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Abstract: Water and energy are two of the most important inputs for a community to thrive. While
water is dominant on earth, only 2.5% of the water is fresh water and over 98% of that water is
either ground water or locked up in glaciers and ice caps. Therefore, only about 1.2% of all the
freshwater is surface water which is able to meet human needs. About 2 billion people currently
do not have sufficient access to fresh water. One of the solutions deployed in the last decades for
island and coastal areas has been desalination. Desalination of seawater and brackish groundwater
is commercially available and still a fast-advancing technology. The decreasing cost of renewable
energy coupled with strategies based on renewables for powering populations without access to
electricity and policies for complete decarbonization of the economy such as the European Green
Deal make the combination of renewables and desalination a really interesting approach. This paper
investigates combinations of small-scale RO desalination systems which are able to produce up to
a few thousand m3 of desalinated water per day coupled with photovoltaic (PV) and wind energy
systems, both in grid-connected, as well as in autonomous scenarios. The results show that RO
desalination coupled with renewables can address cost-effectively the current issues in terms of
water scarcity, while minimizing the environmental footprint of the process. In this paper, it has been
showcased that desalination powered by renewables can be deployed in practically any location on
earth having access to sea or a brackish water source. The results show that even for grid-connected
systems it is more cost-effective and profitable to include a renewable energy system to power the
plant, apart from the corresponding environmental benefits.

Keywords: desalination; renewables; reverse osmosis; photovoltaics; wind turbines; particle swarm optimization

1. Introduction

Water and energy are two of the most important inputs for a community to thrive.
This is highlighted in the United Nations Sustainable Development Goals (SDGs), with
SDG 6 targeted at ensuring access to water and sanitation for all and SDG 7 targeted at
ensuring affordable, reliable, sustainable, and modern energy for all [1]. While water is
dominant on earth, only 2.5% of the water is fresh water and over 98% of that water is
either ground water or locked up in glaciers and ice caps. Therefore, only about 1.2% of all
freshwater is surface water that is able to meet human needs [2]. There are many areas in
the world such as islands and coastal areas (e.g., Mediterranean, Middle East, South Asia,
North China, Australia, Western US, Mexico, Southern Africa, Northeastern Brazil, and the
west coast of Southern America) that face shortages in access to fresh water. This translates
to about 2 billion people not having sufficient access to fresh water [3].

In order to overcome the water shortage problems, one of the prominent solutions
especially in the past, that has been implemented in numerous areas around the world, is
the transportation of fresh water by land or sea [4]. This can take place using vehicles or by
deploying the extended water network infrastructure. Nonetheless, water transfers can
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create adverse economic and environmental impacts such as the minimization of water
resources and the increase of greenhouse gas (GHG) emissions. One of the solutions
deployed in the last decades for island and coastal areas overcoming the disadvantages of
water transfers has been desalination.

Desalination is commonly defined as the process of removing dissolved salts from
saline or brackish water to make it suitable for human use and consumption, i.e., domestic,
agricultural, and industrial purposes. It is considered as an important alternative for the
supply of fresh water, especially in water scarce regions. Desalination processes take a saline
water source and put in energy to produce two separate streams, a stream of fresh water
and a stream of brine (concentrated salt water) (Figure 1). It is desirable that a desalination
technology be highly efficient, which means to use a minimal amount of energy and
produce a large volume of fresh water and a small volume of highly concentrated brine.

Figure 1. The desalination process.

The desalination of seawater and brackish groundwater is commercially available and
still a fast advancing technology, which already provides fresh water to many towns and
cities worldwide through large-scale applications as well as from well-established very
small-scale applications for ships, yachts, etc. Despite its high cost, desalinated water is
also used for land irrigation (agriculture) today [5,6].

The desalination technologies may be categorized as thermal desalination (distillation)
processes, membrane processes, and charge based desalination technologies (ion exchange
processes). Thermal methods are based on the water phase change. Heat is used to
evaporate the salty water (leaving salt behind) and then the water vapour is condensed to
obtain fresh water. Membrane desalination processes use differences in osmotic potentials
(pressures) across a semi-permeable polymer membrane to physically separate salt from
water. Charge-based separation techniques are based on the fact that salt consists of
charged ions, which can be withdrawn from water by applying an electric potential.
Thermal technologies are highly effective at large capacities (several thousands of m3/d)
while charge-based separation technologies are best suited for smaller operations (few
hundreds of m3/d) and brackish water. Membrane desalination methods are the most
popular, have been optimized and commercialized for a broad range of capacities, from
very large-scale industrial use (hundreds of thousands of m3/d) to very small-scale (less
than 1 m3/d) in-home applications [7].

