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Abstract: Retaining walls are geostructures providing permanent lateral support to vertical slopes of
soil, and it is essential to analyze the failure probability of such a structure. To keep the importance of
geotechnics on par with the advancement in technology, the implementation of artificial intelligence
techniques is done for the reliability analysis of the structure. Designing the structure based on the
probability of failure leads to an economical design. Machine learning models used for predicting the
factor of safety of the wall are Emotional Neural Network, Multivariate Adaptive Regression Spline,
and SOS–LSSVM. The First-Order Second Moment Method is used for calculating the reliability
index of the wall. In addition, these models are assessed based on the results they produce, and the
best model among these is concluded for extensive field study in the future. The overall performance
evaluation through various accuracy quantification determined SOS–LSSVM as the best model.
The obtained results show that the reliability index calculated by the AI methods differs from the
reference values by less than 2%. These methodologies have made the problems facile by increasing
the precision of the result. Artificial intelligence has removed the cumbersome calculations in almost
all the acquainted fields and disciplines. The techniques used in this study are evolved versions of
some older algorithms. This work aims to clarify the probabilistic approach toward designing the
structures, using the artificial intelligence to simplify the practical evaluations.

Keywords: retaining wall; neural network; reliability analysis

1. Introduction

Forecasting the failure of geotechnical structures and then digging for remedial mea-
sures to avoid those failures is the primary concern of researchers today. In geotechnical
practice, retaining walls have been used for decades to mitigate the excessive movements
near deep excavation projects. They prevent subsequent damage to neighboring buildings
and infrastructures. Slopes close to deep excavations may experience inevitable failures
such as rotational failure, translational failure, wedge failure, compound failure, flow,
spreads, etc. Therefore, designing a retaining wall is a crucial research area for geotechnical
engineers. To quantify the extent of the failure, a parameter called Factor of Safety (FOS),
the ratio of resisting force to the driving force, is calculated based on different criteria such
as overturning, sliding, and bearing capacity failure [1]. In this regard, many scholars have
conducted reliability analyses on cantilever walls [2–4].

Incorporating Artificial Intelligence (AI) into civil engineering has taken reasonable
minds and diligent efforts of researchers and engineers to join hands from different fields to
give solutions regarding the problem. Geotechnical researchers employed Artificial Neural
Network (ANN) upon different aspects of the problems, including computing algorithms,
reliability methods, design of structure, etc. The application of neural networks to retaining
structures design went back to 2005, when Goh and Kulhawy [5] studied the reliability of
retaining wall performance using a neural network approach. Chen et al. [3] explored the
prediction of safety factor values of retaining walls as major resistance systems for ground
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forces through AI techniques. A probabilistic model was proposed by [6] for estimating
failure probabilities during excavations using observation evidence. They developed a
Bayesian network and distance-based Bayesian model updating, using an ANN to create
the response surface relationship. Evaluating a structural or any other geotechnical problem
using ANN has already entered the minds of many researchers, but the few drawbacks of
this technique have led to the development of many other algorithms.

Neural networks (NNs) have exhausted the field of research and cumbersome nature,
and the few drawbacks of NNs have led to advanced and modified techniques [7,8]. Three
of these techniques are employed in this paper. The three models used in this study have
employed 10-fold cross-validation to obtain an optimal model for each algorithm and then
compare three optimal models [9]. The incorporation of emotional parameters such as
anxiety and confidence into a neural network made an EmNN [10]. Various aspects of
this methodology reference different literary works, such as determining the compressive
strength of concrete, modeling rainfall–runoff, etc. MARS is a multivariate analysis to
extract complex data mapping into high-dimensional data and create a simple and easy-
to-understand model [11,12]. The major areas of its application in civil engineering are
modeling doweled pavement performance, estimation of deformation of asphalt mixtures,
determination of the clay’s undrained shear strength of the clay, etc. [13,14]. A hybrid
technique SOS–LSSVM comprises two algorithms, an LSSVM for better learning and an
SOS for optimizing the learning process [15,16].

