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Abstract: Static analysis is one of the techniques used today to analyze source codes and minimize
the issue of software vulnerability. Static analysis has the ability to observe all possible software
paths in an application through the scrutiny of a web application’s source code. Among those paths,
some may be considered feasible paths, which refer to any paths that the test cases can execute.
The detection of feasible paths in the results of a static analysis helps to minimize the false positive
rate. However, the detection of feasible paths can be challenging, especially for programs that have
multiple conditions in the same branch. The aim is to ensure that each feasible path is detected only
once (not duplicated). This paper proposes an approach based on minimal static single assignment
(MSSA) form and symbolic execution to detect feasible paths. The proposed approach starts by
converting the source code into an abstract syntax tree (AST), followed by converting the AST to
minimal SSA representation, which helps to decrease the number of instructions in the SSA form.
An algorithm was built to examine all of the instructions of the SSA form, identify whole paths in
the source code, and extract constraints along each path. A path weight method (PWM) is proposed
in this work to avoid detecting duplicated feasible paths. The satisfiability modulo theory (SMT)
solver was used to check the satisfiability of each path condition. The proposed approach was
tested on seven well-known test programs that have been used in related studies and 10 large scale
programs. The experimental results indicate that the proposed method (PWM) can avoid detecting
duplicated feasible paths, and the proposed approach reduced the time required for generating the
paths compared to that in related studies.

Keywords: detection; feasible paths; SSA; static analysis; symbolic execution

1. Introduction

Web applications are now considered one of the standard channels in the World Wide
Web for representing data and executing service launches. These resources include social
media, finance, education, banking, news pages, TV channels, etc. Web applications store
sensitive data, which hackers can steal and gain monetary benefits from.

Thus, to identify the vulnerability of web applications, a static analysis explores the
web application’s source code [1]. Static analysis has the potential to observe every possible
path in an application through scrutiny of the source code. However, covering all web
application paths during testing leads a false positive result [2,3]. False positives are results
that are safe but are reported to be vulnerabilities, and thus, execution would not occur,
despite the type of user input. In addition, researchers have stated that programmers should
distinguish which paths can be executed and that the test cases should be implemented on
feasible paths only [4,5].

A feasible path is defined as any path on which test cases can be executed. Detection
of feasible paths can help decrease the false positive rate of the results of static analyses
and, thus, further improve the detection rate for different threats. In addition, detecting
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the same feasible paths (duplicated paths) from test cases more than once provides a false
number of threats existing in the program.

Detection of feasible paths can be achieved by generating test cases of the source code
to identify the executable paths among the others. Symbolic execution is a basic approach
commonly used in various fields, such as software testing and reverse engineering [6–8].
The idea is to execute a program with a symbolic representation of inputs instead of concrete
values. The symbol signifies symbolic and concrete values that may be understood from the
symbol. Some symbolic execution engines have been deployed. Prominent examples are
MultiSE [6], KLEE [7], and Java PathFinder (Jpf) [8]. However, all of these studies focused
on the intermediate representation (IR) to convert the source code to a simple form for
analysis, such as the static single assignment (SSA) form. Nevertheless, there is significant
inflation in the IR code, where new constructions correspond to function abstractions. For
instance, the code written for the Low-Level Virtual Machine (LLVM) occupies 600 lines,
despite the simplicity of the example [9,10]. The analysis of this code was time-consuming,
as would be the case for similar examples. Meanwhile, Braun et al. [11] presented an SSA
constriction algorithm to produce a minimal and pruned SSA form. They established that
the algorithm they designed builds minimal and trimmed SSA form, which helps decrease
the instructions in the SSA form to be analyzed.

Therefore, this paper aims to reinforce the improvements in the static analysis re-
sults by proposing a new approach for detecting feasible paths based on minimal SSA
representation and symbolic execution. The proposed approach was constructed in such a
way that it can (i) detect the total quantity of feasible paths in the source code, (ii) avoid
detecting duplicated feasible paths, and (iii) decrease the time required to generate the
paths. In addition, IR and binary generation tools and libraries are not commonly accessible
for all programming languages, such as Hypertext Preprocessor (PHP), thereby signifi-
cantly reducing the applicability of current symbolic execution systems [12]. Therefore,
our approach was implemented and tested on PHP as the most popular web application
technology [13].

The rest of the paper is structured as follows: Section 2 provides background infor-
mation on static analysis and symbolic execution, followed by related studies in Section 3.
Section 4 elucidates the proposed detection approach of feasible paths. Section 5 presents
the experimental outcomes of the proposed approach and comparisons with related work.
Section 6 highlights the threats to validity. Section 7 presents the discussion, and Section 8
concludes this work and introduces our upcoming work.

2. Background
2.1. Static Analysis

Static code analysis is one of the most widely used tools of source code analysis because
it can identify potential security issues or weaknesses without program execution [14].
During static analysis, the complete source code is analyzed, which makes this tool very
powerful in the detection of security-specific issues [15]. Nevertheless, the technique is not
completely free of errors; false positives may still occur because the program traversed an
infeasible path or another that failed execution. For these reasons, the concern regarding
false positives is significant in the static code analysis context and requires additional
evaluation. The removal of infeasible paths from the set of paths on which static analyses
are performed is another potential solution to address the false positive concern [16].

Infeasible paths mean paths that will not be executed regardless of the input.
Jiang et al. [17] mentioned that infeasible paths can waste time and resources in software
testing. Meanwhile, a feasible path can be defined as any path in the source code that test
cases can execute [18]. Figure 1 depicts a control flow graph (CFG) specific to a PHP source
code example, showing a scenario in which feasible paths, duplicated paths and infeasible
paths all exist in the test code.
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Figure 1. Example of infeasible path and duplicated paths in PHP source code.