Reverse osmosis (RO) is a commonly used water purification technology that employs
a semipermeable membrane to remove ions, molecules, and larger particles from drinking
water. In RO, a pressure is applied, higher than the osmotic one that is driven by chemical
potential differences of the solvent. For the seawater of salinity of about 35,000 mg/L on
one side of the membrane (Ocean water) and drinking water of salinity of 500 mg/L on the
other side of the membrane, the osmotic pressure created on the membrane is 24 bars [8].
RO can remove many types of dissolved and suspended substances as well as biological
ones (principally bacteria) from the water and is used in both industrial processes and the
production of potable water. The result is that the solute is retained on the pressurized side
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of the membrane and the pure solvent (H2O) can pass to the other side. To be “selective”,
this membrane should not allow large molecules or ions through the pores (holes) but
should allow smaller components of the solution (such as solvent molecules, i.e., H2O)
to pass freely. Since RO membranes can be clogged very easily by suspended solids and
mineral scaling compounds, RO systems require a special treatment which is not used
in thermal desalination systems to process the source seawater [9,10]. Desalinated water
then goes through the post-treatment, such as pH regulation and disinfection, to make
it potable.

About 80% of the electrical energy requirement in RO systems refers to the high-
pressure pumps [11,12]. In RO systems (especially seawater RO) energy from the pressur-
ized concentrate can be recovered by energy exchanger systems, reducing the required
pumping energy by about 30 to 50% [13].

A major advantage of RO is its modularity, allowing the design of any plant capacity
starting from less than 1 m3/d to giant plants such as Taweelah, UAE—909,200 m3/d [14].
The special attraction of RO for small size systems is indicated by a global market share
exceeding 90%, considering systems with capacities of the order of 1000 m3/d [15].

RO systems are attributed to a high potential for directly applying renewable energy
(RE) supply such as wind energy or photovoltaics (PV). RO membrane suppliers recom-
mend continuous operation and smooth shutdown and start-up procedures regarding
pressure and flow [16]. Furthermore, flushing of the RO module with desalinated water is
recommended when the system is shutdown. Thus, RO systems require energy storages
(e.g., electrical or mechanical) to account for changes in energy supply when combined with
fluctuating RE sources. Research in intermittent operation as well as variable operation has
taken place for over 20 years. Intermittent operation essentially refers to the desalination
plant not operating constantly throughout the year. This can happen, for example, when
a desalination plant is powered by a PV system and the design choice is made not to
operate constantly. This has been investigated both for brackish water [17], as well as sea
water desalination plants [18]. Further to that, investigation has taken place in order to
operate the desalination plant at variable pressures to better couple the desalination plant
with an intermittent RE system [19] and to harvest the decreased specific power consump-
tion albeit with decreased water production [20]. This research is coupled with research
in understanding the coupling of PVs [21] and wind turbines [22,23] with desalination
systems. As the artificial intelligence applications in the renewable energy sector were
expanding in management and control [24] and RE production and load forecast [25–27],
such applications were deployed also for desalination systems [28]. While intermittent
operation is currently employed even in real world systems [29], the variable pressure
operation is still under investigation regarding the effect on the membranes, but results
show that there is potential for use in commercial applications as well [30,31], allowing the
implementation of more advanced operation schemes for RE based RO desalination sys-
tems [32]. A special mention ought to be made to shallow depth low enthalpy geothermal
resources (<150 ◦C), since they can be used for electricity generation depths [33]. Many
such wells are in existence worldwide either drilled as testing boreholes or utilized in
thermal applications [34]. Organic rankine cycle (ORC) engines are currently the most
mature commercially available technology for small to medium rated power systems from
a few kWe to a few MWe [35].

The decreasing cost of RE coupled with strategies based on renewables for powering
populations without access to electricity [36] and policies for complete decarbonization of
the economy such as the European Green Deal [37] make the combination of renewables and
desalination a really interesting approach. This paper aims to investigate combinations of
small-scale RO desalination systems (for the purposes of this paper small-scale desalination
systems are defined as being able to produce a few thousands m3 of fresh water per
day) with PV and wind energy systems, both in grid-connected scenarios, as well as in
autonomous/off-grid scenarios. The main questions set to respond are:

• What is currently the cost of water from desalination systems employing RE technologies?
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• How does grid-connected and autonomous systems compare?
• Does it make sense to invest in renewables when grid connection is possible?
• How do PV based, wind turbine based, and hybrid systems compare?
• What is the importance of potable water tank size?
• How does the capacity of the desalination plant affect the final price?
• Does it make sense to install a higher production capacity desalination plant in an

autonomous system operating for less hours a day than installing a plant operating
practically all day long?

