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Abstract: The recent advances in additive manufacturing technology have widened the choice of
materials that can be printed, opening new frontiers in the field of heat transfer devices. This paper
explores the use of a solid porous matrix in which paraffin waxes, having different melting tempera-
tures (42, 55, and 64 ◦C), were embedded. The solid matrix is made by additive manufacturing. The
parent cell of the porous matrix occupies the volume of a cube with an edge of 5 mm. The entire 3D
printed matrix has a square base with an edge of 100 mm, and it has a height of 20 mm. The solid
matrix was printed between two plates, each one with a thickness of 10 mm, where thermocouples
were inserted, and it was tested in an upright position, laterally heated applying three different heat
fluxes (10, 15, and 20 kW m−2). The experimental results are given in terms of the temperature of the
heated side, as well as of the phase change material, during the heating process. The temperature
reached by the heated side and the time needed to completely melt the paraffin waxes are compared
at the different working conditions. Furthermore, the thermal conductivities and diffusivities of the
three paraffins and of the parent material of the porous matrix were experimentally evaluated.

Keywords: PCM; paraffin; additive manufacturing; temperature profile; BCC model

1. Introduction

Additive manufacturing (AM) is a technology that permits the construction of a tridi-
mensional object starting from CAD models. The actual state of the art of this technology
has widened the choice of materials to be printed, opening new frontiers for heat transfer
devices: not only plastic materials can now be printed, but also metallic materials, with
consequent higher thermal conductivities. Many different fields of thermal sciences can
have benefits for single- or two-phase applications. Kwon et al. [1] studied a way to en-
hance the heat transfer during liquid water cooling of a horizontal heated plate by means of
static mixers made by additive manufacturing. Two different types of mixing devices were
considered: twisted tape structures and chevron-shaped offset wings. Both the structures
improved the heat transfer coefficient by two times compared to the plain channel for
Reynolds numbers below 1000.

Rastan et al. [2] investigated the feasibility of additive manufacturing to fabricate mini
channel heat exchangers with longitudinal vortex generators. At a Reynolds number of
1380, the convective heat transfer coefficient can be up to three times that of the smooth
channel, using distilled water as working fluid.

Unger et al. [3] experimentally tested tube bundles with conventional circular plain
fins as well as new circular integrated pin fins and serrated integrated pin fins made by
additive manufacturing during air forced convection with Reynolds number from 1600 to
6600. Fins with the new design demonstrated an improved Nusselt number compared to
the conventional fins. Furthermore, the friction factor for the serrated integrated pin fins
was the lowest for all the tested Reynolds numbers, and the circular integrated pin fins
provided a lower friction factor compared to the conventional circular pin fins for Reynolds
number lower than 4000.
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Another research field where additive manufacturing can exploit its benefits is related
to two-phase heat transfer systems, which involve a phase transition of a material from
solid to liquid or vice versa. These materials, named PCMs (phase change materials), are
usually characterized by a low thermal conductivity, which may degrade the heat transfer
characteristics. Thus, PCMs are often coupled with a solid insert to enhance the thermal
conductivity of the block. Different ways to enhance the thermal conductivity of PCMs
have been proposed in the literature. Fok et al. [4] conducted an experimental study using
n-eicosane as PCM embedded in a heat sink with and without internal fins for cooling
portable hand-held electronic devices. Experimental results indicated that internal fins
aided in lowering the temperature of the electronic device, and a higher number of fins
revealed a lower temperature. A not appreciable effect of the orientation of the heat sink
was observed. Baby and Balaji [5] carried out an experimental study to characterize the
thermal performance of pin-finned heat sinks implementing paraffin wax and n-eicosane
as PCMs. A configuration with only PCM was tested, as well as configurations with 33, 72,
and 120 pins. The best thermal performance was given by the heat sink with 72 pins.