Static analysis begins with source code analysis and a control flow graph that corre-
sponds to the source code created. The source code for the above-mentioned PHP example
begins with the initialization of variables on lines 2, 3 and 4 ($a = 15, $b = 10, and $c = 25).
Subsequently, two conditions on the same branch specified on line 5 determine whether
any of the conditions ($a > $b or $b < $c ) are true. The conversion of this branch (line 5)
in the CFG is split into separate branches depending on the number of conditions in that
branch (our example was split into two separate branches). In the first path (P1), since both
conditions are satisfied ($a > $b || $b < $c), the code specified in line 6 (echo $a) is executed,
and this path is considered a feasible path. In P2 and P3, the logical operator (|| ‘or’) will
be true if one of the conditions is true. Therefore, P2 and P3 are also satisfied since one of
their conditions is true based on the variable input ($a > $b) or ($a < $c). However, the paths
(P1, P2, and P3) lead to the same path (1-2-3-4-5-6-9) and are considered duplicated paths.
In the last path (P4), the flow of the program cannot be transferred to the “else” statement
(line 7) because, in consideration of the values of variables $a, $b, and $c, the conditions
are always “True”. The print statement (line 8) is unattainable under the given inputs.
As shown in Figure 1, any path that contains the implementation of the “else” statement
(line 8 in red color) is considered an infeasible path because it cannot be executed at all.

Infeasible paths could exist for several reasons [18]. One of these causes is dead
code, which implies that the execution of a specific line of code is impossible. Infeasible
paths are also caused by the conflicting clauses found within certain paths. Moreover,
infeasible paths could potentially be associated with conditional statements specific to a
variable (which is also one of the major causes of the inability to access specific aspects of
a program [19,20]). Therefore, to improve the outcomes of the static analysis, a detection
stage of the feasible paths within the source code should be in place.

The static single assignment (SSA) form [21] is source code expressed in the inter-
mediate representation form under the condition that all variables are defined before use



Appl. Sci. 2021, 11, 5384 4 of 27

and assigned only once, which can be achieved by renaming variables such that each
variable name occurs only once on the left-hand side of an assignment statement. Figure 2a
illustrates such variable renaming. However, this representation introduces a complication
at join points of different flow branches. To solve this problem, a φ function is used in places
where we could not pinpoint the exact variable “version” [19,20]. A code corresponding to
the φ function usage and a simplified graph excerpt are shown in Figure 2b.

Figure 2. Example of static single assignment (SSA) representation and φ function. (a) Variable
renaming. (b) A code corresponding to the φ function usage and a simplified graph excerpt.

As each variable is assigned once in the SSA representation and a φ function is added
at each join point, it leads to an increase in the time required to analyze all instructions of the
program. For instance, the LLVM code for the simple example comprises over 600 lines [9],
which requires considerable time to analyze the source code for such examples. Therefore,
removing some of the instructions that will not affect the program execution and decreasing
the number of the φ functions in the SSA form would be solutions that would produce a
minimal SSA form that can decrease the time taken to detect the feasible paths.

2.2. Symbolic Execution

Symbolic execution is the execution of a program with a symbolic representation of
inputs instead of concrete values [22]. Concrete executors, for example, an interpreter, can
only evaluate expressions consisting of concrete values. Meanwhile, symbolic executors
allow the existence of symbolic values in the expressions, that is, expressions of concrete
values as well as names that have not been given values. By allowing inputs supplied as
symbolic values, a symbolic executor can construct a relation between inputs and outputs
along any execution path.

To understand the general concept of symbolic execution, refer to Figure 3. If the
symbolic value “A” is inputted to parameter “a” while the function named “Test” is under
execution, it may be said that the function is being symbolically executed. When the code
is being executed, the two “If” statements do not have control over program flow because
“A” may assume different values depending on the context. The trick is to construct a
logical expression that captures the relation between the $res value and the input.
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Figure 3. Path conditions example in symbolic execution.

This is a powerful program description that discloses all of the important factors in
an input to the PHP example program as shown in Figure 3a. It can be understood as
a specification of path constraint and the exhibited behavior for each feasible program
path. A path constraint indicates the condition for input, in this case, A, to meet so that
the execution will go down a particular path. For example, in Figure 3b, the path goes
through the false branches of both if statements have a path constraint of (A ≥ 0 ∧ A ≤ 10),
and the exhibited behavior is given by $res = 0. The path constraint has an assignment
($res = 0, X = 0) under which the constraint is evaluated as “True”, which makes this path
feasible. Meanwhile, the path constraint for the path goes through the true branches of
both if statements are infeasible because it requires (X < 0 ∧ X > 10), which is unsatisfiable.

A typical symbolic execution handles each path separately in a symbolic state [22]. It is
essentially a container of a path constraint and records the program behaviors that symbolic
execution propagates, such as the state towards the end of each path, during which
symbolic execution identifies feasible and infeasible paths by asking a constraint solver.
Constraint solvers are employed to determine the reason specific to symbolic expressions
automatically. Constraint solving is a technique that determines a set of values for the
variables that satisfy an expression subject to several constraints concerning the variables.
In our example in Figure 3c, four different paths can be observed, three of which are feasible.
Symbolic execution finds a conflict in the first path constraint (P1), where the constraint
solver returns unsatisfiable for this path because it does not represent a program behavior
that can happen. If constraint solving returns a satisfying value assignment for a given
constraint instead, then the path is feasible, and we can use the found values as test inputs
to re-exhibit the associated program behavior.

3. Related Works

In recent years, various approaches have been utilized to detect feasible paths. We
point out some works in this section that are pertinent to our study. Directed automated
random testing (DART) [23] was the first concolic testing study used to reduce the number
of test cases to generate program paths. The paths are generated randomly based on the
type of the variables, and the conditions of each path are stored until the termination of
the program. However, DART suffers from a high number of duplicated paths due to the
random process of generating the program paths, which leads to producing the same path
more than once.

Forms of early works (for example, the Concolic Unit Testing Engine (CUTE) [24]
and execution generated executions (EXE) [25]) consider the system environment in the
assessment by implementing external calls that make use of real and concrete arguments,
which constrains the behaviors that they could delve into as compared to an entirely
symbolic strategy, which could be impracticable. In the context of an online executor, this
selection can lead to having external calls from distinct and well-defined paths of execution
that inhibit each other.

Williams et al. [26] suggested a prototype PathCrawler tool for automated test case
creation to meet the paths requirement. It begins with source code instrumentation in order
to determine the symbolic execution sequence whenever the code being tested is executed.
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Subsequently, the instrumented code corresponding to the test scenario is executed until a
complete feasible path set has been assessed. However, the tool faces an explosion of paths
created due to extensive combinations.