• How does the cost of renewables affect different water production capacity desalina-
tion plants?

In order to respond to these questions, multiple case studies set in a Greek Island in
the Aegean Sea are considered and investigated in this paper and the net present cost of
water for over a 20-year period is going to be utilized as the main comparison indicator.

2. Materials and Methods
2.1. Renewable Energy and RO Desalination

RO desalination needs electrical power to operate. Figure 2 presents the various
options for powering an RO desalination plant. Generally speaking, the option to connect
to an electricity grid can decrease the cost of powering the desalination unit in comparison
to an autonomous system. Given the decreasing cost of renewables, scenarios using dis-
tributed renewables are going to be investigated under schemes such as net-metering in
terms of cost, apart from the environmental benefits this approach presents. Distributed en-
ergy storage in grid-connected systems is not investigated in this paper, since no regulatory
framework for distributed energy storage exists in Greece yet. In any case, the investigation
in a storage system for a grid connected plant has to take place on a per-country basis
based on the regulatory framework and the motives given for it.

Figure 2. Powering RO desalination.



Appl. Sci. 2021, 11, 5419 5 of 19

In many cases, islands are powered by isolated grids. There is a possibility that
this grid is not able to meet the electricity demand of the planned desalination plant. In
those cases, usually in collaboration with the distribution system operator (DSO) various
scenarios are investigated in terms of upgrading the grid to be able to meet the needs of
the desalination system. This is the only scenario this paper does not investigate given the
complexity and multitude of decision parameters that go beyond a techno-economic study.

In cases where either the grid cannot meet the power demand of the desalination
plant or the grid extension infrastructure investment is not cost-effective due to distance
and/or topography, autonomous systems can be considered. The main topology used by
autonomous/off-grid systems as the power demand is increasing is based on microgrids.
According to the CIGRE Working Group C6.22, microgrids are defined as electricity dis-
tribution systems containing loads and distributed energy resources (such as distributed
generators, storage devices or controllable loads) that can be operated in a controlled,
coordinated way either while connected to the main power network or while islanded.
This ensures that this infrastructure could be interconnected to the main grid seamlessly in
the future, if this makes economic sense.

2.2. Costs
2.2.1. Desalination Plant Costs

The desalination plant costs have been decreasing in the past years. Figure 3 presents
real commercial costs of sea water RO desalination plants for 2021 excluding installation
costs. It has to be highlighted that the cost presented does not include the supporting
infrastructure (e.g., transport of water from sea to the desalination plant, connection to a
water grid, etc.) since that is heavily dependent on the topography and actual installation
places of the various subsystems, nor the brine treatment and disposal, the costs do include
pre- and post- treatment subsystems. All systems in the figure include energy recovery.

Figure 3. Desalination plant cost (Source: Personal communication with Orfeas Mavrikios—CEO of
Watera Hellas, Athens, Greece).
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As visible in Figure 3, there is a very steep decrease in the cost from 100 m3/day to
200 m3/day with diminishing scale economies as the plants are increasing in capacity. Two
different types of pre-treatment technologies (multimedia filtration and ultrafiltration) are
presented to highlight that this choice can play an important role in the final cost. In all
cases investigated in this paper, multimedia filtration prefiltering is considered.

2.2.2. PV Cost

The pricing of PVs has been in constant decline, currently at USD 0.2/Wp [38]. For
the purposes of this study, a price of USD 1000/kWp has been utilized, in line with current
commercial pricing in Greece. This is a turn-key price, including the PV panels, cabling,
mounting, inverters, and other needed consumables for connection to the main grid or
a microgrid.

2.2.3. Wind Turbines

The wind turbine cost has been decreasing as the power for each wind turbine has
been increasing. Figure 4 presents full project costs from a 100 kW wind turbine up to a
3.5 MW one [39,40]. Experience has shown that the actual wind turbine cost is about 69%
of the total project costs [39].

Figure 4. Wind turbine project cost.

As visible in Figure 4, there are major scale economies and until the wind turbine
power reaches about 1 MW there is a very steep price decrease.

2.2.4. Batteries

Mainly due to electromobility applications, the lithium-ion batteries cost has been
decreasing considerably in the past years. In 2020, for the first-time battery pack prices
have been cited below USD 100/kWh with the average being at USD 137/kWh [41].