Another way to enhance the thermal conductivity of PCM is by using metal foams,
which are cellular materials with randomly oriented fibers that form cells. Depending on
the porosity, these cells can be open for high values of porosities. The parent material is
usually characterized by a high thermal conductivity, thus increasing the overall conduc-
tivity. Among the first works related to PCM melting inside metal foams, Lafdi et al. [6]
experimentally tested aluminum foams having 5, 10, 20, and 40 PPI (pores per inch), with
porosities ranging between 0.886 and 0.966, coupled with paraffin waxes having melting
temperatures from 25.4 to 28.9 ◦C. The heater temperature was lower in the case with foam
having lower porosities, whereas the effect of the number of pores was minor. Zhou and
Zhao [7] presented an experimental study on the phase change process of paraffin, as well
as of calcium chloride hexahydrate, as PCMs embedded in metal foams and in expanded
graphite. Experimental results revealed that the addition of a porous insert, either metal
foam or expanded graphite, can enhance the heat transfer rate of the PCM. Other works
related to the melting of PCM embedded in metal foams can be found in [8–12].

Instead of random structures, which are typical of metal foams, periodic structures
can be generated by means of additive manufacturing technology, allowing the choice
of every single detail of the sample to be printed. Different structures, such as Kelvin
cells, Weaire-Phelan cells, or body-centered or face-centered cubic (BCC or FCC) cells, were
reported in the literature to simulate the random structure of foams. Most of these studies
were numerically carried out. Sinn et al. [13] carried out CFD simulations of conjugate
heat transfer considering five periodic foams represented by Kelvin cell-lattice structures
to be used as catalyst carrier, and they found that the strut diameter and the solid thermal
conductivity were the key parameters to improve heat transfer and to reduce hot spots.
Lucci et al. [14] compared CFD results of pressure drop and mass transfer coefficient of
structures made by Kelvin cells and by micro-computed tomography scans of open-cell
foams. Based on the numerical results, the authors demonstrated that Kelvin cells were a
valid model to study real foams for porosities higher than 80%; in addition, Kelvin cells had
clearly more favorable mass transfer to pressure drop trade-off. Other numerical studies of
Kelvin cell structures can be found in [15–17].

The Weaire-Phelan model was considered by Kuruneru et al. [18], who numerically in-
vestigated non-isothermal solid-gas flows through an idealized metal foam heat exchanger,
proving that the Weaire-Phelan model can be used as an alternative to the real metal foam
sample. The Weaire-Phelan model was implemented by Yao and Wu [19] to simulate the
melting phase change of paraffins at the pore-scale with volume change in high porosity
open-cell foams.

BCC based structures were initially studied by Krishnan et al. [20], who computed the
fluid and heat flow in BCC periodic structures, obtaining the effective thermal conductivity,
pressure drop, and heat transfer coefficient. The numerical results were compared against
existing experimental measurements and semiempirical models based on data related
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to metal foams. Later on, the same authors [21] extended the study to other structures,
such as FCC and A15 structures. A numerical study aimed at investigating the melting of
paraffins inside a BCC structure was carried out by Ferfera et al. [22]. The numerical model
was validated with experimental values from the literature. The results indicated that the
decrease in the porosity resulted in an increase in the effective thermal conductivity of the
metal foam, which makes the heat diffusion in the composite material faster than that in
pure paraffin. Furthermore, a small pore diameter well uniformed the melting front and
the temperature inside the composite structure.

As it can be noticed from this introduction, many of the works related to periodic
structures are numerically conducted, and no experimental work on periodic structures
similar to those previously reported can be found in the open literature. However, the
recent developments in additive manufacturing (AM) technology permit the creation
of periodic structures from CAD models, making possible experimental tests besides
numerical simulations. This paper reports some experimental results on the melting of
three different paraffin waxes, namely RT42, RT55, and RT64HC, inside a modified BCC
structure with a base cell having an edge of 5 mm. The entire periodic structure has a
square edge of 100 mm, and a thickness of 20 mm, and it is tested in an upright position.
The structure was printed between two 10 mm thick plates, and it is laterally heated from
one side. Results are given in terms of temperature profiles of the heated side, as well as of
the PCM, during the heating process, coupled with visualizations that provide information
on how the melting front of the PCM propagates. In the end, a comparison between the
modified BCC structure and two metal foams is reported.

