (64 slices, GE VCT or PHILIPS Ingenuity),
with keV range 100–120, tube current modulation with a low Quality Index to optimize
patient dose, slice thickness range 1–2 mm; images were reconstructed with high-resolution
kernel. The CT parameters used in the Zenodo dataset are not available.

2.2. Pipeline Overview

The workflow developed in this work as show in Figure 1 can be split into 3 steps:
(1) the segmentation of the lungs; (2) segmentation of the GGO areas; (3) estimation of the
radiomic features.

Figure 1. A schematic representation of the proposed pipeline. From the left: raw CT scan; segmentation of the two lungs
using a pre-trained U-Net model; segmentation of the GGO areas using k-means clustering; extraction of radiomic and
Haralick features; classification and prediction of the clinical characteristics and outcomes.
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2.3. Lung Segmentation

Lung segmentation is a pivotal pre-processing step in many image analyses, such
as identification and classification of pathologies. Rule-based approach, like thresh-
olding, region growing, etc., usually fails for CT scans of patients with severe Intersti-
tial Lung Disease (ILD) [33]. For this reason, we used a pre-trained publicly available
https://github.com/JoHof/lungmaskv0.24 (accessed on 24 March 2021) U-Net model [33]
for lung segmentation.

2.4. GGO Segmentation

In the second step, a novel automated pipeline for the segmentation of GGO areas
was developed, combining 2 different techniques: vessel artifacts exclusion and k-means
clustering. Both these methods are unsupervised learning techniques and have been chosen
due to the limited number of available samples. The decision to avoid supervised methods
such as Convolutional Neural Networks (CNNs) is based on the likelihood of including
strong biases, even including possible data augmentation strategies.

The intensity of pulmonary vessels is very similar to solid components of GGO;
therefore, it affects the segmentation, introducing potential false positives [56]. To remove
these vessels, we used the vesselness measure, i.e., the presence of multiscale tubular
structures. Multiscale Vessel Enhancement Filtering (MVEF) [57] is defined as the likelihood
of an image region to contain vessels, and it is estimated using the Frangi filter [58]. The
areas with high values of MVEF were identified as vessels and therefore removed from the
lung region obtained in the previous step.

After the removal of the vessels, we identified the GGO as areas with a common color
texture. To identify these regions, we used k-means clustering, grouping voxels by color
and texture similarity, and identifying the tissue corresponding to each cluster [59].

Since GGO involves extended areas, it is informative to include neighborhood voxel
information. The color contrast between GGO and healthy areas may change between
patients; it is, therefore, useful to consider different gamma corrections of the image. We
applied a series of image processing filters to obtain a high-dimensional feature space,
including all these features for each individual voxel. For each voxel, we estimated a vector
of features obtained by the application of the following filters:

• Gamma corrected image (γ = 1.5);
• Adaptive Histogram Equalized image, in a radius of 3 voxels;
• Median blurred image with a kernel of radius 3 voxels;
• Standard deviation filtered image with a kernel of radius 1 voxels.

We used the Adaptive Histogram Equalization algorithm for the image standardiza-
tion: for each slice, the histogram was equalized considering a volume of 3 voxels. The
gamma correction is a non-linear operation used to decode the luminance and enhance the
low contrast regions. The median blurring allows considering the information about the
neighborhood voxels, reducing the effect of outlier voxels. The last feature is the application
of a local standard deviation filter; this filter replaces each voxel value with the standard
deviation of its neighborhood. This feature is useful as GGO is characterized by highly
heterogeneous gray level regions, allowing to filter out bronchial structures and motion
artifacts not removed during the lung segmentation.

The k-means clustering is “isotropic” in all directions of space and therefore tends to
produce round (rather than elongated) clusters. In this situation, leaving variances unequal
is equivalent to put more weight on variables with smaller variance. To avoid this, the
features were standardized according to the mean and standard deviation estimated on the
training dataset.

We selected 10 scans and applied the k-means clustering for the estimation of the
centroids using the Euclidean metric. The k-means clustering is sensitive to the class
balance in the training phase (it might give more prominence to more common present
structures). Therefore, for the training phase, we considered only a subset of scans with a
reasonable amount of GGO areas, excluding in all the cases the (overrepresented) image

https://github.com/JoHof/lungmask v0.24
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background. The k-means cardinality was estimated based on lung anatomy considerations.
The resulting clusters were:

• Healthy lung;
• Edges;
• Remaining vessels;
• Noise;
• GGO.

