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Abstract: In recent years, methods for detecting motor bearing faults have attracted increasing
attention. However, it is very difficult to detect the faults from weak motor bearing signals under the
strong noise. Stochastic resonance (SR) is a popular signal processing method, which can process
weak signals with the noise, but the traditional SR is burdensome in determining its parameters.
Therefore, in this paper, a new advancing coupled multi-stable stochastic resonance method, with
two first-order multi-stable stochastic resonance systems, namely CMSR, is proposed to detect motor
bearing faults. Firstly, the effects of the output signal-to-noise ratio (SNR) for system parameters and
coupling coefficients are analyzed in-depth by numerical simulation technology. Then, the SNR is
considered as the fitness function for the seeker optimization algorithm (SOA), which can adaptively
optimize and determine the system parameters of the SR by using the subsampling technique. An
advancing coupled multi-stable stochastic resonance method is realized, and the pre-processed signal
is input into the CMSR to detect the faults of motor bearings by using Fourier transform. The faults
of motor bearings are determined according to the output signal. Finally, the actual vibration data of
induction motor bearings are used to prove the effectiveness of the proposed CMSR. The comparison
results with the MSR show that the CMSR can obtain a higher output SNR, which is more beneficial
to extract weak signal features and realize fault detection. At the same time, this method also has
practical application value for engineering rotating machinery.

Keywords: motor bearings; signal processing; fault detection; stochastic resonance; signal-to-noise
ratio; seeker optimization

1. Introduction

Due to the harsh working environment, the rolling bearings, which are a core part of
rotating machinery, often suffer different damages, which have serious consequences for
safety and the economy [1–3]. Therefore, it is indispensable for monitoring the bearing and
extracting weak signals from it.

Extracting useful signal features under the strong noise background is called weak
signal detection [4–7]. The traditional signal processing methods usually start with noise
reduction, such as empirical mode decomposition, wavelet transform, spectral kurtosis,
singular value decomposition, variational mode decomposition, and some signal analysis
methods with optimization algorithms [8–13], which unavoidably weakens the feature
information of useful signals. Unlike the traditional procedures for weak characteristic
signals covered by noise, stochastic resonance (SR) [14] can make signals obviously by
bypassing the noise. It is widely used in weak signal detection, especially in the field of fault
diagnosis. However, subject to the adiabatic approximation, the input signal frequency of
SR must be much less than 1 Hz [15]. To detect large frequency signals using SR theory, the
re-scaling frequency SR (RFSR) method is proposed in [16], where the original sampling
and characteristic frequencies are separated using R parameters. Li et al. [17] introduced
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an adaptive step-changed SR (SCSR), in which they use the entropy index to quantify SR
performance. Tan et al. [18] explained frequency-shifted and re-scaling SR. Wang et al. [19]
analyzed the multi-scale noise-regulated SR. For the detection of multi-frequency signals,
Shi et al. [20] used SR tuning multi-scale noise. The above methods use SR to play an
important role in practical engineering applications. Other signal analysis methods are
also proposed to process signals [21–26].

In the process of using SR to detect weak signals, new parameter optimization meth-
ods and SR models have been continuously proposed. Li et al. [27] presented overdamped
multi-stable stochastic resonance (MSR) with a tri-stable potential. Han et al. [28] intro-
duced an MSR system which is applied to multi-frequency weak signal detection. In
addition, some scholars have also studied the second-order SR system. Lu et al. [29]
analyzed the detection of weak signals in a second-order underdamped variable-step SR
system. Lei et al. [30] further studied the second-order MSR method and used it for the
early fault diagnosis of bearings. Except for the first-order and second-order SR models,
scholars have studied coupled SR systems less. The coupled SR system is an analysis of
the SR model from another scale. Zhang et al. [31] applied the coupling bi-stable system
for weak signal extraction, and the result shows that the coupled bi-stable SR is better in
terms of detection effect than a single bi-stable SR system. Li et al. [32] further studied an
adaptive coupling bi-stable SR method and its application. Zhang [33] analyzed a coupled
bi-stable SR system under Lévy noise. In addition, some combination methods with other
algorithms have been proposed in recent years [34–38].