2. Porous Matrix

The porous matrix, inside which paraffins were embedded, was printed at LAMA
FVG Lab. The technique Selective Laser Melting (SLM) was implemented for additive
manufacturing. The matrix is made of AlSi10Mg, which is an aluminum alloy.

The porous matrix is made of the repetition of base cells defined as body-centered
cubic (BCC). The BCC structure derives from chemistry: the BCC crystal structure is a way
for atoms to arrange themselves in metals. In this structure, eight atoms are located at the
vertices of a cube, and one atom is in the middle of the cube. This idea can be taken to create
cells that can form periodic cellular structures. In this concept, a cube with eight spheres
located at the vertices and one sphere in the middle of the cube is considered. If the spheres
have a radius that is greater than half of the edge of the cube, the subtraction between the
volume occupied by the cube and the volume occupied by the nine spheres gives, as a
result, a structure such as that reported in Figure 1a. In the proposed structure, the base
cube has an edge of 5 mm. Since, as can be seen in the figure, the BCC structure presents
very thin edges, which cannot be printed with AM technology, these thin edges were
thickened in such a way that the thinnest edge was 0.4 mm, which is a value compatible
with the SLM printer. The so-created modified BCC structure is reported in Figure 1b,
and it represents the base element the entire structure is made of. This structure has a
porosity, intended as the ratio between the volume occupied by the empty spaces and the
total volume (solid matrix and empty spaces), of 0.87. A lateral view of the modified BCC
structure is reported in Figure 1c, along with the dimensions.

This modified BCC structure tends to overcome the limits regarding porosity exploited
by metal foams. As stated by Zhao [23], open-celled metal foams are considered as one
of the most promising classes of materials to be used to enhance the transfer with phase
change materials due to their high thermal conductivities and high heat transfer areas per
unit of volume. Taking, for instance, Duocel® foams, due to the physics of small-scale
structures, the majority of Duocel® foams are manufactured in the 90–97% porosity range.
The proposed modified BCC structure overcomes this limit about porosity: AM technology
permits the creation of periodic cells with porosities lower than those of metal foams
guaranteeing open cells, which are needed to be filled with the PCM, avoiding any close
cells that would be detrimental for the heat transfer mechanisms.
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The entire structure is made by the repetition of the modified BCC structure, and it
has a volume of 100 × 100 × 20 mm3, i.e., the base cell is replicated 20 times along two
coordinates and four times along the third coordinate. Furthermore, the final structure was
printed between two 10 mm thick plates made of the same material. Since the structure
was printed all together, there are no thermal resistances between the porous matrix and
the two plates. Figure 2 shows a schematic of the entire structure. Six holes were drilled in
each of the plates to host as many T-type thermocouples to monitor the wall temperature
during the heating process. The location of these thermocouples is similar to that reported
in Diani and Campanale [24], to which reference should be made for further details.
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Figure 2. Porous matrix made by modified BCC cells between the two plates.

3. Test Module and Paraffin Waxes

The structure was experimentally tested in an upright position. The module was
laterally heated by means of an electrical heater, which is a copper plate inside which a
nickel-chrome wire resistance was inserted. This heater is placed in contact with one of the
two plates of the structure, and a thermal paste was used between the heater and the plate.
The heater is connected to a DC power supplier. Three different heat fluxes are supplied:
10, 15, and 20 kW m−2, to which heat flow rates of 100, 150, and 200 W correspond. The
supplied heat flow rate is calculated as the product between the electrical differential
potential (EDP) across the heater and the current flowing into the heater. The EDP is
directly measured, whereas the current is measured by means of a reference electrical
resistance (shunt). The shunt is in series with the heater, and the measurement of the
EDP across the shunt (whose resistance is known) permits the calculation of the current
flowing in the electrical circuit. The supplied electrical power can be measured with such a
technique with an uncertainty of ±0.13%.

Two bakelite plates were glued to the structure, one to the bottom side and one to the
rear side, and they act both as an insulating material and as containment for the paraffin. A
glass window is glued to the front side, acting as containment and as a window to observe
the melting front during the experimental tests. A schematic is reported in Figure 3a.
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The entire module with the heater is placed inside a Teflon case (see Figure 3b) to limit
as much as possible the heat losses to the external ambient. The top part is not covered to
permit the filling procedure of the paraffin.