We implemented the whole pipeline using Python, and the source code is publicly
available on GitHub (https://github.com/RiccardoBiondi/segmentation, accessed on
24 March 2021). We used SimpleITK [60,61] for the implementation and management of
image filters and the OpenCV [62] library for the implementation of the k-means clustering.

We estimated the performances of our segmentation algorithm according to the fol-
lowing scores:

• Sensitivity

TPR =
TP

TP + FN

• Specificity

TNR =
TN

TN + FP

• Precision

PPV =
TP

TP + FP

• F1 score

F1 =
2TP

2TP + FP + FN
where TP, TN, FP, and FN are the True Positives, True Negative, False Positive, and

False Negative scores, respectively.

2.5. Feature Extraction

We applied the proposed pipeline on the 82 patients provided by the Department
of Diagnostic and Preventive Medicine of the IRCCS Policlinic Sant’Orsola-Malpighi of
Bologna. The radiomic features extraction was performed on the identified GGO areas.
The extracted features include morphological and texture-based scores:

• Texture;
• Gray Level Distribution;
• GGO Shape;
• Bilaterality (distribution of GGO between left and right lung);
• Peripherality;
• GGO volume

For the scores classification, we included the patient’s age as informative features.
We measured the texture properties by computing the Haralick features (Energy,

Inertia, Entropy, Inverse Difference Moment, Cluster Shade and Cluster Prominence)
from the Gray Level Co-occurrence Matrix (GLCM), computed on the whole identified
area [63]. For each identified GGO area, we computed its elongation and roundness [64],
obtaining the corresponding distribution for each patient. We computed the distribution
of the distances between the lesion and lung centroids, normalized to the semiaxis of
the equivalent ellipsoid as a measure of the GGO peripherality. Each distribution was
characterized by the minimum, maximum, median, interquartile range (25–75), skewness,

https://github.com/RiccardoBiondi/segmentation
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and kurtosis. We estimated the bilaterality distribution using the Matthews coefficient
(MCC) defined as follows:

MCC =
LGV · LLV − RGV · RLV

(LGV + RGV)(RLV + LGV)(LLV + RGV)(LLV + RLV)

being RGV = Volume of GGO in the right lung, LGV = Volume of GGO in the left lung,
LLV = Left Lung Volume, and RGV = Right Lung Volume. The volume of GGO was
normalized according to the total lung volume to overcome possible issues related to
anatomical differences between patients.

2.6. Classification

We used the whole set of extracted radiomic features to predict the following GGO
characteristics estimated by the expert radiologists:

• Multifocal GGO;
• Presence of Crazy Paving;
• Presence of Consolidation;
• Roundish GGO;
• Peripheral GGO;

Additionally, the two clinical outcomes:

• PREDI-CO score;
• Patient survival.

Not all the above scores were available for all the patients. The GGO characteristics
were reported for only 78/82 patients, while the clinical outcomes for only 72 of them. We
restricted the score classification on these two subsets of data.

The considered scores are all binary values (True/False), representing the pres-
ence/absence of the corresponding characteristic. The only exception is given by the
PREDI-CO score, which, by definition, allows an incremental set of values: PREDI-CO
score values range from 0 (minimal risk) to 9 (maximal risk). The 47% of patients report a
PREDI-CO score of 0 or 1, leading to an overrepresentation of these 2 labels. We grouped
multiple labels into the same class to overcome this issue: we applied the cutoff of 1 to
dichotomize the PREDI-CO score values into two classes.

We applied a feature selection procedure to filter out redundant and non-informative
values for each classification. This step is required to improve the classification per-
formances (remotion of possible confounders) and to make the obtained results more
interpretable from a clinical point of view. The selection was performed using a Fisher
Exact and a χ2 tests selecting the 3 features with the highest significance (lower p-values).
Both the tests require categorical data, so we dichotomized the features according to
their medians.

We used the set of filtered features as input to 4 different classification algorithms to
predict the various GGO characteristics and clinical outcomes:

• Logistic Classifier (L1 penalty);
• (Logistic) Ridge Classifier (L2 penalty);
• K-Nearest Neighbors;
• Random Forest Classifier.