In sum, the SR, MSR, SNR, coupled SR system, et cetera, are proposed by some
researchers to best detect motor bearing faults. These methods can better detect motor
bearing faults, but they find it very difficult to detect the faults from weak motor bearing
signals under the strong noise. For solving this problem, in this paper, a new advancing
coupled multi-stable stochastic resonance method, with two first-order multi-stable stochas-
tic resonance systems, namely the CMSR, is proposed to detect motor bearing faults. In this
proposed CMSR, the effects of the output signal-to-noise ratio (SNR) for system parameters
and coupling coefficients, are analyzed in-depth by numerical simulation technology. Then,
the SOA is used to adaptively optimize and determine the system parameters of the SR by
using the subsampling technique. Finally, the pre-processed signal is input into the CMSR
to detect the faults of motor bearings by Fourier transform.

The innovations and main contributions of this paper are described as follows:

• A novel advancing signal processing method based on coupled multi-stable stochastic
resonance is proposed to detect the faults of motor bearings;

• The output signal-to-noise ratio (SNR) for system parameters and coupling coefficients
are analyzed in depth;

• The SOA is used to adaptively optimize and determine the system parameters of the
SR by using the subsampling technique;

• The actual vibration data of induction motor bearings are used to prove the effective-
ness of the proposed CMSR system.

The rest of the paper is organized as follows. The first-order MSR system, the CMSR
system, and the relationship between them, are briefly introduced in Section 2 in order to
understand the CMSR system more intuitively. In Section 3, the measurement index of the
SR system, the influence of system parameters on the CMSR system, and the application of
the seeker optimization algorithm (SOA) in the SR systems are analyzed. In Section 4, the
bearing inner race and rolling element fault data are processed by the CMSR system and
compared with the MSR system in order to prove the effectiveness of the CMSR. Finally,
Section 5 summarizes the conclusion.
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2. Theoretical Background
2.1. First-Order MSR System Model

The MSR model has periodicity and multiple potential barriers and potential wells.
It can effectively avoid output saturation by independently adjusting system parameters.
The first-order MSR system model is expressed as follows [39–41]

dx
dt

= −U′(x) + s(t) + n(t) (1)

where s(t) is the input signal, n(t) represents the Gaussian white noise, x(t) is the final
output, and U(x) is the periodic potential function. The specific expression of U(x) is given
as follows

U(x) = −a cos(bx) (2)

where a and b are positive real numbers. Let a = b = 1; U(x) is shown in Figure 1. The
periodic potential function has several potential barriers and potential wells can be found
from it.
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The following Formula (3) can replace the Equation (1)

dx
dt

= −ab sin(bx) + s(t) + n(t) (3)

The Runge–Kutta method is used in Equation (3), and the specific calculation process
is given as follows: 

k1 = h(−ab sin(bxn) + sn + nn)

k2 = h(−ab sin(b(xn +
1
2 k1)) + sn + nn)

k3 = h(−ab sin(b(xn +
1
2 k2)) + sn+1 + nn+1)

k4 = h(−ab sin(b(xn + k3)) + sn+1 + nn+1)

xn+1 = xn +
1
6 (k1 + 2k2 + 2k3 + k4)

(4)

In Formula (4) sn and nn represent the input signal and noise, respectively. xn is the
output signal and h is the iterative step of the numerical calculation.

2.2. Mode of CMSR System

The CMSR system consists of two first-order MSR systems whose specific expressions
are described as follows [42,43]{

dx
dt = −a0b0 sin(b0x) + r(y− x) + s(t) + n(t)
dy
dt = −ab sin(by) + r(y− x)

(5)
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where the−a0b0 sin(b0x) is the controlled system, the parameters a0 and b0 are fixed values,
which are set a0 = b0 = 1. The system where the −ab sin(by) is located is the control system
and r(y− x) indicates that the y-channel input signal is used to adjust the x-channel input
signal. The parameter variables are a and b, and the final output of the CMSR system is x
due to the signal and noise acting on the controlled system. Among them there is given,
as follows: {

U1(x) = −a0 cos(b0x)
U2(y) = −a cos(by)

(6)

When the signal noise and system parameters match each other to produce a SR
phenomenon the potential function U(x, y) is obtained as follows:

U(x, y) = −a0 cos(b0x)− a cos(by) +
r
2
(x2 − y2) (7)