Three holes were drilled in the right plate, and thus also in the Teflon case, as reported
in Figure 3b: these holes permit us to host three T-type thermocouples that measure the
temperature of the paraffin inside the structure. The tips of these thermocouples reach the
centerline in the middle of the porous matrix at 25, 50, and 75 mm from the bottom side of
the structure. These thermocouples have an uncertainty of ±0.5 K. All the implemented
thermocouples are connected to a Kaye 170 ice point temperature. All the signals, i.e., of the
thermocouples and of the two EDP measurements, are connected to the data acquisition
system (DAQ).

Three different paraffins were implemented for the experimental tests as phase change
material. These paraffins have different melting temperatures, allowing us to understand
the effect of this parameter on the thermal performance during the heating process. The
paraffins have melting temperatures of 42, 55, and 64 ◦C, whose values are compatible with
electronics cooling applications. The paraffins are named RT42, RT55, and RT64HC, and the
number that appears in each name represents the correspondent melting temperature, even
if it would be better to consider a melting temperature range instead of a specific melting
temperature. These paraffins, supplied by Rubitherm GmbH, are chemically inert and
stable after multiple cycles of melting and solidification. Some of the main thermophysical
properties are reported in Table 1.

Table 1. Thermophysical characteristics of the tested paraffins. Data by the manufacturer [25].

RT42 RT55 RT64HC

Melting temperature range 38–43 51–57 63–65 [◦C]
Heat storage capacity a 165 170 250 [kJ kg−1]

Density solid b 0.88 0.88 0.88 [kg dm−3]
Density liquid c 0.76 0.77 0.78 [kg dm−3]

a combination of latent and sensible heat in a temperature range of 35 ◦C to 50 ◦C for RT42, of 48 ◦C and 63 ◦C for
RT55, of 57 ◦C and 72 ◦C for RT64HC. b evaluated at 15 ◦C for RT42 and RT55, at 20 ◦C for RT64HC. c evaluated
at 80 ◦C.

4. Measurements of Thermal Conductivities and Thermal Diffusivities

The thermal conductivities and thermal diffusivities of the three paraffins in the
solid state, as well as of the AlSi10Mg alloy sample, have been experimentally measured.
Moreover, the knowledge of the density, ρ, permitted to calculate the specific heat, c, as:

c =
k

ρ · a
(1)

where k is the thermal conductivity and a is the thermal diffusivity.
The hot disk transient plane source (TPS) method was applied to measure thermal

conductivity and thermal diffusivity. This is a transient type technique for the measurement
of thermal conductivity. The measuring equipment was the commercial thermal constants
analyzer model TPS 2500 HOT DISK AB. The hot disk method uses a flat sensor element
in the shape of a double spiral that has been etched out of a thin nickel foil. The sensor
is covered on both sides with two layers of electrically insulating film (kapton or mica).
The kapton sensor provides an accuracy of 3 ÷ 5%, while the mica sensor provides lower
accuracy (about 8 ÷ 10%) when measuring the thermal conductivity. During the measure-
ments, the hot disk sensor is sandwiched between two sample halves of the specimen to be
investigated, each one with a plane surface facing the sensor, as illustrated in Figure 4.
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The sensor acts both as a heat source for increasing the temperature of the sample and
a resistance thermometer for recording the time-dependent temperature increase. During
the experiment, constant electric power is supplied to the hot disk sensor. This causes the
temperature to rise and an increase in the resistance of the spiral while the heat is absorbed
by the test sample. This temperature increase is dependent on the thermal transport
properties of the material surrounding the sensor. By monitoring this temperature increase
over a short period of time after the start of the experiment, it is possible to evaluate the
thermal properties of the material.