Stationary application lithium-ion batteries are now featuring 10-year manufacturer
warranties as well as round-trip efficiencies beyond 95%.

2.2.5. Grid Electricity Cost

The tariff in Greece is composed of the Transmission System Operator tariff, Distribu-
tion System Operator Tariff, Energy generation cost, CO2 emissions cost, social contribution
cost all adding up to USD 0.17/kWh plus VAT for professional users’ tariff which is used as
a reference. It has to be noted that large consumers can get in contact directly with energy
producers in the free market achieving a lower cost.
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2.3. Case Studies Design
2.3.1. Overview

In order to compare various combinations of RE and RO desalination plants a big
number of case studies were deployed. The main points to highlight are as follows:

• Three main water consumption profiles were considered, 100, 600, and 2000 m3/day.
These profiles were chosen since they cover the range of the small-scale desalination
systems. The most commonly used technology for energy recovery is applicable from
systems rated beyond 80 m3/day [42] and this is the lower of the three profiles chosen.
The 600 m3/day water profile is roughly in the middle of the small scale systems
and is where the prices have shown a decrease, as depicted in Figure 3. Finally, the
2000 m3/day is the highest water profile considered and in line with the real systems
present in the Aegean Sea, Greece [43].

• Net-metering was considered for utilizing RE technologies when grid-connected.
Under the current regulatory framework of Greece, PV net-metering installations up
to 3 MW and wind turbines up to 60 kW are allowed and as such the wind turbine
option was investigated only for the 100 m3/day case. It has to be highlighted that
under the net-metering scheme a cost of USD 0.04/kWh still has to be paid by the
end-user as a tariff. It is considered that the grid is able to accommodate any given
renewables installation up to the maximum allowed by the regulatory framework.

• In order to calculate the net present cost of water, optimizations based on simulations
take place (see Section 2.3.3 for more details).

• In all case studies, the size of the PV array, number of wind turbines, and capacity of
the battery bank was determined through optimization. For case studies 11, 15, and
24 (see Table 1), the size of the desalination plant and the size of the water tank were
also optimized.

• To see the impact of the water tank size, for the 100 m3/day group of case studies, a
tank equal to 1, 3, and 10 days was considered. To make the comparison realistic, the
cost of the water tank was included. Typical water tanks suitable for potable water
were considered.

• One case study utilizing low-enthalpy geothermal power generation through an ORC
engine has been included. Geothermal energy is not available anywhere, but where it
is, it might be a very interesting choice to investigate. The ORC engine and conclusions
of [44] have been utilized in order to implement this case study.

Table 1. Case studies.

Case Study No.
Water

Consumption
(m3/Day)

Nominal Water
Production of
Desalination

Plant (m3/Day)

Renewable
Energy

Technologies

Type of
Interconnection Water Tank (Days)

1 100 100 No renewables Grid-connected 1

2 100 100 No Energy
Recovery No renewables Grid-connected 1

3 100 100 PV
Grid-

connected/Net-
metering

1

4 100 100 Wind
Grid-

connected/Net-
metering

1

5 100 100 PV Autonomous 1

6 100 100 Wind Autonomous 1

7 100 100 Hybrid (PV and
Wind) Autonomous 1
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Table 1. Cont.

Case Study No.
Water

Consumption
(m3/Day)

Nominal Water
Production of
Desalination

Plant (m3/Day)

Renewable
Energy

Technologies

Type of
Interconnection Water Tank (Days)

8 100 100 PV Autonomous 3

9 100 100 Wind Autonomous 3

10 100 100 Hybrid (PV and
Wind) Autonomous 3

11 100 100 PV Autonomous 10

12 100 100 Wind Autonomous 10

13 100 100 Hybrid (PV and
Wind) Autonomous 10

14 100 Optimal Optimal Autonomous Optimal

15 100 100 Geothermal Autonomous 1

16 600 600 No renewables Grid-connected 1

17 600 600 PV
Grid-

connected/Net-
metering

1

18 600 600 PV Autonomous 1

19 600 600 Wind Autonomous 1

20 600 600 Hybrid (PV and
Wind) Autonomous 1

21 600 600 PV Autonomous 3

22 600 600 Wind Autonomous 3

23 600 600 Hybrid (PV and
Wind) Autonomous 3

24 600 Optimal
Optimal

Autonomous
System

Autonomous Optimal

25 2000 2000 No renewables Grid-connected 1

2000 2000 PV
Grid-

connected/Net-
metering

1

2.3.2. Case Studies Parameters and Assumptions

The main parameters and assumptions for the case studies are presented below:

• The system is considered to be installed on Naxos island in the Aegean Sea, Greece.
• Typical Meteorological year data are utilized for the Cyclades complex islands in the

Aegean Sea, Greece.
• The prices of all system components are on par with commercial pricing in Greece.
• The interest rate is assumed at 5% and the investment period is equal to 20 years.
• The lifetime of all components is considered to be 20 years and 1 battery exchange

is considered in this 20-year period, on par with the current 10-year warranties of
high-quality lithium batteries.