When there are a0 = b0 = 1, a = b = 1, r = 0.1, the potential function diagram is
shown in Figure 2. It is found that the active range of the particles is increased, the
noise utilization rate is increased, and the dynamic performance is more abundant when
compared Figures 1 and 2.
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For the solution of Equation (5), the Runge–Kutta method is still used and the specific
solution is obtained as follows

k1 = h[− sin(xn) + r(yn − xn) + sn]

l1 = h[−ab sin(byn) + r(yn − xn)]

k2 = h[− sin((xn + 0.5k1) + r(yn − (xn + 0.5k1)) + sn]

l2 = h[−ab sin(b(yn + 0.5l1)) + r((yn + 0.5l1)− xn)]

k3 = h[− sin((xn + 0.5k2) + r(yn − (xn + 0.5k2)) + sn+1]

l3 = h[−ab sin(b(yn + 0.5l2)) + r((yn + 0.5l2)− xn)]

k4 = h[− sin((xn + k3) + r(yn − (xn + k3)) + sn+1]

l4 = h[−ab sin(b(yn + l3)) + r((yn + l3)− xn)]

xn+1 = xn +
1
6 (k1 + 2k2 + 2k3 + k4)

yn+1 = yn +
1
6 (l1 + 2l2 + 2l3 + l4)

(8)

where sn and nn represent the input signal and noise, respectively. xn is the output signal
and h is the iterative step of the numerical calculation.
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2.3. System Measurement Index

SOA uses the output SNR as the system measurement index [44]. When the noise
component is less, the SNR is larger, and the effect of the SR system is better. The SNR
output can be explained as follows [45–47]

X(k) =
N

∑
n=1

x(n)e−j2π(k−1)(n−1)/N , 1 ≤ k ≤ N (9)

where x(n) is the output signal of the SR system, X(k) is obtained by Fourier transform
and n is the signal length.

Y(k) =
2|X(k)|

N
, 1 ≤ k ≤ N

2
(10)

K0 =
fmax × N

fs
+ 1 (11)

At the signal frequency fmax, K0 is the peak number of its spectrum and fs is the
sampling frequency. Y(k) is the magnitude of the signal amplitude spectrum. SNR can be
expressed as follows:

SNR = 10lg
Y(K0)

∑N/2
k=1 Y(k)−Y(K0)

(12)

2.4. The Flow of the CMSR System

The flow of the advancing coupled multi-stable stochastic resonance method with two
first-order multi-stable stochastic resonance systems (CMSR) is shown in Figure 3.
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The flow of the CMSR system in Figure 3 shows that a, b and r can affect the per-
formance of the CMSR system. Based on the adiabatic approximation theory of SR, the
variable-scale method can be used to introduce the frequency compression ratio (R) to con-
vert large frequency signals into small frequency signals. For the selection of parameters a,
b, r, R, this paper uses the SOA, which takes output SNR as the fitness function to optimize
four parameters synchronously. The SOA process includes the determination of search
step-size and search direction, the update of the individual position of the seeker, and the
implementation of the algorithm. The specific procedures are described as follows:

• Signal preprocessing. The envelope signal obtained after filtering and demodu-
lating the collected bearing vibration signal is recorded as s1, s2 = s1 − mean(s1),
s = s2/2max(abs(s2)), S is the input signal;

• Parameter initialization. Number of iterations, population size, and range of parame-
ters are determined;

• Calculate the target value of each position using the output SNR formula;
• Parameter optimization. The SNR is considered as the fitness function of the seeker

optimization algorithm (SOA) to adaptively optimize and determine the system
parameters of the SR by using the subsampling technique;

• If the set value is equal to the current number of iterations, output the best system
parameters a, b, r, R and enter the next step; otherwise, return to the previous step;

• Signal detection. Import the pre-processed signal into the CMSR system with the
determined parameters to get the output signal x1 Scale recovery of signal frequency
and amplitude x = x1 × 2max(abs(s2));

• Fault detection. Fourier transform of x to complete fault detection.

3. System Parameter Analysis

The input signal must strictly satisfy an amplitude of less than 1 and a frequency
of less than 1 Hz because of the adiabatic approximation theory of SR. Therefore, it is
necessary to understand the relationship between system parameters and SR output by
simulating small parameter signals. Let the signal be

s(t) = A sin(2π f0t) + n(t) (13)

where n(t) is the Gaussian white noise, the signal amplitude is A = 0.15, f0= 0.025, and the
noise intensity is D = 0.4.