In this study, the reliability of a cantilever retaining wall is evaluated based on the
sliding failure criterion. Several soil parameters are engaged while designing the wall,
such as cohesion, angle of shearing resistance, angle of wall friction, and unit weight of
the soil. The retaining wall design is typically based on deterministic formulations that do
not consider the natural variability of geotechnical parameters. As a result of the inherent
uncertainty of soil properties, there is an increasing trend in geotechnical engineering
to incorporate reliability-based designs to mitigate construction uncertainties. The four
parameters as mentioned above are taken as characteristic variables in this study, and three
algorithms of machine learning named Emotional Neural Network (EmNN), Multivari-
ate Adaptive Regression Spline (MARS), and Symbiotic Organism Search-Least Square
Support Vector Machine (SOS–LSSVM) are used to model the retaining wall. Reliability
analysis is done to measure the ability of a structure to meet requirements under a spec-
ified period [17]. A reliability index is calculated using the First-Order Second Moment
method (FOSM), which implies the failure probability of a structure, and after that, models
are assessed based on their prediction capability, reliability index, adaptability, learning,
etc. [18]. There are three types of probabilistic uncertainty analysis methodologies [19],
namely (i) analytical solutions, (ii) approximation approaches (e.g., First-Order Second
Moment), and (iii) numerical approaches (e.g., Monte Carlo simulation). FOSM approach
is one of the most extensively utilized approaches in civil engineering applications due to
its simplicity. The name FOSM refers to the fact that it employs the first-order terms of the
Taylor series expansion concerning the mean value of each input variable and needs up to
the second moments of the unknown variables. Many researchers described the detailed
methodologies of FOSM, and the reader is referred to them; for instance, see [18,20,21].

This study area of amalgamation of civil engineering and artificial intelligence has led
to an interdisciplinary approach where different complex design problems are modeled.
Various civil engineering sectors have experienced incorporating artificial intelligence
algorithms such as Neural Networks, the most applied technique for robust calculation
and modeling, to solve problems precisely and assure certainty as a result. Considering the
intrinsic uncertainties in geomaterials, their behavior and interaction with other structural
elements, performing probabilistic analysis in this field is essential. With the emergence of
soft computing in geotechnical engineering, simulation models and the involved constitu-
tive models get progressively more comprehensive. However, stochastic analyses require a
large number of model evaluations, which may make the probabilistic analysis computa-
tionally unaffordable for practitioners. AI methods such as NN can be used in different
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aspects such as design, monitoring, and safety analysis to surrogate the extensive compu-
tational models with less computational efforts. Therefore, a well-trained and validated
AI model provides the possibility of performing probabilistic analysis and evaluating the
reliability of structures for the engineers in practice. This paper has elaborated a retaining
wall safety analysis, as a case study, using neural networks, support vector machines, and
Adaptive Regression Splines. A reliability index is calculated using FOSM to measure the
safety of the structure in a given time period. This research paper involves the probabilistic
design and reliability analysis of a cantilever retaining wall by incorporating 10-fold cross-
validation. Furthermore, a comprehensive performance assessment is done to conclude
which AI model has a better performance. Details of this paper have been thoroughly
worked upon for readers to understand the gateway between AI and the geotechnical field
to connect their applications.

2. Methods
2.1. Emotional Neural Network

Humans have consistently outperformed everyone, be it animal or any other living
species when making decisions. Emotions either emphasize the external stimuli that trigger
emotion or the internal responses included in the emotional state [22]. The decision-making
process, cognition, and learning in animals and humans have been worked upon by many
researchers [23–26]. Machine learning has given all the fields and areas of expertise a new
direction, and evolution in machine learning is relatively rapid. Incorporating emotional
skills in the neural network leads to EmNN. The emotional neural network consists of emo-
tional neurons, two emotional parameters (anxiety and confidence), and emotional weights.
This simulated ideology has been an aid in increasing the learning and decision-making
capability of a model. The emotional factors are altered or updated during the learning
phase, and the emotional weights are used along with the conventional weights to make
decisions. The learning algorithm employed in the EmNN is Emotional Back Propagation
(EmBP) [27]. In the Emotional Neural Network, two emotional neurons are non-processing
neurons receiving global average values of input space instead of pixels or segments as in
conventional neurons. In addition, emotional weights are updated using two emotional
coefficients and not conventional learning or momentum rates. Anxiety and confidence,
being the two most crucial decision-making parameters, have been incorporated in the
model. The rationale behind this is to recognize a pattern based on the general impression
besides the precise details of the subject. In general, when a human starts to learn, he
develops a high level of anxiety, and confidence stays alarmingly low, but learning after apt
practice, the confidence level increases, and anxiety almost becomes negligible. Therefore,
EmNN employs this concept in the process of learning. In practice, when the epochs
progress and the networks are trained, anxiety tells the system to pay less attention to
the derivative of the error and use all nodes as the average value of the training pattern.
The other term, confidence, lets the system pay more and more attention to the change in
the weights as the training epochs progress, which is a kind of increasing inertia term to
modify the change in the pattern from one to another. EmNN employs EmBP as a learning
algorithm that is an evolved version of conventional Back Propagation (BP). BP has been
popularly used in neural networks after Rumelhart et al. [28]. BP grabbed fame because of
its simplicity of implication and quick training quality when adequate training datasets are
available. The reader is referred to [29] for more details about EmNN.