The performances of these 4 methods give us an insight into the structure of the data:
KNN methods are strongly local, Random Forest relies on the separability of the samples
but does not include co-linearities between variables, and linear models (Logistic classifier
and Ridge classifier) strongly rely on linear dependencies between the observed values
and the predictions.

The classification performances were estimated according to the following metrics:

• Precision
• Sensitivity
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• F1 score
• Balanced accuracy

BA =
Sensitity + Speci f icity

2
using a leave-one-out cross-validation strategy.

The numerosity of the labels of each characteristic is strongly unbalanced (e.g., only
10% of patients show the presence of consolidations) for every characteristic, except for
Crazy Paving and PREDI-CO score (after the dichotomization). To compensate for this, we
weighted the classification performances of each algorithm according to the inverse of the
class frequency.

We used the scikit-learn [65] Python package for the implementation of all the analyses.

3. Results
3.1. GGO Segmentation

We applied the proposed segmentation pipeline on each patient under analysis. For
samples, we collected also a manual segmentation performed by an expert radiologist,
which was used as the gold standard.

The collected results were evaluated using the previously introduced metric scores
and their distribution analyzed as show in Table 1, details in Table S1.

Table 1. A comparison between the score results for the gold standard segmentation in the included
databases. For each score, the average value (and corresponding standard deviation at 1 σ) is reported.
For each column the maximum value was indicated with bold font.

Cases Specificity Sensitivity Precision F1 Score

CORONACASES
OVERALL 0.9992 ± 0.0005 0.62 ± 0.13 0.79 ± 0.12 0.67 ± 0.07

GOLD STD OVERALL 0.9993 ± 0.0003 0.74 ± 0.14 0.67 ± 0.28 0.65 ± 0.18
OVERALL 0.9992 ± 0.0005 0.66 ± 0.15 0.75 ± 0.20 0.67 ± 0.12

We show in Figure 2 the distribution of the individual scores (Sensitivity, Specificity,
Precision, and F1 score). The scores were obtained by the average of the whole 15 scans
(overall) on the 10 corona cases (CORONACASES OVERALL) and on the five gold standard
(GOLD STD OVERALL). In Figures 3 and 4, we show a visual comparison between
the achieved segmentation and the ground truth labels (both for corona cases and the
gold standard).

Figure 2. The distribution of segmentation scores obtained by the proposed pipeline. From the left: distribution of Sensitivity,
i.e., True Positive rate, Specificity, i.e., True negative rate, Precision, i.e., Positive Predictive Value, and F1 score, i.e., the
harmonic mean of precision and sensitivity.
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Figure 3. A comparison between the ground truth and the results obtained by the proposed pipeline for the corona
cases segmentation. In green are highlighted the GGO areas identified by the experts, and in red, those identified by our
segmentation pipeline, respectively.

Figure 4. A comparison between the proposed automated segmentation pipeline and a gold standard
segmentation manually performed by an expert radiologist.
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In Table 2 we report the results of other published pipelines in comparison with
our method (details of the employed methods in Table S2). Notice that Jun2020 is a
benchmark database for COVID-19 annotation methods and CT scans segmentation
(https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark, accessed on 24 March 2020).
The evaluation set for both Jun2020 and Muller2020 is COVID-19-CT-Seg, which is the
database containing both corona case studies (the one used for annotation) and radiopedia
ones (removed because rescaled on 8-bit GL images, which is not compatible with the im-
plemented pipeline). For each technique on each database, only the best results presented
in the literature are reported.

Table 2. A comparison between the results of various segmentation techniques applied on the same
datasets. For each column the maximum value was indicated with bold font.

Study Technique F1 Score Sensitivity Specificity Precision

Fan2020 [66] InfNet 0.579 0.870 0.974 0.500
Fan2020 [66] SemiInfNet 0.597 0.865 0.977 0.915

Muller2020 [49] U-Net 0.761 0.739 0.999 -
Jun2020 [52] 3D U-Net 67.3 ± 22.3 - - -
Jun2020 [52] 2D U-Net 60.9 ± 24.5 - - -

Qingsen2020 [65] U-Net 0.726 0.751 - 0.726

3.2. Feature Extraction

We applied the feature extraction step on the GGO areas identified by our segmen-
tation algorithm. In Figure 5 we show the Pearson’s correlation matrix between each
pair of observed features. The cluster plot highlights the existence of multiple groups of
strongly correlated features. The first set of clusters are given by the features related to the
roundness, elongation, and distance features. The most prominent cluster is composed of
the Haralick features: energy, entropy, inertia, and cluster prominence.