The ideal model of the heat conduction equation assumes that the sample can be
considered as a semi-infinite medium during the time t of measurement. However, being
the samples of finite dimensions, this entails that the time of transient recording has to
be chosen so that the outer boundaries of the sample do not influence the temperature
increase detected by the sensor. In practice, by choosing short time intervals and proper
sensor and sample sizes, the measurement can still be analyzed as if it was performed
in an infinite medium. In this case, by fitting the theoretical solution of the variations of
temperature of the specimen active surfaces to the experimental recorded temperature
variations, using least-squares analysis, it is possible to calculate the thermal conductivity
and the diffusivity of the tested material in an independent way. More details about this
technique can be found in the references [26,27].

Four different materials were studied: three paraffins and an AlSi10Mg alloy sample.
Table 2 lists the materials and experimental results. The thermal conductivities of all
samples were measured at room temperature (23 ◦C). The presented values are the mean
of at least five repeated measurements with the same test setup and boundary conditions.
The relative standard deviation of repeated thermal conductivity measurements has been
less than 1.2% for all samples. A kapton sensor with a 9.868 mm radius was used for the
paraffins and a kapton sensor with a 3.189 mm radius for the AlSi10Mg alloy sample. The
electrical power and time interval were set at P = 20.65 mW, t = 160 s for the paraffins and
P = 450 mW, t = 1 s for AlSi10Mg alloy sample. The specific heats, reported in Table 2, are
derived from Equation (1).

Table 2. Measured characteristics of the tested paraffins and of AlSi10Mg.

RT42 RT55 RT64HC AlSi10Mg

Thermal conductivity 0.27 0.27 0.34 175 [W m−1 K−1]
Thermal diffusivity 0.169 0.152 0.250 73.8 [mm2 s−1]

Specific heat 1805 1999 1555 870 [J kg−1 K−1]

5. Experimental Results
5.1. Preliminary Considerations

The porous structure was tested with three paraffins, and each paraffin was tested
with three different applied heat fluxes, and so the effect of both melting temperature of
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the paraffin and of heat flux can be depicted. Experimental results will be given in terms of
the temperature profile of the plate in contact with the heater and the temperature profile
of the PCM at the three different locations during the heating process.

The first step is the filling of the porous matrix with the paraffin wax: once the structure
was heated up to a temperature higher than the melting temperature of the paraffin, the
paraffin is poured in the liquid phase, and the filling is deemed concluded as soon as the
entire structure is embedded with liquid paraffin. The test module is left to cool down
up to ambient temperature, i.e., the experimental tests start at ambient temperature. Due
to the volume contraction from liquid to solid state, the solid paraffin does not fill the
entire porous matrix: this choice was taken in order to prevent any leakage due to volume
variation during the heating process.

The data acquisition system (DAQ) is switched on as soon as the DC power supplier
is turned on, and the DAQ is set at a frequency of 1 Hz. Since tests start at ambient
temperature, the values of temperature recorded at t = 0 s correspond to the ambient
temperature. Each experimental test is deemed concluded as soon as all the PCM is
completely melted inside the porous structure. The temperature of the heated side, as well
as the temperature of the phase change material, are recorded. Furthermore, pictures of the
melting front were taken from the glass window, and they permit us to understand how
the melting front propagates inside the paraffin.

5.2. Common Characteristics of the Melting Process

Figure 5 shows the temperature profiles during the heating process for the case with
the paraffin RT42 with an imposed heat flux of 10 kW m−2. The red line represents the
temperature of the plate in contact with the heater, i.e., it represents the temperature of
the heated side. Since the temperatures recorded by the six thermocouples located in the
heated side are within ±1.2 K at each time during the heating process, the average value
of temperature is considered in the figure. After just a few seconds, during which the
electric power is set to 100 W, the temperature of the heated side increases almost linearly
when only sensible heat is involved in the heating process. As soon as the temperature of
the heating side approaches the low value of the melting temperature range, the paraffin
close to the heated plate starts to melt; thus, the slope of the curve of the temperature
of the heated side decreases, i.e., latent heat is also involved. The green, blue and gray
lines represent the temperatures of the phase change material in the centerline at different
heights: 25, 50, and 75 mm from the top side, respectively. As it can be noticed from
Figure 5, these three lines almost overlap, meaning that there is no temperature gradient
along the height of the paraffin. This may indicate that the melting front is moving quite
parallel to the heated surface. The curves related to the temperatures of the PCM present
two changes of slope: the first one is in correspondence with the lower value of the melting
temperature range, whereas the second one is in correspondence with the upper value
of the melting temperature range. The temperature of the paraffin during the phase
change process from solid to liquid state is not constant since the melting occurs in a
temperature interval (38–43 ◦C in the case of RT42). Similar conclusions can be depicted for
the other combinations of heat flux and paraffin: each experimental test will have different
temperatures of the heated side at the end of the heating process as well as different times
needed to completely melt the paraffin, as it can be seen in Table 3. The table reports the
values of Ti, Tf, and tmelt, which are, respectively, the initial temperature of the heated side,
the temperature of the heated side at the end of the melting process, and the time needed
to completely melt the paraffin.
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Table 3. Summary of the experimental results.