2.2. Symbiotic Organisms Search-Least Square Support Vector Machine

The AI approach, in different disciplines, has outperformed conventional approaches,
and its robustness and excellence have led to the advancement of the research platform.
AI has improvised the way of learning. SOS–LSSVM is the hybrid of two computational
techniques. In this complimentary system, LSSVM operates as a supervised learning-based
predictor to establish the dataset’s accurate input–output connection, while SOS works
to improve the LSSVM parameters [30,31]. In this study, the predictive tool LSSVM and
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metaheuristic optimization algorithm SOS are integrated. In addition, the cross-validation
technique is employed in this study to validate the training and testing process. Several
performance parameters are computed to compare the results and their validity. In order
to provide a detailed description of this method, firstly, the metaheuristic algorithm of SOS
and nature-inspired based LSSVM are explained in the following.

2.2.1. LSSVM

SVM is one of the most used predictive models modified into LSSVM by the re-
searchers. SVM used quadratic programs as loss functions, whereas LSSVM uses the
least square linear system as a loss function [32]. This algorithm is a statistical learning
theory, and it differs from SVM in a way that it needs equality constraints while operating
the least square cost function. The optimization constraints can be explained using the
following formulations:

Jp(w, e) =
1
2

wTw + γ
1
2

N

∑
k=1

e2
k → minimise, (1)

yk = wTφ(xk) + b + ek, k = 1, 2 . . . . . . , N, (2)

where w ε R is a vector of undetermined parameters. φ(.) is a function with non-linearity
mapping the input space to high feature space. ek ε R are error variables, and γ is a
regularization constant and is always greater than zero.

y(x) =
N

∑
k=1

αkK(xk, x1) + b, (3)

Equation (3) shows function estimation by the LSSVM model where the solution to
the linear system in Equation (4) is αk and b. The kernel function defined here is Radial
Basis Function, and it is defined as follows:

K(xk, x1) = exp
(
‖xk − x1‖2

2σ2

)
, (4)

where σ is a parameter of the kernel function. γ and σ need to be specified for better
predictive results from the model.

2.2.2. Symbiotic Organisms Search (SOS)

Symbiotic organisms search is a new metaheuristic algorithm introduced by [31].
Symbiotic organisms search is a new metaheuristic algorithm introduced by various re-
searchers [33,34]. This is a symbiotic interactive technique to move the population of the
solution, i.e., the ecosystem of the organism, to better and promising areas of search space
while searching for an optimal global solution, and this is done iteratively. Organisms in
the ecosystem have unique fitness values, which implies their degree of adaptability to the
object that is desired or demanded. The steps involved in the SOS algorithm are as follows:

• Generation of the initial population
• Do

• Mutualism
• Commensalism
• Parasitism
• Best solution update

• Until the criteria of stopping are satisfied.

Researchers have studied other metaheuristic techniques such as Genetic Algorithm,
Particle Swarm Optimization, Differential Evolution, etc., along with the SOS, and they
concluded that SOS performs better than other techniques. It is more effective and efficient
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and produces better results. In addition, SOS has been inculcated in many research fields
to solve engineering and other fields’ problems [15,35,36].

SOS–LSSVM as a hybrid AI technology that helps in creating a symbiotic environment
for input and output. LSSVM acts as a supervised learning-based predictor. SOS optimizes
the parameters used in the LSSVM algorithm, i.e., γ and σ.

The SOS–LSSVM technique is completed in eight significant steps categorized into
phases: beginning and training phase followed by testing phase [31].

1. Data are collected for training the model.
2. The LSSVM model is used to analyze the ambiguous nature of input and output. In

addition, σ and γ are tuned.
3. SOS algorithm: This algorithm searches for several combinations of σ and γ param-

eters and makes the best set of these two parameters. In addition, SOS employs
mutualism, commensalism, and parasitism phases to improve the fitness value of the
solutions reached slowly.