The time domain waveform and amplitude spectrum of noiseless signal are shown in
Figure 4a, and Figure 4b displays them with the noisy signal. In Figure 4b, the periodicity
of signal and f0 = 0.025 Hz cannot be resolved. The SNR calculated by Equation (12) is
−22.9 dB. In order to better analyze the relationship between the CMSR output signal and
system parameters, the system parameters are fixed, a = 0.5, r = −0.8, the interval of b is
set to [0, 10], the step size is 0.1, and the change curve of output SNR with b is obtained
as shown in Figure 5a where the output SNR is maximum at approximately b = 6.5. Then,
setting b = 6.5, r = −0.8, the interval of a is [0, 2], the step size is 0.05, and the change curve
of the output SNR with a is obtained, as shown in Figure 5b. The maximum output SNR is
obtained at a = 0.5 from the figure. Finally, setting b = 6.5, a = 0.5, the interval of r is [−5, 5],
the step size is 0.1, and the change curve of the output SNR with r is obtained, as shown in
Figure 5c. Through this figure, it can be inferred that the output SNR reaches its maximum
at approximately r = −0.8.
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Figure 5 fully expresses that the relationship between the output SNR and system
parameters is not linear, but has random uncertainty. The three parameters together
determine the output signal of the CMSR system. When a = 0.5, b = 6.5, r = −0.8, the output
results of the SR system are as shown in Figure 5. Here, the periodicity of sinusoidal signals
and f0 = 0.025 Hz can be clearly identified.

4. Engineering Application

The bearing inner race and rolling element fault data from the Western Reserve
University Experimental Center were processed separately to illustrate the effectiveness
of the CMSR system [48]. The experimental platform is shown in Figure 6. The 6205-2RS
JEM SKF deep groove ball bearing is employed in the experiment. The motor is connected
to a dynamometer and torque sensor by a self-aligning coupling. The data were collected
from accelerometers on the motor housing at the drive end of the motor. The vibration
signals were measured under no-load (0 hp) at a rotating speed of 1797 r/min. Faults were
introduced into the test bearings by using an electro-discharge machining method. The
fault diameter was 0.007. The vibration signals of the motor bearing were sampled at the
frequency of 12,800 Hz and the duration of each vibration signal was 10 s. The original
vibration signals were divided into segmentations of samples, and each sample covered
2048 datapoints. According to the theoretical calculation values of fault characteristic
frequency, the faults of the outer race, inner race, and rolling element of motor bearing are
determined. As a comparison, the experimental signal is denoised by a MSR system.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14 
 

  
(a) Relationship between b and output SNR (b) Relationship between a and output SNR 

 
(c) Relationship between r and output SNR 

Figure 5. Relationship between system parameters and output SNR. 

4. Engineering Application 
The bearing inner race and rolling element fault data from the Western Reserve Uni-

versity Experimental Center were processed separately to illustrate the effectiveness of 
the CMSR system [48]. The experimental platform is shown in Figure 6. The 6205-2RS JEM 
SKF deep groove ball bearing is employed in the experiment. The motor is connected to a 
dynamometer and torque sensor by a self-aligning coupling. The data were collected from 
accelerometers on the motor housing at the drive end of the motor. The vibration signals 
were measured under no-load (0 hp) at a rotating speed of 1797 r/min. Faults were intro-
duced into the test bearings by using an electro-discharge machining method. The fault 
diameter was 0.007. The vibration signals of the motor bearing were sampled at the fre-
quency of 12,800 Hz and the duration of each vibration signal was 10 s. The original vi-
bration signals were divided into segmentations of samples, and each sample covered 
2048 datapoints. According to the theoretical calculation values of fault characteristic fre-
quency, the faults of the outer race, inner race, and rolling element of motor bearing are 
determined. As a comparison, the experimental signal is denoised by a MSR system.  

 
Figure 6. The experimental platform. Figure 6. The experimental platform.

Size parameters of bearings are shown in Table 1. The bearing inner race and rolling
element fault characteristic frequency is calculated as follows

fBPFI =
n
2
(1 +

d
D

cos α) fr (14)

fBSF =
D
2d

[
1−

(
d
D

cos α

)2
]

fr (15)

where fBPFI and fBSF are the fault characteristic frequencies, α is the angular contact angle,
d is the roller diameter, D is the bearing pitch diameter, the number of rollers is n, and the
frequency shift is fr.

Table 1. Size parameters of bearings.

Inner
Diameter

(mm)

Outer Ring
Diameter

(mm)

Pitch
Diameter

(mm)

Roller
Diameter

(mm)