In Figure 6 we show the relation between feature distributions and labels. Using the
median of the feature distributions as a threshold, we estimated the percentage of the
patients associated with each label who are above this threshold. A result of 0.5 (white-
like cells) indicates non-specificity of the variable for that individual label, i.e., a uniform
distribution of the feature. A result greater than 0.5 (red-like cells) or smaller than 0.5
(blue-like cells) indicates a high/low percentage of patients for whom the feature values
are greater/smaller than the median of the distribution, respectively. This representation
allows a visual analysis for the identification and selection of the most informative features
related to each label.

https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
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Figure 5. The Correlation Matrix between the estimated features. We report for each pair of features the Pearson’s correlation
coefficient. In red are highlighted the positive correlations, while in blue the negative ones. White-like colors identify the
features with low correlation.
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Figure 6. The relationship between individual features and labels. The values range from 0 (all the feature values are lower
than the median of the sample distribution) to 1 (all the values are greater than the median of the sample distribution). A
value of 0.5 indicates the non-specificity of the variable for the individual label (uniform distribution of the values).

3.3. Individual Features Analysis

For each classification algorithm, we considered the full set of radiomic features
extracted and the three best features identified by the feature selection methods (Fisher
and χ2 tests). For each feature selection criteria, we report the list of the three best features
ordered according to their informative power.

3.3.1. Multifocal GGO

A Multifocal GGO label equal to 1 (32% of the patients) identifies the patients with
the presence of a multifocal lesion, while a label equal to 0 (68% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with the type of feature
indicated in parenthesis):

• Skewness of the gray level distribution (Radiomics);
• Interquartile (25–75) of the roundness distribution (Radiomics);
• Kurtosis of the gray level distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):
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• Kurtosis of the gray level distribution (Radiomics);
• Minimum of the distance distribution (Radiomics);
• Skewness of the gray level distribution (Radiomics).

We show in Table 3 the results obtained in terms of global adjusted accuracy and in
Table 4 the precision, sensitivity and F1 score of the same prediction.

Table 3. Global adjusted accuracy of the models to predict multifocal GGO presence using different
feature selection strategies. From the left: adjusted accuracy score obtained using only the 3 best
features identified by the Fisher Exact test; the 3 best features identified by the χ2 test; all the radiomic
features extracted. For each column the maximum value was indicated with bold font.

Fisher χ2 All

Logistic 0.56 0.52 0.42
Ridge 0.62 0.58 0.45
KNN 0.44 0.44 0.48

R. Forest 0.49 0.43 0.47

Table 4. Precision, Sensitivity, and F1 score for each model and each feature selection strategy to
predict multifocal GGO presence. From the left: dichotomized score value, Precision obtained using
the 3 best features identified by the Fisher test, Precision obtained using the 3 best features identified
by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test, Sensitivity
obtained using the 3 best features identified by the χ2 test; F1 score obtained using the 3 best features
identified by the Fisher test; F1 score obtained using the 3 best features identified by the χ2 test. For
each column the maximum value was indicated with bold font.

Multifocal
1 = Presence
0 = Absence

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.72 0.69 0.64 0.64 0.68 0.67
1 0.39 0.34 0.48 0.40 0.43 0.37

Ridge 0 0.77 0.74 0.64 0.64 0.70 0.69
1 0.44 0.41 0.60 0.52 0.51 0.46

KNN 0 0.65 0.65 0.83 0.83 0.73 0.73
1 0.10 0.10 0.04 0.04 0.06 0.06

R. Forest 0 0.67 0.64 0.77 0.77 0.72 0.70
1 0.29 0.14 0.20 0.08 0.24 0.10

3.3.2. Presence of Crazy Paving

A Crazy Paving label equal to 1 (52% of the patients) identifies the patients with the
presence of a crazy-paving pattern, while a label equal to 0 (48% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Median of the gray level distribution (Radiomics);
• Maximum of the Elongation distribution (Radiomics);
• Entropy (Haralick).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Median of the gray level distribution (Radiomics);
• Inverse Difference Moment (Haralick);
• Skewness of the gray level distribution (Radiomics).