4. Evaluation of fitness: For evaluation of the system, a fitness function is developed
that measures the accuracy of the learning system. The best combination of γ and σ
represents the accurate and best fitness value. The dataset is not split randomly, and
it is are divided into learning and validation subsets. In addition, to avoid the bias of
sampling, 10-fold cross-validation is done. The mean square error (MSE) is utilized
by the fitness function for aptness and better representation.

5. Criteria of termination: The termination criterion used in this technique is the iteration
number inculcated in the SOS algorithm.

6. Optimal σ and γ parameters: Loop stops and optimal σ and γ parameters are reached.
7. The optimal set of σ and γ parameters are further used for developing the model for

testing the data.
8. Data testing: The dataset split for testing is tested, and the prediction is used for

assessing the performance and accuracy of the model.

2.3. Multivariate Adaptive Regression Splines

MARS is a non-parametric modeling technique that uses a data-driven approach [37].
This study explores the multidimensionality and intrinsic non-linearity of the data associ-
ated with the retaining wall. This methodology training dataset is divided into different
linear segments (splines) of the different gradients (slopes). No assumptions are made on
the relationship between dependent and independent variables. A flexible MARS model
results from smooth curves known as Basis Functions (BFs), which connect the splines.
Using this model can handle both the linear and nonlinear behavior of the problem. The
points that connect the pieces are called knots. Knots indicate the beginning of one region
and the end of another and are placed randomly in the range of input variables. MARS
searches all the interactions among the variables and goes through all the knots to generate
BFs. An adaptive regression algorithm is employed in this technique for placing the knots.
This algorithm has two phases: forward and backward. BFs are defined by placing the
knots in the random position using the adaptive regression technique in the forward phase.
At each progressing step, the model adapts to the knots and their corresponding BFs,
ensuring maximum reduction in the residual error of the sum of squares. Adding BFs
continues until the number reaches the maximum limit and results in a complex model.
The backward phase helps in removing the redundant BFs. A Jekabson’s open MARS code
is used to perform the analysis in this paper [38].

After the optimal MARS model is obtained, it can assess the relative parameter
importance, which is based upon input variables and BFs.

2.4. Cross-Validation

Selecting a model and then evaluating it based on its performance holds a crucial role
in machine learning. Assessing the properties of a model and assessing the properties of a
model to the best of its capability are two different meanings. Many methods have been
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proposed by the researchers and have been applied to different models. Cross-validation’s
simplicity and universality are considered and used widely to select and evaluate the
model. K-fold cross-validation is used as a sample reuse methodology. By using a dataset,
statisticians do many experiments using different algorithms and methodologies. In this
research work, 10-fold cross-validation is employed in all three models proposed, i.e.,
MARS, EmNN, and SOS LSSVM. After 10-fold cross-validation is chosen, the dataset is
split into ten sets of 90% training data and 10% testing data, and then, they are fed to all
three algorithms. The best model with minimum Mean Absolute Error (MAE) is chosen
each from MARS, EmNN, and SOS–LSSVM, and then, they are compared with each other
on different scales and graphs. Using the methodology provided by [39], for each dataset,
we assign a rank of three to the model with the best value for each performance index and
then apply a rank of one to the model with the worst value for each performance index.
After that, the overall performance rating of each model was generated by summing its
total rank in each dataset.

3. Case Example

Cantilever walls rely on their own weight to resist sliding and overturning, but they
also benefit from the weight of the backfill above the heel of the wall. The reinforced
concrete cantilever walls come with various geometries. They are much cheaper to erect
than the gravity wall, so they can be prefabricated and transferred to the site directly.
Sliding as one of the potential modes of collapse must always be considered in reliability
designs. The minimum safety factor against sliding is considered to be equal to 1.5. The
most significant sliding force component usually comes from the lateral earth pressure
acting on the wall’s active (backfill) side. Such force may be intensified by the presence of
vertical or horizontal loads on the backfill surface. Figure 1 depicts the geometry of the
cantilever wall as well as the major variables considered in this article. The safety factor
against sliding can be indicated by the following in which FR is the sum of the horizontal
resisting forces, and FD is the sum of the horizontal driving forces.