Sen et al. [6] suggested MultiSE, where symbolic execution comprises incremental
merging of the states without the use of auxiliary variables. The fundamental concept
behind MultiSE is based on a different state representation, where all variables are mapped
to guarded symbolic terms, referred to as a value summary. They implemented their
prototype for JavaScript using the Jalangi framework [27]. However, MultiSE treats each
condition separately, which increases the probability of producing duplicate paths, and it
does not support web forms.

Cadar et al. [7] illustrated the LLVM compiler-based KLEE symbolic execution soft-
ware [10], which can solve optimization problems and enhance performance by an order
of magnitude and process several programs that may otherwise be intractable. Its search
heuristics effectively select paths from large sets of paths to obtain high code coverage.
KLEE is also a crucial constituent in several ventures and research such as Cloud9 [28],
GKLEE [29], KLEENet [30] and Klover [31]. Nevertheless, the LLVM compiler is based
on the algorithm formulated by Cytron et al. [32]. The compiler is similar to a non-SSA
CFG and records the local parameters into memory, which typically are not in SSA form.
The results indicated that about a quarter of the instructions created by the front end of the
LLVM are in this format.

Havelund and Pressburger [8] suggested the Java PathFinder (JpF) translator, which
translates Java to Promela, the modeling language required for using the Spin model
checker. JpF transforms specified Java code to its corresponding Promela version, which
may then be processed. The key drawback of this tool is that it cannot be utilized for sub-
stantiating any authentic Java application if no non-trivial quantity of work is completed
by its user. For the resolution of this issue, Shafiei and Breugel [33] recommended an exten-
sion, jpf-nhandler, of JpF that enables automation of the handling of native methodologies.
Automation of the interlinking for the execution of the native code and the model checking
of Java code occurs. However, the extension lacks soundness and, as the author of [33]
stated, it is not comprehensive.

Nguyen et al. [34] proposed a method (CFT4CUnit) for creating static direction-based
test cases specific to C functions. Initially, a CFG is created as a C function that comprises
the source code, including the inputs, maximum iteration count for loops, and the coverage
conditions. Feasible test sequences are then determined using the backtracking technique,
a Z3 satisfiability modulo theory (SMT) solver and symbolic execution for traversing the
CFG. This technique’s primary drawback is that it is time-intensive when addressing the
constraints under a CFG possessing numerous decisive vertices but many fewer infeasi-
ble sequences. Nguyen et al. [12] proposed the SDART tool, which improved upon the
DART [23] tool, along with their prior research [34] by integrating these techniques with a
static test data-producing technique that could determine feasible paths using relatively
fewer iterations. The proposed static analysis scheme creates several partial test paths that
traverse unvisited branches. Subsequently, test data creation is attempted by traversing
these test paths. Traversed branches are marked in order to prevent revisiting the branches
more than once.

Table 1 summarizes the most popular symbolic execution studies that aim to detect fea-
sible paths, the methods and tools that their approaches are based on, the limitations of their
studies and the programming language used to implement and evaluate their approaches.
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Table 1. Symbolic execution studies to detect feasible paths.

Name Technique Challenges Programming
Language

DART [23] Static source code parsing, random
testing and dynamic analysis

It devolves to random testing when
pointers are encountered and can only
handle integer constraints.

C

EXE [25] Automatically generating test cases
for the codes on its own

Due to the use of the STP [35] solver,
some paths are missed because the
solver does not accurately handle
all operations.

C

CUTE [24] Concrete and symbolic execution Failure to produce test inputs for
practicable program paths. C

PathCrawler [26] Combining static analysis and
dynamic analysis

A combinatorial explosion in the
number of execution paths C

MultiSE [6] Merging states incrementally
during symbolic execution

Treat each condition separately, which
increases the chance of producing
duplicated paths

JavaScript

KLEE [7] Cytron et al. [32] algorithm and
symbolic execution

Consumes a lot of time when
producing feasible paths. C

JpF [8] Java virtual machine (JVM) and
runtime scheduler

JpF cannot be utilized for
substantiating any Java application if
no non-trivial quantity of work is
completed by its user.

Java

jpf-nhandler [33] Automatically delegating the
execution of the native method

It lacks soundness and it is
not comprehensive Java

CFT4Cpp [34] Backtracking algorithm, symbolic
execution, and Z3 solver

Solving the constraints’ expressions
proves to be highly time-intensive;
moreover, some feasible paths
are missed.

C

SDART [12]
Combined DART [23] with
boundary values of
input parameters

Some feasible paths that contain
multiple conditions in the same
branches are missed

C

To overcome the limitations of previous studies in detecting feasible paths, our pro-
posed approach aims to decrease the time required to detect feasible paths, which was the
main issue in the previous studies that used the LLVM compiler [7,28–31]. Some of the
previous studies [23–25] also missed some feasible paths because of the use of the Simple
Theorem Prover (STP). Therefore, the Z3 solver [36], as a high-performance theorem prover,
could be used to solve different complex theorems [37]. In addition, we present a method
to avoid generating duplicated feasible paths by calculating the weight of each path and
avoiding the repetition of other paths with the same weight. Based on our knowledge, there
is no available study that has been conducted to detect feasible paths in PHP. Therefore,
we implemented and evaluated our approach in a PHP environment, which is considered
the most common web technology with which to build a web application.

4. Detection Methodology

This section presents our proposed approach and algorithm design, including (i) con-
verting the source code to minimal SSA form; (ii) symbolically executing the program with
a constraints extractor; (iii) avoiding repeated detection of the same feasible paths among
the program paths; and (iv) solving the constraints of each new path.

In this method, the program under test is parsed and converted to an abstract syntax
tree (AST). Then, a direct translation from the AST into an SSA-based intermediate rep-
resentation, which includes optimization of the SSA form to be pruned and the minimal
SSA form, is conducted. The second stage starts by assigning symbolic inputs for each
superglobal variable (the user input variables) and the undefined variables to represent the
variables with unknown values that might affect the path conditions. The path generator
algorithm will traverse each block in the SSA form. In each generation, it will flag each
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path not to be detected again and ensure that all paths were detected once. During the
path generation, the conditions inside each path are extracted and stored under that path.
The results of path generation and condition extraction are checked again by the introduced
method (path weight method) to calculate each path’s weight, and only the paths that have
a unique weight are passed to the constraint solver to check their satisfiability (feasible or
not) under the given inputs. Figure 4 shows the full steps of our approach to detect the
feasible paths in a PHP source code.