• High efficiency (~20% efficiency) PV modules are considered.
• Ener E200 18.5 kW wind turbines are considered in order to be able to do optimizations

for the 100 m3/day system and Hummer 200 kW wind turbines for the 600 m3/day
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one. In reality, a single higher rated power wind turbine would be chosen in any
project in order to minimize costs rather than deploying a small wind farm.

• Supporting works for the desalination system are not considered, since their cost is
dependent on the specific site realities.

• Brine treatment and disposal costs are not considered.
• High quality lithium-ion batteries with 10 years of manufacturers guarantee are

considered. There is an increasing trend of commercial lithium-ion batteries to come
in modular racks which can be expanded based on the needs of the consumer with
an ease facilitating system integration. This also facilitates the optimization process.
Such a battery is considered with a base size of each module equal to 2560 Wh.

• The water consumption profile is considered constant on an hourly basis throughout
the day.

• Operation and maintenance costs (OPEX) as a percentage of produced water or
installed power used are based on bibliography [45,46].

• The minimum battery size considered in optimizations is able to meet at least 1 h of
the load for the largest system considered.

• The intermittent operation (ON/OFF) of a desalination unit is considered throughout
the day rather than the continuous operation for autonomous systems. This was
allowed after the communication with desalination plant manufacturers who verified
that the commercial units face no problems operating under that scheme. For the
purposes of this study, the desalination units cannot be deactivated and activated
again in a time period of less than 1 h.

• A simple controller was implemented essentially deactivating the plant either when
the water tank was full or the battery bank had a state of charge below 5% (in line
with the technical specifications of the batteries considered).

• Land cost has not been taken into consideration since the prices vary extensively
even in nearby islands, as is the case of islands in the Aegean Sea. Since most of
the desalination plants operated either by the public sector or under a Public-Private
Partnership agreement and in most of the cases of public land is used.

• For the purposes of case study 15, it was assumed that the ORC unit is connected
to an existing 95 ◦C geothermal well. This is in line with the geothermal potential
found in the Cyclades islands complex (i.e., Milos) [44]. The cost of the well drilling
is not included, since in many parts of the world, there are existing low-enthalpy
geothermal wells being used for multiple applications such as for buildings’ heating
and agriculture-related applications [34] and it is assumed that such a well is utilized.

• The ORC engine tested extensively in [47] was considered, along with the economic
considerations presented in [44]. This unit produces 3.35 kWe when fed with a
temperature of 95 ◦C. Since that unit cannot form a grid, a microgrid topology is
considered for this system as well and a battery bank being able to meet the load for
1 h has been assumed.

2.3.3. Software

For each case study of an autonomous system, an optimization took place based on
hourly simulations of the system. For the rest, hourly simulations were performed. The
software platform used, consisting of TRNSYS, GenOPT, and TRNOPT allows for the
simultaneous optimization of up to 100 parameters and a combination of discrete and
continuous variables. This platform has been used successfully in the past for microgrids
and desalination systems [28,44]. Particle swarm optimization (PSO) is used for the opti-
mization. The parameters of the PSO utilized are presented in Table 2 and is a set that has
been utilized extensively with success for microgrids and desalination systems powered
by renewables [48–51]. The included sub-routines in TRNSYS for the weather processor,
the PVs, the wind turbine, and the batteries were used. The model presented in [18] for
the desalination plant was updated with the data presented in Figure 3. As far as the
geothermal system is concerned the models developed and used in [44] were utilized.
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Table 2. PSO parameters.