FOS =
∑ FR

∑ FD
=

∑ V tanδ + 1.4 c + Pp

Pacos(i)
(5)

where ∑ V is the sum of the total vertical forces acting. Pa and Pp are the active and passive
rankin pressure, rspectively. The following equations are used to calculate the active and
passive pressure

Pp =
1
2
× Kp × γ× 12, where Kp =

cosi +
√
(cosi)2 − (cosφ)2

cosi−
√
(cosi)2 − (cosφ)2

. (6)

Pa =
1
2
× Ka × γ× 6.22, where Ka =

cosi−
√
(cosi)2 − (cosφ)2

cosi +
√
(cosi)2 − (cosφ)2

. (7)
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As illustrated in Figure 1, the soil profile behind the retaining wall is considered to
have a slope of i = 20◦, which is considered in the calculation of the soil mass in the above
equations. Moreover, c is the cohesion value, φ is the angle of shearing resistance, and δ
represents the angle of wall friction (δ = 2/3 φ). In order to calculate all the datasets, the
above-mentioned formulation has been scripted in MATLAB code to evaluate the FOS for
various combinations of input variables.

This study has a lot to contribute both to the field of AI and geotechnical engineering.
This research work results from various new techniques in the market of evolving machine
learning being employed in different research fields of medication and technical engineer-
ing. Cohesion (c), angle of shearing resistance (φ), angle of wall friction (δ), and unit weight
(γ) were taken as primary variables, following a lognormal distribution function. For
this study of retaining walls, data were collected, and the Coefficient Of Variation (COV)
values were taken from different previous studies [39,40]. The COV values for φ and δ are
considered to be equal to 15%, while the mean value of 30◦ and 20◦ is applied, respectively.
The random parameter of cohesion is assumed to have a mean value of 20 kPa. The fourth
material parameter that is considered a random variable is the unit weight of soil mass γ
with a mean value of 20 kN/m3, and the COV is assumed to be equal to 8%. Afterwards,
80 datasets were generated randomly, of which 90% were put to training and 10% were put
to testing.

Three models—MARS, EmNN, and SOS–LSSVM—were used to predict the factor
of safety. After modeling the problem, different assessments were done to analyze the
performance of the three models. After that, the models were compared amongst each other
using various error measurements. In addition, reliability analysis was done by calculating
the reliability index using the FOSM method, which assumes that all the variables are
independent. Using this, failure probability is calculated, which can further be used for
designing purposes.

4. Result and Performance Assessment of Models
4.1. Errors and Other Parameters

For measuring the extent of perfection of the model, different errors and values are
computed. Assessing the performance of different models on different scales gives an
overview of how the model performed, and it becomes facile for a researcher, a program-
mer, or a reader to compare the models based on their results. In this study, Root Mean
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Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), Bias Factor,
Nash–Sutcliffe Efficiency (NS), Variance Account Factor (VAF), Coefficient of Determina-
tion (R2), Adjusted Determination Coefficient (ADJ. R2), Performance Index (PI), RMSE
To Standard Deviation Ratio (RSR), Normalized Mean Bias Factor (NMBE), Mean Abso-
lute Percentage Error (MAPE), Wilmott’s Index (WI), Legate and McCabe’s Index (LMI),
Expanded Uncertainty (U95), t-Statistic, Global Performance Indicator (GPI), Correlation
Coefficient (R), and Weighted Mean Absolute Percentage Error (WMAPE) are computed
for each model. Table 1 shows the values of the errors as mentioned earlier and parameters.
These parameters define the trend and relation between the predicted and observed values.

Table 1. Performance evaluation of applied methods via various error measurements (continued).