Figure 4. The framework of the proposed scheme.

4.1. Parser

The PHP source code should be changed to an intermediate representation, such that
it can be converted to SSA format afterward. The structure of the program is indicated by
AST; hence, a grammatical and lexical analysis must be performed initially for the source
code. In the context of this research, PHP-Parser [38] was employed for the grammatical
and lexical analysis. PHP-Parser produces an AST, which helps immensely with PHP
static analysis.

4.2. Minimal and Pruned SSA form

The SSA [39] form is a property of intermediate representations. This property ensures
that each variable is defined and written only once. As a result, programs in SSA form
encode explicit data flow relations. Figure 5 illustrates an example of the SSA form and
φ function.

To understand the reasoning behind the SSA representation, a straight-line code is
an appropriate way to begin. Figure 5 shows that a unique name is provided for every
assignment made to a variable, and wherever the assignment is used, it is renamed to
a new assignment name. The majority of programs comprise join and branch nodes.
A unique assignment form referred to as the phi function (φ) was used at the join nodes.
The operands of the φ function represent the assignments to V that reach the join. Any
further use of Y is considered a use of V5. The previous variable Y is replaced with new
variables V3, V4, and V5. All uses of Vi are arrived upon by a single assignment to Vi.
A single assignment to Vi can be found in the complete code, which simplifies the record
maintenance process for numerous optimizations.
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Figure 5. An example of program code converted to SSA form.

In this paper, we use the algorithm from Braun et al. [11] to generate the minimal
SSA form, where they used on-the-fly optimizations with an SSA compiler to decrease
the number of φ functions. Initially, a mathematical simplification is employed where the
constructors pertaining to the IR node are subject to peephole optimizations and output
simpler nodes wherever feasible. Considering an example, the mathematical expression
X–X always amounts to zero. Furthermore, common subexpression removal, reuse of the
present values identified using local values, and an evaluation of the constants during
compilation are performed—for example, 2× 3 may be optimized as 6. Finally, the local
variables may have unnecessary arguments that must be removed (X = Y is one such
example). The SSA form does not require assignments of this form; hence, it is feasible to
use the right-hand side value directly. The effectiveness of such optimizations is depicted
in Figure 6.

The minimal static single assignment (MSSA) form before the application of on-the-fly
optimizations is depicted in Figure 6b. When the optimizations are enabled, the initial
difference is observed when value V1 is constructed. Here, any comparison with zero will
return false; therefore, the value is simpler during arithmetic simplification. During the
next step, constant propagation converts a comparison with zero returning false. Now,
the state at the jump condition is false; therefore, it is feasible to omit the code inside the
“then” block. Concerning the “else” block, copy propagation is conducted by assigning V0
to Y. Along the same lines, V5 vanishes and, ultimately, the code returns V0. The optimized
SSA form of the code is illustrated in Figure 6c. It may be observed from the example
that the run-time optimizations suggested by Braun et al. [11] may potentially reduce the
instruction count and φ functions in the SSA form. After finding the minimal SSA form of
the PHP source code, the next section describes the symbolic execution stage.

Figure 6. Converting a program code to Minimal SSA form. (a) Program code. (b) SSA form before
on-the-fly optimizations. (c) Optimized SSA form of the code.
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4.3. Symbolic Interpreter

During the generation of the SSA form, and once any superglobal variable or any
uninitialized variable is detected, we assign a symbolic input for that variable. PHP has
several in-built variables called superglobal variables. These variables store the input from
the external user, which is unpredictable. Hence, the values are kept symbolic. In the
scope of this study, all superglobal variables of the PHP language are considered [40].
A full symbolic execution assignment algorithm for the symbolic interpreter is shown in
Algorithm 1.

Algorithm 1: Symbolic Interpreter Algorithm.
input :SSA form
output :SSA form with symbolic inputs

SGV []← list of all super global variable in PHP
SGD []← list of all super global variables detected
CBV []← list of the current block variables
while variable ∈MSSA do

if variable is NULL then
// uninitialized/unknown variables
CBV← symbolic input

else if variable in SGV then
// super global variable
if variable in SGD then

// if defined before
CBV← SGD[variable]

else
CBV← symbolic input
SGD← symbolic input

endif
endif

endwhile

For instance, “$name = $_POST[’username’]” points to the value inputted by the
external user using the POST technique; hence, the value is not known. Consequently,
“$name” is allotted the symbolic value “postsymbolicusername”. Once the symbolic value
is assigned for the superglobal variable, this variable is stored in an array so that we can
notice if the same superglobal variable is assigned for another variable. Meanwhile, if we
detect the use of a variable that has not been defined before, we assign a symbolic value
“undefinedsymbolic” for that variable. The complete process of assigning symbolic values
to superglobal variables and uninitialized variables is presented in Algorithm 1.

To solve the loop heuristically, we provide a symbolic input for every loop condition
variable present in the loop that is being assessed (loop condition), which allows the loop to
be evaluated symbolically under the given inputs. Figure 7 illustrates the previous example
code in Figure 1 with a while loop; this shows the assignment of a symbolic input for the
loop condition to be executed symbolically.

The loop in Figure 7 is defined at Line 6 with the condition ($i < 3), which means the
loop iteration will continue to execute until the condition terminates. In the loop body,
a another condition ($a > $b || $a < $c) is defined inside the “if” statement at Line 7,
which it will execute in each iteration of the loop (3 times during every run of the example
program). To avoid the repetition of the loop iteration, a symbolic input (S) was assigned
for the loop condition ($i < 3). Afterwards, the symbolic loop condition ($i < S) was added
for each path inside the loop, and the logical operator “AND” (&&) was added to ensure
that the path condition of the loop was satisfied and executed at least once.
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Figure 7. Assigning a symbolic inputs for the loop condition to be executed symbolically.

Since our approach focused on detecting new feasible paths and avoiding duplicated
paths, rather than keeping the loop traverse for n number of iterations in the next stage
(Section 4.4), our approach prepared the loop with symbolic inputs. This helped with path
generation and constrained the extractor algorithm to connect the symbolic loop condition
with the path conditions inside the loop body.