Ti [◦C] Tf [◦C] tmelt [s]

RT42, HF = 10 kW m−2 18.93 56.82 833
RT42, HF = 15 kW m−2 19.47 62.18 575
RT42, HF = 20 kW m−2 20.28 66.86 441
RT55, HF = 10 kW m−2 19.25 67.85 1107
RT55, HF = 15 kW m−2 19.99 73.37 749
RT55, HF = 20 kW m−2 20.09 78.38 578

RT64HC, HF = 10 kW m−2 20.81 77.30 1434
RT64HC, HF = 15 kW m−2 20.53 82.80 936
RT64HC, HF = 20 kW m−2 20.38 88.31 713

An overview of the melting front is given in Figure 6, which reports pictures at
different times taken from the glass window in front of the test module for the paraffin
RT42 with an imposed heat flux of 10 kW m−2. The figure demonstrates that the melting
front propagates almost vertically, i.e., the tested porous matrix tends to limit the natural
convection of the PCM embedded inside. Due to volume variation during the phase
transition from solid to liquid conditions, the melted liquid paraffin coming from the
heated side tends to overcome the still solid paraffin on the top part, and this phenomenon
is responsible for the slight inclination of the melting front as time goes by. Similar
conclusions can be drawn for the other paraffin waxes and heat fluxes.

subsectionEffect of the Heat Flux on the Heating Process
The effect of the heat flux on the heating process is highlighted in Figure 7. The

figure proposes the case for the paraffin with a melting temperature of 42 ◦C, but similar
conclusions can be drawn for the other paraffins, whose data can be extrapolated from
Table 3. Since experimental tests at different heat fluxes were carried out on different days,
with consequently different ambient temperatures, the difference between the temperature
of the heated side (average value between the six values recorded by the six thermocouples)
and the ambient temperature is considered in the y-axis instead of the temperature itself,
allowing a better comparison for different initial temperatures.
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As expected, the higher the heat flux, the higher the temperature reached by the heated
side at the end of the melting process of the paraffin embedded in the porous matrix, and
the shorter the time needed to completely melt the paraffin.

5.3. Effect of the Melting Temperature of the Paraffin on the Heating Process

The effect of the melting temperature is reported in Figure 8, which reports the
difference between the temperature of the heated side and the ambient temperature on the
y-axis versus time with an imposed heat flux of 10 kW m−2 for the three different tested
paraffin waxes. Figure 8 also reports the difference between the melting temperature of
the considered paraffin and the correspondent ambient temperature. As a reference case,
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the case with the porous matrix without any paraffin was considered, and it represents the
black dotted line in the figure. The figure reveals that the effect of the PCM in the porous
matrix is always positive compared to the case without paraffin, lowering the temperature
of the heated side even if the paraffin has low thermal conductivity. The benefit is enhanced
as soon as the phase change process starts.
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The figure also permits highlighting the effect of the melting temperature on the
heating process. As expected, the higher the melting temperature, the longer the time
needed to completely melt the paraffin since a longer time is needed to start the phase
change process. Furthermore, a proper choice of the melting temperature of the paraffin
should be carried out in a real case of a heat transfer device that implements such a
technique: the melting temperature depends on the time during which the heat transfer
device is supposed to work. For this porous matrix with an imposed heat flux of 10 kW m−2,
the paraffin RT42 should be preferred for a time shorter than about 830 s, the paraffin RT55
for a time between 830 and 1120 s, whereas the paraffin RT64HC for a longer time. Similar
results can be found with the other imposed heat fluxes.