MODELS MARS EmNN SOS–LSSVM

1. WMAPE 0.0062 0.0726 0.0008

RANK 2.0000 1.0000 3.0000

2. NS 0.9999 0.9860 1.0000

RANK 2.0000 1.0000 3.0000

3. RMSE 0.0017 0.0183 0.0002

RANK 2.0000 1.0000 3.0000

4. VAF 99.9914 98.7306 99.9998

RANK 2.0000 1.0000 3.0000

5. R2 0.9999 0.9860 1.0000

RANK 2.0000 1.0000 3.0000

6. Adj. R2 0.9997 0.9674 1.0000

RANK 2.0000 1.0000 3.0000

7. PI 1.9980 1.9364 1.9998

RANK 2.0000 1.0000 3.0000

8. RMSD 0.0017 0.0183 0.0002

RANK 2.0000 1.0000 3.0000

9. BIAS FACTOR 0.8729 0.8371 0.8755

RANK 2.0000 1.0000 3.0000

10. RSR 0.0106 0.1182 0.0015

RANK 2.0000 1.0000 3.0000

11. NMBE −0.3611 2.7843 0.0196

RANK 2.0000 1.0000 3.0000

12. MAPE 0.0010 0.0062 0.0000

RANK 2.0000 1.0000 3.0000

13. WI 1.0000 0.9966 1.0000

RANK 2.0000 1.0000 3.0000

14. MAE 0.0013 0.0155 0.0002

RANK 2.0000 1.0000 3.0000

15. MBE −0.0008 0.0059 0.0000

RANK 2.0000 1.0000 3.0000

16. LMI 0.9859 0.8364 0.9984

RANK 2.0000 1.0000 3.0000
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Table 1. Cont.

MODELS MARS EmNN SOS–LSSVM

17. U95 0.0043 0.0500 0.0005

RANK 2.0000 1.0000 3.0000

18. t-stat 0.0028 0.0142 0.0001

RANK 2.0000 1.0000 3.0000

19. GPI −1.8 × 10−15 1.08 × 10−09 5.98292 × 10−22

RANK 1.0000 2.0000 3.0000

20. R 1.0000 0.9978 1.0000

RANK 2.0000 1.0000 3.0000

21. SI 0.7733 8.5962 0.0899

RANK 2.0000 1.0000 3.0000

22. a20-index 1.0000 0.8750 1.0000

RANK 2.0000 1.0000 2.0000

23. AOC 0.0011 0.0133 0.0001

RANK 2.0000 1.0000 3.0000

TOTAL RANK 45.0000 24.0000 68.0000

The Scatter Index (SI) employed in this study is a statistical quantity used for measur-
ing the error in the predicted value [41]. For computing, this value RMSE is divided by the
mean of observed values. This quantity indicates if the values forecasted by the models are
up to the mark or not. The a20-index is an engineering index used to assess the system’s
reliability [42]. It is calculated as follows:

a20− index =
m20
M

. (8)

where m20 is the number of data whose value is the ratio of observed FOS to predicted
FOS falling between 0.8 and 1.20, and M is the total number of datasets available. This
parameter’s physical engineering significance gives the predicted values that deviate by
±20% from the experimental values. Total rank is also calculated in this paper based on
what is presented in [43]. After calculating all the parameters mentioned above, models are
ranked accordingly. The model value that represents the worst performance is ranked one,
and the model with the best performance is ranked three (as we have used three models:
EmNN, MARS, and SOS–LSSVM). Thereafter, all the ranks are added to get a total rank.
The model that has the highest rank is treated as the best model. This gives an overall view
of the prediction capability, trend formation, and performance of a model.

The reliability index of the model is calculated and compared with the reliability index
of the actual dataset [17]. All three optimal models have different reference β values, and
they have been compared accordingly. From Table 2, it is observed that the β value overlaps
in SOS LSSVM. As they both show the same reliability index, it is proved that SOS LSSVM
is the better model. In addition, using the reliability index, probability of failure (Pf) is
calculated. The result coincides with the result generated using β.

Table 2. Reliability index (β) of models.

MODEL Reference β Model’s β Model’s Pf

MARS 1.6450 1.6418 0.0500
EmNN 1.6405 1.6211 0.0525

SOS–LSSVM 1.8661 1.8661 0.0310
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As discussed before, MARS produced several basis functions, and after that, a function
for calculation of the basis function is given in Table 3, where x1, x2, x3, and x4 are variables
c, φ, γ, and δ. The regularization constant and kernel function parameter optimized using
SOS in LSSVM are 100,000 and 28.4958, respectively.

Table 3. Basis Functions for MARS.