4.4. Path Generation and Constraints Extractor

Each block in the SSA form contains some instructions (i.e., variables, expressions,
and conditions) of that block. As the SSA form contains one start block and one end
block, it helps to know the start and end points of each path. The complete process of
generating the paths and extracting the conditions from the minimal SSA form is presented
in Algorithm 2.

The path generator always starts from the first block as an initial block. It will first
store the instructions of each block in an array of instructions and those to be used later in
the constraint extractor to determine the conditions’ side values. The functions inside the
SSA structure are defined as a separate group of blocks. Once the generator finds a function
call inside the block, it will move to the function blocks and track the instructions inside
that function, and each instruction inside the function is stored in the array of instructions
for that path, and the conditions inside that function are also stored in the path conditions.
The last block in the function block contains the termination of that function, which will
return the generator to the function call instruction.

Each condition contains two or more children based on the condition types (i.e., if and
switch). If the generator finds a condition, the generator will choose one of the children
it has not yet visited, and the chosen child will be marked as visited. In this way, the
generator ensures that it will not follow the same path in the next generation. Each child
block will be visited once during the path, and each condition state among the path is
stored in the array of conditions. At the termination of the path, a collection of conditions
exist in the array of the conditions, and the path generator starts from the first block again
to generate a new path.

Since all variables from each block are stored in the array of instructions, the constraint
extractor replaces the conditions of both side variables with their concrete values from the
array of instructions. For example, a variable $X was defined with a value of 5, followed by
a condition ($X == 5). The condition has left and right values that must be compared. First,
the variable is stored in the array of instructions, and the constraint extractor searches for
the condition of the left-side variable in the array of instructions and replaces the variable
“$X” with its concrete value, which is 5. The condition’s right-side variable is a concrete
value and, thus, it will not be replaced because it does not exist in the array of instructions
for that path. The results of the path generator and constraint extractor are a list of path
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conditions and their instructions are sent to the Z3 solver to check the satisfiability of
these conditions.

Algorithm 2: Path Generation and Constraints Extractor Algorithm.
input :SSA form
output :Path conditions of the source code

Paths []← list represent the generated paths
Cond []← list represent the generated conditions
Instr []← list represent the generated instructions
i← 1
Function PathGeneration(SSA):

foreach B_i ∈ SSA do
if B_i[type] is conditional block then

if this conditional block Not Visited before then
Replace condition variables with concrete values
Cond← Store the condition
Flag this condition state as visited
i← Store the next block number
PathGeneration(SSA)

else
Move to next Block

endif
else if B_i[type] is Function then

i← Store the Function block number PathGeneration(SSA)
else if B_i[type] is Terminate then

Paths← Instr & Cond
i← 1
PathGeneration(SSA)

else
Instr← SSA[B_i][type]

endif
endforeach

endFunction

4.5. Avoid Duplicated Feasible Paths

Duplicated paths are related to the branches that contain multiple conditions separated
by logical operators (and, or, &&, and ||), as shown in Figure 1. These branches are
split into multiple branches depending on the number of conditions inside them, which
gives rise to the possibility of producing numerous paths under the same branches (called
duplicated paths). The effects of not addressing these paths are manifested when a sensitive
path flow is used to detect a threat in the source code. Duplicating the paths reflects an
increase in false alarms in the results (detecting multiple threats in the code whilst all of
them are related to one threat). To avoid producing duplicated paths, we introduce a path
weight method (PWM) that can avoid generating duplicated paths.

The developed PWM can be implemented in five steps, as follows:
Step 1: Assign a unique number to each normal block (non-conditional block) (NB) in the

SSA form.
Step 2: Count the sum of the NBs assigned a number in the current path and denote it as

SNB, where SNB refers to the sum of all NBs in the current path.
Step 3: Count the total number of conditional blocks in current path P (denoted as CB).
Step 4: Count the total number of logical operators in current path P (denoted as LO).
Step 5: Calculate the current path weight W(p) by using the following equation:

W(p) =
SNB

CB− LO
(1)
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The calculation of the current path weight in Equation (1) is performed by dividing the
sum of all blocks’ numbers (SNB) by the difference between the total number of conditional
blocks (CB) and the total number of logical operators (LOs) in the current path. The
difference between CBs and LOs provides the actual number of CBs without any repetition.
The sum of all normal blocks (SNB) is used to give diversity to the weight for each path.
Therefore, we can ensure that each path has its own weight, and the same weight is given
to the duplicated paths. The PWM’s steps for checking duplicated paths and avoiding
them are presented in Algorithm 3.

Algorithm 3: Avoid Duplicated Paths Algorithm.
input : All generated paths
output : Only new feasible paths (non-duplicated)

GP []← list of all generated paths
NFP []← list of new paths (non-duplicated)
PW← 0 // is the path weight
while Path ∈ GP do

SNB← Sum of all blocks unique number in Path (except conditional blocks)
CB← Count the conditional blocks in Path
LO← Count the logical operators in Path
PW← (BS)/(CB+LO)
if PW(path) in NFP then

Path← Duplicated path
else

Path result← Check the satisfiability of the Path using Z3 solver
if Path result is feasible then

NFP← PW(Path)
else

skip and continue to the next path
endif

endif
endwhile

Figure 8 shows the results of the path weight method for the previous example code
in Figure 1. If the path weight has not been detected before (new path), then our approach
will proceed to the next step to check its feasibility (such as P1). If our PWM finds a path
that has the same weight as that of a path that has been detected previously as a feasible
path (such as P2 and P3, which have the same weight (‘7’) as P1), then it will not proceed
to the next stage, in which its feasibility is checked, and the path will be considered a
duplicated path. However, if our PWM finds a path that has the same weight as that of a
path detected previously as an infeasible path (such as P4), then it will proceed to the next
stage, in which its feasibility is checked, since the path was not detected as a feasible path
before, and there is a chance for the SMT solver to solve these path conditions and consider
it as a feasible path.
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Figure 8. The satisfiability results of the program in Figure 1 using Z3 solver.