Topology lbest

Neighborhood size 3

Particles 20

Generations 100

Seed 0

Constriction gain 0.729

Cognitive acceleration constant 2.05

Social acceleration constant 2.05

The optimizations are techno-economic ones. The designed systems needed to meet
the needs in water at 100% throughout the year. As such, the optimization process aims to
design the system with the lowest net present cost (NPC) which at the same time fulfils this
technical constraint. As such, the optimization process aims to design the system with the
lowest net present cost (NPC) while fulfilling at the same time all the technical constraints.
The technical constraint is monetized using a simple process. Moreover, a penalty was
included to make certain that the water in the tank in the beginning of the year is equal or
less than the water in the tank at the end of the year. For each timestep if a single technical
constraint is not met, a very large monetary penalty of USD 1,000,000 is added to the net
present cost, while the tank penalty is only added at the end of the simulation. When the
technical constraints are met for all the time-steps of the yearly simulation, then the penalty
related to them is zero. The optimization cost function (CF) is thus formed as follows:

CF = NPC +
8760

∑
t=1

PW(t) + PS (1)

where NPC is the net present cost for a 20-year period (€); Pw is the water penalty equal to
USD 1,000,000; and PS is the tank penalty equal to USD 1,000,000.

The above equation has been modelled in TRNSYS with new subroutines written
in order to realize the specific penalties (water and tank). GenOPT has been used for
implementing the particle swarm optimization process. GenOPT is written in Java and the
code is available. The GenOPT software is provided under a modified BSD license [52].

In order to calculate the net present cost of water per m3, the net present cost of the
system was divided by the amount of water considered to be utilized by the consumers for
the 20-year period.

3. Results

The results of the 25 case studies are presented in detail in Table 3. Figure 5 presents
the cost of water for the best system in each interconnection type (grid-connected, grid
connected with a net-metering renewables installation, autonomous), and water consump-
tion profile, excluding the results of case study 25 of the geothermal ORC engine system.
This was decided due to the assumptions made on the existence of a geothermal well. Fur-
thermore, Appendix A presents the optimization search space for each of the autonomous
system case studies, along with the optimal values.
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Table 3. Optimization results.

Case Study
No.

Water
Consumption

(m3/Day)

Nominal Water
Production of

Desalination Plant
(m3/Day)

Type of
Interconnection

Water Tank
(Days)

PV Power
(kWp)

Wind
Power (kW)

Battery Bank
(kWh)

Net Present
Cost (€/m3 of

Water)

1 100 100 Grid-connected 1 - - - 0.69

2 100 100 No Energy
Recovery Grid-connected 1 - - - 0.95

3 100 100
Grid-

connected/Net-
metering

1 28.5 - - 0.51

4 100 100
Grid-

connected/Net-
metering

1 - 18.5 - 0.62

5 100 100 Autonomous 1 290.6 - 384.0 1.35
6 100 100 Autonomous 1 - 55.5 281.6 1.17
7 100 100 Autonomous 1 103.1 37 128 0.95
8 100 100 Autonomous 3 290.6 - 332.8 0.96
9 100 100 Autonomous 3 - 55.5 281.6 1.12

10 100 100 Autonomous 3 112.5 37 76.8 0.91
11 100 100 Autonomous 10 271.9 - 230.4 1.20
12 100 100 Autonomous 10 - 55.5 281.6 1.18
13 100 100 Autonomous 10 103.1 18.5 128 0.91
14 100 200 Autonomous 4 37.5 37 25.6 0.78
15 100 100 Autonomous 1 Geothermal: 13.4 kW 12.8 0.52
16 600 600 Grid-connected 1 - - - 0.59

17 600 600
Grid-

connected/Net-
metering

1 450.8 - - 0.48

18 600 600 Autonomous 1 1743.80 - 2355.2 1.26
19 600 600 Autonomous 1 - 600 3020.8 1.14
20 600 600 Autonomous 1 740.63 400 499.20 0.78
21 600 600 Autonomous 3 1781.3 - 2099.2 1.23
22 600 600 Autonomous 3 600 1945.6 1.00
23 600 600 Autonomous 3 740.63 400 499.20 0.79
24 600 900 Autonomous 3 159.38 400 102.4 0.60
25 2000 2000 Grid-connected 1 - - - 0.58

26 2000 2000
Grid-

connected/Net-
metering

1 1495 - - 0.47

Figure 5. Water cost (excl. geothermal).

It has to be stated again that the net present costs per m3 of desalinated water presented
do not include supporting works and brine treatment and disposal costs, while installation
costs are considered as a lump sum. At the same time, these costs would be comparable for
all investigated systems in any given location and as such they do not affect the outcomes
drawn from this analysis. The key insights these results highlight can be summarized as:
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• For small seawater RO desalination systems, it does not make any sense not to use
energy recovery.