BF Equation

BF1 max(0, x4 − 0.695789507393035)
BF2 max(0, 0.695789507393035 − x4)
BF3 max(0, x2 − 0.897423953169214)
BF4 max(0, 0.897423953169214 − x2)
BF5 max(0, x3 − 0.902027009611503)
BF6 max(0, 0.902027009611503 − x3)
BF7 BF4 ×max(0, x1 − 0.382105313562625)
BF8 BF4 ×max(0, 0.382105313562625 − x1)
BF9 BF2 ×max(0, 0.557894812924718 − x1)
BF10 BF6 ×max(0, x4 − 0.81157903285569)
BF11 BF6 ×max(0, 0.81157903285569 − x4)
BF12 BF4 ×max(0, x3 − 0.408783600920691)
BF13 BF4 ×max(0, 0.408783600920691 − x3)
BF14 BF1 ×max(0, x1 − 0.760000104402251)

Main equation

y = 0.597051492431488 + 1.2033558916995 × BF1 − 1.01013033595132 × BF2 + 0.262683442461409 × BF3
− 0.290024870554842 × BF4 − 0.0824750745638103 × BF5 + 0.124577962754319 × BF6 −
0.334859635113939 × BF7 + 0.254991811556967 × BF8 + 0.446434437906744 × BF9 + 0.27641860123112 ×
BF10 − 0.0700841355527202 × BF11 + 0.0920347477963486 × BF12 − 0.0681746540919311 × BF13 +
0.819393035778277 × BF14

4.2. Taylor Diagram

A Taylor diagram is the graphical representation of how closely the pattern (or pat-
terns) match the observation quantified in terms of the correlation, root mean square error,
and amplitude of their variations (standard deviations). This diagram evaluates the aspects
of different complex models and performs a comparative analysis of these models with the
reference data (self-observed data) [44]. From Figure 2, it can be seen that while predicting
SOS–LSSVM and MARS did not deviate much from the observed or actual values and the
models overlap the reference value, EmNN has slightly deviated from the reference, as
can be seen in the figure. It has lower correlation than the other two and a high standard
deviation and RMSE.

4.3. AOC–REC Curve

The Regression Error Characteristics curve (REC) is a probability curve and a metric
system to check the performance of the regression model [45]. Area Over Curve (AOC) is
the measure of distinction of the predicted data of the model from the actual data. From
Figure 3, it can be seen and analyzed that the AOC value of the SOS–LSSVM model is
relatively less; therefore, it proves to outperform the other two models. In addition, the
value of AOC for MARS is lesser than for EmNN, resulting in a better model than EmNN.
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4.4. R Curve

The performance curve is the curve that shows whether the models follow the trend
of the reference models. This curve gives an R-value (coefficient of correlation) calculated
and given in the table (Table 1). Figure 4 shows the performance curve, and it can be seen
that all the three models overlap each other and follow the same trend approximately. A
slight deviation of data can be observed in the EmNN model, and it is clear from other
criteria as well that EmNN did not perform that well.
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5. Conclusions

The probabilistic design of a retaining wall has been discussed in this paper using dif-
ferent machine learning methods, namely MARS, EmNN, and SOS–LSSVM. The retaining
walls are widely used in various infrastructures such as road and bridge construction to
stabilize the slopes. A probabilistic analysis against sliding was performed to evaluate the
safety of a case study to establish the intelligence prediction model. The input and output
datasets were generated based on consideration of uncertainties in soil parameters and fed
into the AI models to be trained. Then, the result given by the predictor was assessed based
on the performance parameters and graphs such as the Taylor diagram and Regression
Error Characteristic curve. For instance, different errors and efficiencies, such as WMAPE,
RMSE, MAE, NS, etc., were calculated. Obtained results validate the ability of all three
applied advanced methods to evaluate the safety criteria of a cantilever retaining wall with
relatively high accuracy. Therefore, the proposed computational intelligence systems can
benefit engineers in design and monitoring processes. SOS is an optimization technique
for optimizing the parameters of the LSSVM model, and in the current study, it results in
a better prediction of the factor of safety. In addition, the reliability index calculated for
different optimal models selected gives an overview that SOS–LSSVM is a better model
and has outperformed the other two. MARS and EmNN give slightly deviated result, but
the FOS generated from MARS almost overlaps that of SOS–LSSVM.

Considering the obtained results, for future works in this field or the design of other
geostructures, SOS–LSSVM can be considered, as its learning rate is optimized using SOS,
which gives an upper hand to this algorithm over the other two techniques. In addition, to
improve the quality of results, the model can be fed with more training data to ensure better
relationships between the input and output dataset. However, future research should study
the impact of a higher number of inputs and spatial randomness in the material properties
on the performance of suggested AI methods. Finally, it should be stated that this study
employed synthetic data to train and validate the machine learning methods. Nevertheless,
the proposed methodologies can be applied analogously to realistic problems.
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