4.6. Z3 Solver

The Z3 solver is based on the satisfiability modulo theory and was formulated by L.
de Moura and N. Bjorner while they were working at Microsoft Research [36]. The SMT
solver works in such a way that when a first-order logic formula is specified, the solver
determines if satisfiability is met. Formula f is considered satisfiable if a value that leads
to f being true exists. The solver is given inputs regarding the expression and the set of
applicable constraints. The solver then attempts to identify a solution applicable under the
specified constraints.

The reason behind using Z3 was that it has been established as a high-performance
technique for theorem proof [41]. Additionally, this solver is available for free under
the Microsoft Research License Agreement (MSR-LA). Furthermore, it has Application
Programming Interfaces (API )s for several languages, which make this tool compatible
with several platforms.

Once the path generation produces the condition of each path, it transforms them to
the Z3 context based on their guidelines [36], and the results are sent to the Z3 solver to
check satisfiability of those path constraints. Figure 8 shows the results of our proposed
work on the example program in Figure 1.

The first column in the result table in Figure 8 shows the file name. The second column
shows the number of instructions produced by the minimal SSA algorithm. The third
column provides the number of branches analyzed, and the detected feasible paths (new
paths) are shown on the fourth column. The last column presents the time (in seconds)
required to generate all of the paths, excluding the Z3 solver time. Figure 8 shows that the
first path was checked, and the results indicated that it was satisfiable (sat) under their
given inputs. The second and third paths were not checked by Z3solver since they have
the same weight as the first path , which was detected as feasible. The fourth path was
not satisfied (unsat) by the Z3 solver on the basis of the given inputs. Therefore, it was
considered an infeasible path and was not executed at all under the given inputs.

5. Experimental Results and Evaluation

The proposed approach was implemented in PHP, and the implementation followed
the architecture in Figure 4 and the approach presented in the previous sections. The
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objective of the experimental evaluation was to answer the following questions: (1) Is the
proposed approach able to detect the feasible paths and avoid the detection of duplicated
paths amongst the test programs (Section 5.3)? (2) Does the minimal SSA form reduce the
time required to generate the paths compared with other studies that used the SSA form
(Section 5.4)? (3) Is the proposed approach able to process a large set of PHP applications
(Section 5.5)?

5.1. The Dataset

The proposed approach focuses on PHP as the most popular web technology for
building a web application. To our knowledge, no study has been conducted to detect
feasible paths on the basis of PHP. Therefore, we used the same test programs written in C
language that were used in related studies [42–51]. These programs were rewritten in PHP.
Table 2 presents the characteristics of the test programs, including the number of lines of
codes, LoC, the number of branches of each program, B (can be either selection or loop
statements, such as IF, IF ELSE, WHILE, FOR and DO), Description, the number of feasible
paths (non-duplicated paths), F, and their reference(s), Refs.

Table 2. Test programs.

Program LoC B Description F Refs.

eR1985 18 3 (Expint) Raises one integer to the power of the other. 5 [42–44]

fcB2002 21 4 (Floatcomp) Compares three floating point numbers
and has some selections. 5 [43–47]

gA2008 16 3 Finds the greatest common divisor between any
given two integers. 5 [43,44,48,49]

rA2008 16 3 Finds the remainder in integer division. 4 [43,44,46,48,50,51]

tA2008 14 3
Determines whether three given numbers that
represent three lengths on a plane form a scalene,
isosceles, equilateral, or not a triangle.

4 [43,44,46–48,51]

tM2004 20 4
(Triangle) Classifies three numbers representing
triangle side lengths into five type triangles: scalene,
isosceles, right, iso-right, or equilateral.

7 [43,44,47]

ttB2002 38 7 (Tritype) Accepts three integers representing sides of
a triangle, classifies its type, and computes its area. 8 [43,44,47]

LoC: Lines of Codes, B: the number of branches of each program, Description: a description of each program, F: the number of feasible
paths (non-duplicated paths), Refs: reference(s) of each program.

The programming language used to write these programs does not affect the results of
the programs because target paths are based on the control flow graph; thus, the program
does not have a specific statement related to one programming language [43]. This task is a
common practice in testing experiments undertaken by several studies that rewrote these
programs in MATLAB [44,48]. Others rewrote them in Java [52–54]. The source code of
each program in C and PHP is publicly available (https://github.com/Amarashdeh/FP-
PHP-C-TestPrograms, accessed on 1 April 2021).

The entire experiment was conducted on the operating platform Windows 10, 8 GB
RAM, Intel i5-7200U CPU. PHP version 7.4 was used to build the proposed approach with
XAMPP local server version 7.4.

5.2. Performance Evaluation Metrics

The proposed approach started by analyzing the source code to generate an AST.
Then, the AST was converted to a minimal SSA form, which is the form that helps to
reduce the instructions in the normal SSA form. Two well-defined algorithms were used
for the symbolic inputs’ assignments and the path generation including the condition
extractor. The entire process of generating the feasible paths was conducted automatically,
which means that no human action is needed for generating the path conditions. A path
weight method was proposed to avoid detecting duplicated feasible paths. The last stage

https://github.com/Amarashdeh/FP-PHP-C-TestPrograms
https://github.com/Amarashdeh/FP-PHP-C-TestPrograms
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checks the paths’ conditions by using the Z3 solver. The results of the Z3 solver show
the satisfiability of each path and the values of each symbolic input that could satisfy the
condition if it is a feasible path.

The proposed approach’s performance was assessed based on the number of feasible
paths detected, the number of duplicated paths detected, and the time required to generate
paths. “Recall” measures the percentage between the number of feasible paths correctly
detected and the actual number of feasible paths existing in the source code. “Duplicat-
edPathsPercentage” measures the percentage between the number of duplicated paths
detected and the total number of paths detected in the program. The precision and recall
rates were calculated with Equations (2) and (3), respectively.

Recall =
FDetected − FFalse

FTrue
(2)

DuplicatedPathsPercentage =
DFDetected
FDetected

, (3)

where FDetected denotes the number of feasible paths detected and FTrue denotes the number
of feasible paths that exist in the detected program; FFalse denotes the number of feasible
paths detected that are infeasible in reality; DFDetected denotes the number of duplicated
feasible paths detected.