• The most cost-effective solution overall is the combination of a grid-connected system
with a net-metering PV plant. The current cost of electricity is USD 0.17/kWh in
Greece, but it is expected to increase in the future, so this combination will only
become more attractive.

• Autonomous systems can be of comparable cost to systems consuming grid electricity,
as shown in Figure 5.

• Hybrid systems (PV and wind) are the most cost-effective solutions for autonomous systems.
• Even considering double sized desalination plants as is the case for the 100 m3/day

system, it makes sense to utilize the intermittent (ON/OFF) operation rather than
getting a unit that runs constantly for autonomous systems. This is due to the fact
that the energy storage in an autonomous system costs overall much more to ensure a
continuous operation throughout the year than getting a larger plant and operating it
for less hours. As the systems become larger, increased size desalination plants are
still more economically favorable for autonomous systems.

• Water tanks make sense, but up to a specific capacity for any given configuration. This
is clearly observed in case studies 19 and 22 where the extra water tank is in reality
not needed for the given configurations and as such the system with the 3-day tank
presents a slightly increased water cost. If the tank already exists, of course the bigger
it is, the better.

• Even though batteries’ cost is decreasing considerably in the last years due to electro-
mobility, optimizations still favor minimizing their size.

• Low enthalpy geothermal sources can decrease the cost of the autonomous RE system
considerably. If such a source is available, investigation of the use possibility is
strongly recommended and this expands also to the location of the geothermal well in
relation to the desalination plant location, since most wells are not on the seashore and
the cost for deploying the grid for connecting the desalination plant to the geothermal
unit might be prohibitive.

4. Discussion

There are many communities in the world still suffering from lack of fresh water. Many
of these communities also face problems regarding access to electricity. Desalination has
proved to be a mature cost-effective technology to locally produce the needed fresh water
using sea or brackish water. The two most important factors affecting the environmental
outlook of desalination are brine treatment and disposal and the energy consumed. As far
as brine treatment and disposal is concerned, many efforts are taking place worldwide to
minimize the desalination’s environmental footprint [53–55]. This paper is focused on the
energy aspect of desalination. RE costs have been declining heavily during the past decades
providing the world with a clean alternative to fossil fuel based energy [56]. Global policies
around the world related to sustainable development, climate, and energy as the UN
Sustainable Development Goals [1], Paris Agreement [57], the European Green Deal [37].
and the African Union Energy Transition strategy [58] are driving defossilization efforts.

RO desalination coupled with renewables can address cost-effectively the current
issues in terms of water scarcity, while minimizing the environmental footprint of the
process. In this paper, it has been showcased that desalination powered by renewables
can be deployed in practically any location on earth having access to sea or a brackish
water source. Moreover, the use of renewables mostly in the form of PVs provides a
simple and mature solution to employ green energy. It is highlighted that even in the
cases that connection to the grid is possible, it is preferable to also deploy a PV system
under a net-metering or comparable scheme depending on the country (e.g., net-billing).
Keep in mind that for Greece, the current net-metering benefit is around USD 0.13/kWh,
while the last auctions for PV parks ended with an average price around USD 0.05/kWh,
highlighting the profitability of the net-metering scheme, taking into consideration that the
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installations can be up to 3 MWp. While the wind turbines can be more cost-effective than
PVs in cases of high wind potential, especially for wind turbines not under the “small wind
turbines” scheme (in Greece up to 60 kW which is also the limit for wind energy under the
net-metering framework) the needed licenses and environmental permits can become a
burden to the desalination plant developer, hence the priority given to PV installations.

Based on the outcomes of this study (Table 3 and Figure 5), the following recommen-
dations can be made:

• Project developers should employ energy recovery for sea-water desalination plants
and a techno-economic study to be made for brackish water plants, since the salinity
of feed water greatly affects the impact of energy recovery.

• Project developers should employ a RE system in addition to the desalination system.
For grid connected plants the easiest approach is to use a PV plant connected under a
net-metering or comparable (e.g., net-billing) scheme.

• For cases where there is either no space for the optimal size of PV installation to meet
the load under a net-metering or comparable scheme or the needed PVs are beyond
the maximum allowed by the regulatory framework, it is advised that the maximum
feasible installation is realized.

• Distributed energy storage in a grid connected system ought to be investigated only
in cases that the regulatory framework provides relevant incentives.

• Autonomous systems are technically feasible, but more expensive than grid-connected
including renewables under net-metering schemes and ought to be deployed only in
cases where grid connection is either more expensive due to distance and topography
or simply not existing.

• Larger desalination plants operating for less hours during the day are more cost-
effective in autonomous scenarios.