Roller
Number

Angular
Contact
Angle

25.001 51.999 39.04 7.94 9 0
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Firstly, the bearing inner race fault is analyzed. The theoretical value of characteristic
frequency is 162.2 Hz according to Equation (14) when motor speed is 1797 r/min, sampling
length is 8192, and sampling frequency is 12 kHz. For the original vibration signal, Figure 7
is the time-domain waveform and power spectrum. In the power spectrum, there is a
significant resonance band at 2000–4000 Hz, and no useful fault characteristic information
can be obtained. After bandpass filtering (the filter segment is the resonance band) and
envelope processing, the resulting envelope diagram is shown in Figure 8b. Although
we can see the fault characteristic frequency from its amplitude spectrum, it cannot be
effectively judged by the interference of surrounding noise, and the SNR is −18.85 dB.
Figure 8c is the result of using the MSR to process the envelope signal. At this time,
the output SNR is improved to −16.3106 dB, system parameters are a = 84.6, b = 0.113,
R = 1000, and the high-frequency noise component is restrained, but the noise component
of low-frequency is increased to affect the judgment. Figure 7 displays the output result
of processing the envelope signal using the CMSR algorithm. The signal in time-domain
waveform can be found to be periodic and characteristic frequency fBPFI can be clearly
discerned in the amplitude spectrum. The system parameters at this time are a = −0.19,
b = 2.28, r = −3.13, R = 545.96, and output SNR is −5.27 dB. The feasibility of the CMSR
algorithm can be proven by bearing inner race fault data analysis results.
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In order to continue to prove the effectiveness of the proposed method for bearing
rolling element fault signal, the following experiment must be carried out. First, motor
speed is 1797 r/min, sampling length is 4096, and sampling frequency is 12 kHz. The
rolling element fault characteristic frequency is, theoretically, fBSF = 141.17 Hz. For the
original vibration signal, Figure 9a shows its time-domain waveform and power spectrum.
Figure 9b is the envelope graph of the bandpass filtering and envelope processing of it, and
the calculated SNR of roller failure frequency is−19.67 dB. Then, the MSR algorithm is used
to process the envelope signal, a = 0.12 and b = 2.85 are optimal parameters, the frequency
compression scale is R = 1000, output SNR is −17.4597 dB. Figure 9c is the output result.
Although the high-frequency noise is controlled, the noise component of low-frequency
is amplified instead. Finally, the output result of the CMSR system is shown in Figure 9d.
The fault characteristic frequency of the rolling element is particularly prominent in the
whole spectrum, and other noise frequencies are almost non-existent in the amplitude
spectrum. The system parameters at this time are a = −0.31, b = 1.8, r = −1.76, R = 592.5.
The output SNR = −4.34 dB. The result of the rolling element fault signal analysis again
shows the feasibility of the CMSR method.
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According to the theoretical value and the obtained value for inner race and the rolling
element of motor bearings, the calculation error is shown in Table 2.

Table 2. Calculation error between the theoretical value and the obtained value.

Objects Theoretical Value Obtained Value Error

Inner race 162.2 Hz 162.6 Hz 0.4 Hz
Rolling element 141.1 Hz 140.6 Hz 0.5 Hz

It can be seen from Table 2 that the obtained values of the inner race and the rolling
element of motor bearings are 162.6 Hz and 140.6 Hz, respectively. Compared with their
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theoretical values, the calculation errors between the theoretical values and the obtained
values are 0.4 Hz and 0.5 Hz, respectively. The obtained values are infinitely close to the
theoretical values, which show that the proposed CMSR system can effectively detect the
faults of motor bearings. Therefore, the proposed CMSR system is a weak signal feature
extraction method for fault detection in engineering rotating machinery.

5. Conclusions

In this paper, to improve the ability of signal processing for weak bearing signal under
the strong noise, a new advancing coupled multi-stable stochastic resonance method with
two first-order, multi-stable stochastic resonance systems, namely the CMSR, is proposed to
detect motor bearing faults. The CMSR utilizes the output signal-to-noise ratio and seeker
optimization algorithm to adaptively optimize and determine the system parameters of
the SR. Then, the pre-processed signal is input into the CMSR in order to detect the faults
of motor bearings by Fourier transform. In order to prove the effectiveness of the CMSR,
the actual vibration data of induction motor bearings are used, and the comparison results
with the MSR show that the CMSR system can obtain a higher output SNR to extract weak
signal features and realize the fault detection. The advantages of the CMSR system are
summarized as follows:

• The CMSR system can detect weak high-frequency signals by combining the variable-
scale method;

• With the output SNR as the fitness function of the SOA the parameters of the CMSR
system can be determined;

• The engineering data-processing results show that the CMSR system has better fil-
tering performance, higher output SNR, and more effective detection results than
traditional SR methods, which has broader prospects for weak signal processing.

Due to the slower computing speed of the CMSR system, we will continue to research
the CMSR to improve its computing efficiency in the future. In addition, we will devote
ourselves to studying other indicators to complete the detection of unknown characteristic
frequency signals. At the same time, the impact of different types of noise on the CMSR
system can be further studied and discussed in the future.
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