We show in Table 5 the results obtained in terms of global adjusted accuracy and in
Table 6 the precision, sensitivity and F1 score of the same prediction.
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Table 5. Global adjusted accuracy of the models to predict the presence of crazy paving using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the maximum value was indicated with bold font.

Fisher χ2 All

Logistic 0.57 0.61 0.47
Ridge 0.51 0.56 0.45
KNN 0.46 0.50 0.57

R. Forest 0.50 0.51 0.51

Table 6. Precision, Sensitivity, and F1 Score for each model and each feature selection strat-egy to
predict the presence of crazy paving. From the left: dichotomized score value, Pre-cision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best fea-tures identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Crazy
Paving

1 = Presence
0 = Absence

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.56 0.60 0.49 0.57 0.52 0.58
1 0.59 0.63 0.66 0.66 0.62 0.64

Ridge 0 0.48 0.55 0.41 0.46 0.44 0.50
1 0.53 0.57 0.61 0.66 0.57 0.61

KNN 0 0.43 0.47 0.43 0.51 0.43 0.49
1 0.49 0.43 0.49 0.49 0.49 0.51

R. Forest 0 0.48 0.50 0.35 0.35 0.41 0.41
1 0.53 0.54 0.66 0.68 0.59 0.60

3.3.3. Presence of Consolidation

A consolidation label equal to 1 (10% of the patients) identifies the patients with
the presence of consolidation, while a label equal to 0 (90% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Cluster Prominence (Haralick);
• Median of the gray level distribution (Radiomics);
• Median of the elongation distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Median of the gray level distribution (Radiomics);
• Median of the elongation distribution (Radiomics);
• Cluster Prominence (Haralick).

We show in Table 7 the results obtained in term of global adjusted accuracy and in
Table 8 the precision, sensitivity, and F1 score of the same prediction.
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Table 7. Global adjusted accuracy of the models to predict the presence of consolidations using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.54 0.54 0.70
Ridge 0.54 0.54 0.69
KNN 0.51 0.51 0.50

R. Forest 0.50 0.50 0.49

Table 8. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy to
predict the presence of consolidations. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Consolidation
1 = Presence
0 = Absence

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.91 0.91 0.59 0.59 0.71 0.71
1 0.12 0.12 0.50 0.50 0.20 0.20

Ridge 0 0.91 0.91 0.59 0.59 0.71 0.71
1 0.12 0.12 0.50 0.50 0.20 0.20

KNN 0 0.90 0.90 0.90 0.90 0.90 0.90
1 0.12 0.12 0.12 0.12 0.12 0.12

R. Forest 0 0.90 0.90 0.90 1.00 0.95 0.95
1 0.00 0.00 0.00 0.00 0.00 0.00

3.3.4. Roundish GGO

A roundish GGO label equal to 1 (12% of the patients) identifies the patients with the
presence of a roundish GGO lesion, while a label equal to 0 (88% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• GGO volume percentage (Radiomics);
• Skewness of the roundness distribution (Radiomics);
• Median of the roundness distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• GGO volume percentage (Radiomics);
• Skewness of the roundness distribution (Radiomics);
• Median of the roundness distribution (Radiomics).

We show in Table 9 the results obtained in term of global adjusted accuracy and in
Table 10 the precision, sensitivity and F1 score of the same prediction.
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Table 9. Global adjusted accuracy of the models to predict the presence of roundish GGO using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.60 0.60 0.59
Ridge 0.58 0.60 0.56
KNN 0.43 0.43 0.50

R. Forest 0.45 0.45 0.50

Table 10. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy to
predict the presence of roundish GGO lesions. From the left: dichotomized score value, Precision
obtained using the 3 best features identified by the Fisher test, Precision obtained using the 3 best
features identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher
test, Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using
the 3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified
by the χ2 test. For each column the max-imum value was indicated with bold font.

Roundish
1 = Presence
0 = Absence

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.92 0.92 0.64 0.64 0.75 0.75
1 0.17 0.17 0.56 0.56 0.26 0.26

Ridge 0 0.91 0.92 0.61 0.64 0.73 0.75
1 0.16 0.17 0.56 0.56 0.24 0.26

KNN 0 0.87 0.87 0.86 0.87 0.86 0.87
1 0.00 0.00 0.00 0.00 0.00 0.00

R. Forest 0 0.87 0.87 0.90 0.90 0.94 0.89
1 0.00 0.00 0.00 0.00 0.00 0.00

3.3.5. Peripheral GGO

A peripheral GGO label equal to 1 (23% of the patients) identifies the patients with the
presence of a peripheral GGO lesion, while a label equal to 0 (77% of the patients) identifies
its absence.