• When a low-enthalpy geothermal power source is available near the installation site it
is strongly advised to investigate its possible use for autonomous systems. The final
real cost of the investment is related to many factors including the existence or not of
an appropriate geothermal well, the cost related to the studies and licensing process
needed to be followed, the cost for complying with air quality regulations [59], etc.
and can be lower in comparison to other RE sources.

On-going research is still strong for advanced energy management schemes of de-
salination plants [28] and variable load operations of the membranes [30], which can
further decrease desalination costs in the future as these new technological advances are
incorporated in commercial systems.

5. Conclusions

This paper investigated the current state of the art in terms of commercially available
desalination systems and the possibilities of coupling these with RE systems. The results
show that even for grid-connected systems it is more cost-effective and profitable to include
a RE system under a net-metering or comparable scheme, apart from the environmental
benefits. The cost of RE and storage is expected to continue dropping following the
decreasing trends observed in the past decades, making their use even more attractive.
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Appendix A. Detailed Results of the Optimizations

This Appendix presents in detail the search space and optimal value of the case studies
for which a PSO optimization took place. The limits of the optimization space and the steps
for each variable were decided upon performing a number of simulations to understand
the investigated systems better.

Table A1. Case study 5.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 300 900 25 775

2.56 kWh 48 V LiFePO4 batteries 50 300 10 150

Table A2. Case study 6.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Number of Ener 200 18.5 kW wind turbines 2 6 1 3

2.56 kWh 48 V LiFePO4 batteries 100 250 10 130

Table A3. Case study 7.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 100 500 25 275

Number of Ener 200 18.5 kW wind turbines 1 3 1 2

2.56 kWh 48 V LiFePO4 batteries 20 120 10 50

Table A4. Case study 8.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 300 900 25 775

2.56 kWh 48 V LiFePO4 batteries 50 300 10 130

Table A5. Case study 9.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Number of Ener 200 18.5 kW wind turbines 2 6 1 3

2.56 kWh 48 V LiFePO4 batteries 100 250 10 110
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Table A6. Case study 10.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 100 500 25 300

Number of Ener 200 18.5 kW wind turbines 1 3 1 2

2.56 kWh 48 V LiFePO4 batteries 20 120 10 30

Table A7. Case study 11.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 300 900 25 725

2.56 kWh 48 V LiFePO4 batteries 50 300 10 90

Table A8. Case study 12.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Number of Ener 200 18.5 kW wind turbines 2 6 1 3

2.56 kWh 48 V LiFePO4 batteries 100 250 10 110

Table A9. Case study 13.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 100 500 25 275

Number of Ener 200 18.5 kW wind turbines 1 3 1 1

2.56 kWh 48 V LiFePO4 batteries 20 120 10 50

Table A10. Case study 14.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 25 300 25 100

Number of Ener 200 18.5 kW wind turbines 1 2 1 2

2.56 kWh 48 V LiFePO4 batteries 10 100 10 10

Desalination unit rated output 100 200 100 200

Potable water tank 100 1000 100 400

Table A11. Case study 18.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 4500 5000 25 4650

2.56 kWh 48 V LiFePO4 batteries 700 1000 20 920
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Table A12. Case study 19.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Number of Hummer 200 kW wind turbines 1 2 1 2

2.56 kWh 48 V LiFePO4 batteries 1100 1200 20 1180

Table A13. Case study 20.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 900 2000 25 1975

Number of Ener 200 18.5 kW wind turbines 1 3 1 2

2.56 kWh 48 V LiFePO4 batteries 50 200 5 195

Table A14. Case study 21.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 4500 5000 25 4750

2.56 kWh 48 V LiFePO4 batteries 700 1000 20 820

Table A15. Case study 22.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Number of Hummer 200 kW wind turbines 1 3 1 2

2.56 kWh 48 V LiFePO4 batteries 600 1000 20 760

Table A16. Case study 23.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 900 2000 25 1975

Number of Ener 200 18.5 kW wind turbines 1 2 1 2

2.56 kWh 48 V LiFePO4 batteries 50 200 5 195

Table A17. Case study 24.

Variable Lowest Value Highest Value Step Optimal Value

System Components

Typical Si modules rated at 375 Wp each 400 600 25 425

Number of Ener 200 18.5 kW wind turbines 1 2 1 2

2.56 kWh 48 V LiFePO4 batteries 30 70 5 40

Desalination unit rated output (m3/day) 600 1000 50 950

Potable water tank 2000 2400 100 2400
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