The evaluation of the time required to generate the paths was performed using the PHP
built-in function microtime(), which is a function that returns the current Unix timestamp
in microseconds [55]. By default, microtime() yields a string in the form “msec sec,” where
sec is the number of seconds and msec gauges microseconds that have elapsed since sec,
which is also stated in seconds. We set up the function at the first stage of generating the
SSA form and it ends at the termination of generating the paths.

5.3. Feasible Paths Detection

Table 3 depicts the outcomes of our approach and those of related studies. We com-
pared the proposed approach with the most common engines and tools that are publicly
available, such as KLEE [7] and SDART [12]. The KLEE engine is the most related work to
ours. It uses the SSA form in the LLVM compiler with symbolic execution to detect feasible
paths. We selected the latest version of KLEE 2.2, which was released on 7 December 2020.
The SDART tool is based on CFT4CUnit [34] and DART [23]. It reduces the number of
test cases required to generate feasible paths compared with the previously mentioned
tools [23,34]. The second column in Table 3 shows the real number of feasible paths (non-
duplicated paths) in each program (denoted as #TFP). The third and fourth columns show
the KLEE results, where #FD denotes the number of feasible paths detected, and #DFD
denotes the number of duplicated feasible paths detected. The fifth and sixth columns
show the results of SDART, followed by the proposed approach’s results in the seventh
and eighth columns.

Table 3 presents the results of each study on detecting feasible and duplicated paths.
Each feasible path generated by each tool was checked to determine whether it is a new
path or duplicated from previous detected paths. KLEE detected 45 feasible paths, 10 of
which were duplicated. This result means that the number of new feasible paths detected
by the KLEE engine was 35. Meanwhile, the SDART tool detected 27 feasible paths, four of
which were duplicated. Notably, the four paths were found in the test programs that had
more than two conditions at the same branch. The number of new feasible paths detected
by SDART was 23. Our approach detected 35 feasible paths without any duplicated paths
amongst the results, and all the duplicated paths were addressed and avoided before
checking their feasibility.
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Table 3. Results of detected feasible paths and duplicated paths.

Program #TFP
KLEE SDART Our Approach

#FD #DFD #FD #DFD #FD #DFD

eR1985 5 7 3 1 0 4 0
fcB2002 5 6 1 5 1 5 0
gA2008 5 4 0 2 0 4 0
rA2008 4 3 0 3 0 3 0
tA2008 4 8 4 6 2 4 0
tM2004 7 8 1 4 0 7 0
ttB2002 8 9 1 6 1 8 0

#TFP: the real number of feasible paths (non-duplicated paths) in each program, #FD: the number of feasible
paths detected, #DFD: the number of duplicated feasible paths detected.

To answer the first question, we calculated the recall and duplicated path percentages
for each study result by using the previously provided metrics (2) and (3). Table 4 shows
the recall percentage of each study.

Table 4. Summary of KLEE, SDART, and our approach’s results.

Metric KLEE SDART Our Approach

Recall 92.1% 60.5% 92.1%
Duplicated paths 26.6% 14.8% 0%

The results of analyzing the test programs in Table 3 indicate that the proposed
approach and KLEE have the same recall percentage (92.1%). The recall rate can reflect
the comprehensiveness of the test results. Both approaches adopted the same structure to
detect feasible paths. However, our approach reduced the number of instructions in the
SSA form by using the minimal SSA form [11]. Meanwhile, KLEE detected 10 duplicated
paths that were detected in the previous test generation. By contrast, our PWM successfully
addressed such paths and did not proceed to check their satisfiability in the Z3 solver.
SDART’s recall percentage (65.7%) for detecting feasible paths was the lowest in the other
studies. The test generation in SDART had an issue in covering the branches that had an
infinite loop (fcB2002); it generated 45 test cases, without the ability to cover the last path
that is related to the “while” loop. SDART missed 15 feasible paths that were not detected
by the test programs. However, SDART was better than KLEE at reducing the number
of duplicated paths in the test generation (duplicated path percentage), and the usage of
this method shows its efficiency in avoiding duplicated paths under two conditions at the
same branch.

5.4. Paths Generation Time

To answer the second question, we compared the proposed approach with KLEE to
reflect the reduction in the number of instructions analyzed by the minimal SSA form.
KLEE [7] was implemented as a virtual machine for LLVM. However, the LLVM compiler
uses the algorithm of Cytron et al. [32] to produce the SSA form. The algorithm that
we used to generate the minimal SSA form by Braun et al. [11] reduced the number of
instructions in the program. Table 5 shows the number of instructions (#I) and the time
required for each program to generate its paths (T) in seconds. The time shown in Table 5
excludes the SMT solver’s time to check the satisfiability of each path because many studies
have already been conducted to compare the SMT solver’s time and performance [56–58].
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Table 5. Comparison of KLEE (using SSA) and the proposed approach’s (using minimal SSA) times
for generating paths among the test programs.

Program
KLEE Our Approach

#I T(s) #I T(s)

eR1985 66 0.014 53 0.007
fcB2002 70 0.007 55 0.006
gA2008 52 0.009 41 0.004
rA2008 52 0.005 39 0.004
tA2008 92 0.016 73 0.012
tM2004 53 0.004 49 0.003
ttB2002 190 0.433 155 0.293

#I: the number of SSA instructions generated in each program, T(s): the time required for each program to
generate its paths in seconds.

The comparison of the number of constructed instructions (#I) indicates that the
proposed approach generated fewer constructions than KLEE. The number of instructions
generated by the programs depends on the LoC of each program and the number of
conditions inside each branch. For example, the instructions in programs that have multiple
conditions at the same branch (such as ftB2002, tA2008, and ttB2002) are more numerous
than those in programs that have one condition inside the same branch. In addition, the
results in Table 4 indicate that the proposed approach reduced the time for generating the
paths. The last program (ttB2002) had more branches than the other programs. It had seven
branches, five of which contained at least more than two conditions at the same branch.
LLVM generated 190 instructions, and KLEE traversed all of these instructions to generate
paths in 0.433 s. Meanwhile, our proposed approach generated 155 instructions under the
same program and consumed a total of 0.293 s to generate the paths. From these results,
we can assume that the proposed approach is efficient at reducing the time required to
generate paths.