The three best features selected by the Fisher criterion are (with the type of feature
indicated in parenthesis):

• Patient age (Clinical);
• Minimum of the distance distribution (Radiomics);
• Skewness of the gray level distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Minimum of the distance distribution (Radiomics);
• Patient age (Clinical);
• Skewness of the elongation distribution (Radiomics).

We show in Table 11 the results obtained in terms of global adjusted accuracy and in
Table 12 the precision, sensitivity, and F1 score of the same prediction.
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Table 11. Global adjusted accuracy of the models to predict the presence of peripheral GGO using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.47 0.47 0.62
Ridge 0.52 0.52 0.61
KNN 0.52 0.52 0.51

R. Forest 0.42 0.42 0.53

Table 12. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy to
predict the presence of peripheral GGO lesions. From the left: dichotomized score value, Precision
obtained using the 3 best features identified by the Fisher test, Precision obtained using the 3 best
features identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher
test, Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using
the 3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified
by the χ2 test. For each column the max-imum value was indicated with bold font.

Peripheral
1 = Presence
0 = Absence

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR

Fisher
F1

χ2 F1

Logistic 0 0.74 0.74 0.43 0.43 0.55 0.55
1 0.21 0.21 0.50 0.50 0.30 0.30

Ridge 0 0.79 0.79 0.43 0.43 0.56 0.56
1 0.24 0.24 0.61 0.61 0.35 0.35

KNN 0 0.78 0.78 0.87 0.87 0.82 0.82
1 0.27 0.27 0.17 0.17 0.21 0.21

R. Forest 0 0.74 0.74 0.83 0.83 0.78 0.78
1 0.00 0.00 0.00 0.00 0.00 0.00

3.4. Primary Outcomes
3.4.1. PREDI-CO Score

The prediction of the PREDI-CO score was performed considering the dichotomized
values obtained by thresholding the labels according to the cutoff of 1: values ≤1 (47%
of the patients) were labelled as 0 and values > 1 (53% of the patients) were labelled as 1.
The considered dataset includes only two patients with a PREDI-CO score ≥6 proving the
strong unbalancing of the classes and highlighting the prominence of non-severe patients.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Patient age (Clinical);
• Median of the distance distribution (Radiomics);
• Interquartile (25–75) of the roundness distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Patient age (Clinical);
• Interquartile (25–75) of the elongation distribution (Radiomics);
• Maximum of the distance distribution (Radiomics).

We show in Table 13 the results obtained in terms of global adjusted accuracy and in
Table 14 the precision, sensitivity and F1 score of the same prediction.
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Table 13. Global adjusted accuracy of the models to predict the dichotomized PREDI-CO score using
different feature selection strategies. From the left: dichotomized score value, Precision obtained
using the 3 best features identified by the Fisher test, Precision obtained using the 3 best features
identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test,
Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using the
3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified by
the χ2 test. For each column the max-imum value was indicated with bold font.

Fisher χ2 All

Logistic 0.70 0.70 0.59
Ridge 0.70 0.70 0.52
KNN 0.62 0.60 0.50

R. Forest 0.61 0.61 0.59

Table 14. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy
to predict the dichotomized PREDI-CO score. From the left: dichotomized score value, Precision
obtained using the 3 best features identified by the Fisher test, Precision obtained using the 3 best
features identified by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher
test, Sensitivity obtained using the 3 best features identified by the χ2 test; F1 score obtained using
the 3 best features identified by the Fisher test; F1 score obtained using the 3 best features identified
by the χ2 test. For each column the max-imum value was indicated with bold font.

PREDI-CO
1 = PREDI-CO > 1
0 = PREDI-CO ≤ 1

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR

Fisher
F1

χ2 F1

Logistic 0 0.67 0.67 0.71 0.71 0.69 0.69
1 0.72 0.72 0.68 0.68 0.70 0.70

Ridge 0 0.67 0.67 0.71 0.71 0.69 0.69
1 0.72 0.72 0.68 0.68 0.70 0.70

KNN 0 0.56 0.54 0.85 0.85 0.67 0.66
1 0.75 0.72 0.39 0.34 0.52 0.46

R.
Forest 0 0.60 0.60 0.53 0.53 0.56 0.56

1 0.62 0.62 0.68 0.68 0.65 0.65

3.4.2. Patient Survival

A survival label equal to 1 (10% of the patients) identifies the patients survived to the
COVID-19, while a label equal to 0 (90% of the patients) identifies death patients.