5.4. Comparison against Metal Foams

A comparison between the results of the modified BCC structure and metal foams is
reported here. Two metal foams were chosen for the comparison: the first one is a Duocel®

aluminum foam with five pores per linear inch and a porosity of 92%, whose data will
later be referred to as Al-5-8.0 (data from Diani and Campanale [24]). The second Duocel®

foam is made of copper with ten pores per linear inch and a porosity of 93.3%, whose data
will later be referred to as Cu-10-6.7 (data from Diani and Rossetto [28]). No data were
available for a copper foam with five pores per linear inch, which correspond to a pore
size of about 5 mm, equal to the edge of the base cell of the modified BCC structure here
proposed. However, the number of pores per inch does not affect the thermal response
of structures having the same porosity, as highlighted by Mancin et al. [10] and by Diani
and Campanale [24].

Figure 9a reports the temperature of the heated side at the end of the melting process
for the three structures as a function of the heat flux for the paraffin with a characteristic
melting temperature of 42 ◦C. The worst thermal performance is shown by the aluminum
foam. The modified BCC structure, even if it has the lowest parent thermal conductivity
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(175 W m−1 K−1 for the modified BCC structure vs. 390 W m−1 K−1 for the copper foam
and 220 W m−1 K−1 for the aluminum foam), shows the best thermal performance, i.e.,
the lowest temperatures at the end of the melting process. This can be mainly attributed
to its lower porosity compared to the other two structures, coupled with the particular
structure of the BCC matrix, which augments the tortuosity compared to metal foams,
globally enhancing the effective thermal conductivity of the PCM/porous matrix block. As
a result, the modified BCC structure outperforms the proposed structures.
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The lower porosity means a lower amount of phase change material embedded inside.
Figure 9b shows the time needed to completely melt the paraffin embedded within the
three different structures. All the initial temperatures do not differ more than 3 K. As
expected, the modified BCC structure needs a shorter time to completely melt the paraffin.
However, it is interesting to highlight that, even if embeds a lower amount of PCM, the
modified BCC structure outperforms the other two tested structures. This does not mean
that the endless lowering of the porosity leads to better performance because lowering the
porosity also means a lower effect of the latent heat of the PCM: there will be an optimum
porosity that balances the effect of the thermal conductivity and of the latent heat of the
PCM. Future work will investigate this aspect.

6. Conclusions

This paper explored the coupling between a porous matrix and phase change materials.
The porous matrix was made by additive manufacturing, and it is made of AlSi10Mg, which
is an aluminum alloy with a thermal conductivity of 175 W m−1 K−1. Modified BCC cells
with an edge of 5 mm, form the matrix. Three different paraffins, having different melting
temperatures (42, 55, and 64 ◦C), were used as phase change material. First of all, the
thermal conductivities and diffusivities of the three PCMs and of AlSi10Mg were measured
with the hot disk transient plane source (TPS) method.

The entire structure was laterally heated with an electrical heater for the phase change
tests, applying three different heat fluxes: 10, 15, and 20 kW m−2. The experimental results
were given in terms of the temperature profile of both the heated side and of the paraffin
during the heating process. The main findings are the following:

• The melting front is almost parallel to the heating side, and this is confirmed by
the temperatures of the PCM at different heights, which are approximately equal at
each time;
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• The higher the heat flux, the higher the temperature of the heated side, and the shorter
the time needed to completely melt the paraffin;

• Compared to the case without PCM, adding paraffin leads to lower temperatures of
the heated side for all the heating processes; the benefit is increased when the phase
change process starts;

• A proper selection of the melting temperature is to be carried out in the case of a
heat transfer device, and it depends on the time during which the device is supposed
to work;

• The comparison against an aluminum foam and a copper foam revealed that the
modified BCC structure outperforms the considered structures under the same work-
ing conditions.
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