The three best features selected by the Fisher criterion are (with type of feature
indicated in parenthesis):

• Inverse difference moment (Haralick);
• Median of the elongation distribution (Radiomics);
• Median of the distance distribution (Radiomics).

The three best features selected by the χ2 criterion are (with type of feature indicated
in parenthesis):

• Inverse difference moment (Haralick);
• Median of the elongation distribution (Radiomics);
• Skewness of the elongation distribution (Radiomics).

We show in Table 15 the results obtained in terms of global adjusted accuracy and in
Table 16 the precision, sensitivity and F1 score of the same prediction.
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Table 15. Global adjusted accuracy of the models to predict mortality using different feature selection
strategies. From the left: dichotomized score value, Precision obtained using the 3 best features
identified by the Fisher test, Precision obtained using the 3 best features identified by the χ2 test;
Sensitivity obtained using the 3 best features identified by the Fisher test, Sensitivity obtained using
the 3 best features identified by the χ2 test; F1 score obtained using the 3 best features identified by
the Fisher test; F1 score obtained using the 3 best features identified by the χ2 test. For each column
the maximum value was indicated with bold font.

Fisher χ2 All

Logistic 0.41 0.48 0.43
Ridge 0.62 0.70 0.41
KNN 0.41 0.42 0.50

R. Forest 0.46 0.48 0.50

Table 16. Precision, Sensitivity, and F1 Score for each model and each feature selection strategy
to predict patient survival. From the left: dichotomized score value, Precision obtained using the
3 best features identified by the Fisher test, Precision obtained using the 3 best features identified
by the χ2 test; Sensitivity obtained using the 3 best features identified by the Fisher test, Sensitivity
obtained using the 3 best features identified by the χ2 test; F1 score obtained using the 3 best features
identified by the Fisher test; F1 score obtained using the 3 best features identified by the χ2 test. For
each column the maximum value was indicated with bold font.

Survival
1 = Dead
0 = Alive

Fisher
PPV χ2 PPV

Fisher
TPR χ2 TPR Fisher F1 χ2 F1

Logistic 0 0.88 0.90 0.82 0.82 0.85 0.85
1 0.00 0.08 0.00 0.14 0.00 0.10

Ridge 0 0.93 0.95 0.82 0.82 0.87 0.88
1 0.20 0.25 0.43 0.57 0.27 0.35

KNN 0 0.89 0.89 0.83 0.85 0.86 0.87
1 0.00 0.00 0.00 0.00 0.00 0.00

R. Forest 0 0.90 0.90 0.94 0.95 0.92 0.93
1 0.00 0.00 0.00 0.00 0.00 0.00

4. Discussion
4.1. GGO Segmentation

The examples reported in Figures 3 and 4 show how the non-supervised segmentation
method proposed in this paper is able to approximate the gold standard results with
satisfactory results.

This result has two strong implications for the Radiomics of the COVID-19 patients.
First, given that the amount of information required for the k-means method training is
considerably lower than CNN methods, while still retaining good results, this segmen-
tation can be implemented with in-patient training. Secondly, this method can be used
with success as a first segmentation method to be used as training for other, more specific
methods. We remark that all the proposed techniques are voxel-based algorithms: this
kind of method requires the whole patient’s scan as input, drastically reducing the dimen-
sionality of the dataset. As a reference, a 3D U-Net-based method [66] required two order
of magnitude training samples to achieve comparable results.

It is worth noting that the various segmentation scores are dependent on the class
balance, and therefore tend to penalize this kind of segmentation where one class (the GGO
class in our case) is substantially under-represented. This can be confirmed by confronting
the results of the proposed segmentation with published methods such as those reported
in Table 1.
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4.2. Individual Features Analysis

We noticed an evident improvement in the prediction converting the clinical outcomes
to dichotomized classes. A second improvement in the quality of the prediction was
obtained by the application of the feature reduction techniques, which allow a stabilization
of the results. Most of the predictive power for each feature can be synthesized in 3 to
4 features per variable. Of all the variables, particular prominence was observed for the
Radiomic features. These features were the most important ones in most of the predictions.
Of all the predicted characteristics and outcomes, only the peripherality of GGO and
PREDI-CO score requires the inclusion of the age value. For the PREDI-CO score, this is
not unexpected as it is one of the components of this score. As for the peripherality of GGO
lesions, this is an interesting result as they are an important predictor of clinical outcomes
and not intuitively associated with patients’ age.

If one considers the results for the different predictors (linear penalized, KNN, Ran-
dom Forest), one can observe that in general, KNN and Random Forests achieve similar
performances, while the penalized linear methods consistently perform better. This can be
interpreted as the effect of a progressive non-dichotomic behavior in the system. These
linear models were also the ones that gained the least from the pre-selection of the features.
This can be explained as the L1 and L2 penalization already reducing the effect of the
numerosity of the provided features. Methods such as KNN, based on features metrics,
are particularly affected by the features numerosity and thus are the ones that have the
greatest improvement by feature selection. Linear penalized methods, on the other end,
include an implicit feature selection internally and could be even penalized by a reduction
in the number of considered features.

Most of these features have a strong class unbalance (down to around 10% of samples
in one group, such as in the Consolidation and Roundish GGO), and therefore, the predic-
tion score tends to be strongly unbalanced, with a strong penalization for the prediction of
the least represented class. When this unbalance is not present, such as in the case of the
prediction of the PREDI-CO score, one can observe good, balanced prediction scores.

The prediction scores for the PREDI-CO are also higher than for similarly balanced
classes (such as Crazy Paving). This indicates that the extracted features, albeit not optimal
for predicting individuals’ components of the score, are indeed able to predict the score as
a global value. It is interesting to notice that the variables considered as the most important
in the prediction (both for the Fisher and χ2 method) alongside the age (a well-known risk
factor) are (1) the distance between the GGO area and the trachea and (2) the irregularity
of the GGO lesion shape. This follows the clinical hypothesis that the spreading of the
damaged area toward the peripheral area of the lungs leads to the worst prognosis for
the patient.

The results obtained in this work cannot overcome the performances of the already
published artificial intelligence techniques. The main limitation of this work is related to
the number of available samples: semi-supervised learning algorithms are designed to work
with small datasets but require better labeling of them compared to
supervised methods.

A second criticality is given by the preliminary choice of the number of clusters for
the k-means algorithm: in our work, we identified only five putative clusters for the tissue
segmentation. This degree of freedom determines the quality of the areas used for the
radiomic feature extraction, and therefore, it could affect the efficiency of the prediction
models. In contrast, the manipulation of this single degree of freedom could help to achieve
better results on in-patient segmentations.

The clinical characteristics and outcomes considered in this work are scores estimated
by the expert radiologists for the description of the state of the patient, but they do not
consider the real severity of him. This intrinsic limit does not allow a prediction of the real
outcome of the patient, allowing only an undirected evaluation.
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5. Conclusions

In the present work, we highlighted the possibility of obtaining a reliable automated
segmentation using non-supervised approaches and using this segmentation in a prediction
pipeline for patient prognosis.

Artificial Intelligence for diagnostic uses, such as a clinical decision support system, is
recognized as an approach rich of potential outcomes but is limited by the requirement
of human-driven data curation. With this work, we aimed to prove that semi-supervised
approaches to segmentation are promising, as they would combine the best effort of highly
trained physicians to develop true gold standard segmentation and the expertise of data
analysts to augment that segmentation in full-blown models.

The current COVID-19 pandemic highlights the criticality of relying on high spe-
cialized clinicians for time-demanding tasks, as the same experts that can generate gold-
standard segmentation for AI training are also the ones responsible for patient diagnosis
and care. Improving methods for semi-supervised learning in Radiomics would allow for
more effective use of the time and energy of these experts while capitalizing on AI training
to support them in patient’s diagnosis and treatment.

While the results presented in this work are not yet at the accuracy level necessary for
assisted diagnostic use, we surmise that this approach would be helpful in developing a
solid triage system, which would help to prioritize the resources available and direct them
were most effective.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11125438/s1, Table S1: Comparison between the score results for the gold standard
segmentation in the included databases with details for each sample. For each score, the average
value (and corresponding standard deviation at 1 σ) is reported, Table S2 Details of the various
state-of-art methods referenced in the paper.
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