5.5. Large Scale Programs

Our proposed approach is evaluated with a large set of test cases. This evaluation is
carried out to prove that the proposed approach is capable of detecting feasible paths with-
out any duplications from the PHP program. The proposed approach was implemented
with 893,575 LoC in 10 WordPress plugins [59] as shown in Table 6, where the first column
shows the plugins’ names, with the plugin versions tested by each proposed approach in
the second column. Column three shows the number of PHP files in each plugin, followed
by the line of code (LoC) for each plugin. The number of constructed instructions and
analyzed branches are shown in the fifth and sixth columns, respectively. The detected
feasible paths (#FD) among each plugin are shown in the seventh column, followed by the
detected duplicated feasible paths (#DFD). Lastly, the time required to generate the paths
is shown in the last column. We deployed the Cloc (https://github.com/AlDanial/cloc;
accessed on 14 April 2021) tool to count the number of PHP files and LoC in every plugin.
Cloc has been utilized in recent studies for similar metrics [60–62].

Table 6 shows that the proposed approach detects, in total, 152,669 new feasible paths
(Total #FD) within 646.06 s (Total #T(s)), where each path has its own weight (unique
weight). It should be noted that the 10 programs consist of a number of strings or pure
numerical comparison branches, which belong to data types that can be solved by a
constraint solver. Therefore, it is possible to detect a good number of feasible paths using
the proposed approach. With regard to the program, i.e., Gallery (a web application
allowing users to publish and organize photos in albums), although it contains a large
number of branches, the proportion of the constraints that could be solved was not high,
owing to the limitations of the constraint solver. Therefore, the proposed approach only
detected 2116 paths among the 3093 branches in the Gallery program. In addition, among
the analyses of the 10 programs, it was noted that the proposed approach failed to analyze
the built-in WordPress functions, i.e., add_action (“list_menu”, function_name), which is

https://github.com/AlDanial/cloc
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quite challenging when it comes to our approach, since it requires an understanding of the
built structure of that function in WordPress that can be traversed and analyzed.

Table 6. Summary of running the proposed approach with open source applications.

Program Version Files LoC #I #B #FD #DFD T(s)

Peruggia 1.1 10 659 3664 59 235 462 1.86
Measureit 1.14 2 826 3939 34 158 79 0.97
Zipec 0.32 10 1160 2458 126 424 319 2.58
PHPLib 7.4 75 13,053 42,192 324 694 706 4.94
Getboo 1.04 160 21,318 119,526 1776 2977 1223 9.28
WordPress 2.0 215 30,147 205,816 3198 7345 4383 17.49
Gallery 2 586 83,787 184,533 3093 2116 1744 12.41
NeoBill 0.9 620 100,139 249,820 3365 11,740 9583 31.75
Phpmyadmin 2.6.3 287 143,171 625,406 2229 29,815 11,462 59.92
TikiWiki 21.4 1563 499,315 2,211,879 30,243 97,165 37,829 504.86

On the other hand, if a path is found to possess the same weight as a previous path
that has been detected as a feasible path, it is considered a duplicated path. The proposed
approach avoided 67,790 duplicated feasible paths (#DFD) among the 10 programs, all
which were detected previously as feasible paths. The time required to analyze the instruc-
tions and to generate the paths was different in each program based on the number of
instructions and conditions that were analyzed.

Since no study has thus far been conducted to detect the feasible paths in PHP, we
followed the methods of various studies [17,63–65] to validate the large-scale results by
randomly selecting 50 feasible paths from each plugin (detected by the proposed approach)
and checking manually whether any of them were duplicated. Table 7 shows the results
when checking for duplications in the detected feasible paths out of the 50 paths that
were chosen randomly from each plugin. The first column (program) shows the plugin
name, the second column (#FP) shows the number of paths that were chosen randomly
for testing, and the third column (#DFP) shows the number of duplicated paths out of the
50 chosen paths.

The chosen feasible paths in Table 7 were analyzed and we checked whether any
duplication existed with the detected feasible paths (i.e., the validation of these paths was
implemented by utilizing inputs from Z3Solver to ensure the feasibility of the path). It can
be noted that our work successfully accomplished our objective of to producing no dupli-
cations in each presented program. This indicates that the proposed work was evaluated
accordingly. A sample of the results is shown in Appendix A (test case of Peruggia).

Table 7. Manually validation of 50 detected feasible paths.

Program #FP #DFP

Peruggia 50 No duplication
Measureit 50 No duplication
Zipec 50 No duplication
PHPLib 50 No duplication
Getboo 50 No duplication
WordPress 50 No duplication
Gallery 50 No duplication
NeoBill 50 No duplication
Phpmyadmin 50 No duplication
TikiWiki 50 No duplication

6. Threats to Validity

While this research demonstrates the effects of minimal SSA representation and avoids
duplicated paths in the generation of feasible paths, threats to the validity of certain results
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remain that the reader should account for when interpreting any outcomes. These threats
comprise internal, external, and construct validities, and this section clarifies such problems
regarding valid study results.

6.1. Internal Validity

Internal validity threats concern mostly uncontrolled factors that can influence experi-
mental results. The key internal validity threat here lies in probable faults arising in the
execution of our strategy. To mitigate this problem, we reviewed our experimental scripts
for different feasible path scenarios and cases to ensure correctness before carrying out all
experiments.

6.2. Construct Validity

Threats to construct validity mainly involve the relationship between observation
and theory, which arise mostly in regard to how performance is measured for the pro-
posed method of generating feasible paths. Test programs were chosen for the evaluation.
Moreover, the performance for each feasible path generation strategy was compared via
objective metrics such as the amounts of feasible and duplicated paths detected and the
time needed for generation.

6.3. External Validity

External validity involves the generalizability of the research findings. Could our
approach be implemented with alternative languages effectively? The results indicate that
reducing the number of instructions in the SSA form helps decrease the time required
to generate the paths. In addition, the proposed method for avoiding duplicated paths
has proven its efficiency in avoiding the detection of duplicated paths. In the future, we
intend to experiment with various applications written in different languages, which entails
creating a minimal SSA form in such languages. Then, the approach could be generalized
to several other languages.

The proposed approach in PHP was compared with C-based approaches, where
the number of feasible paths and duplicate paths are the same in both languages. The
programming language used to write the 7 test programs does not affect the results of the
programs because the target paths are based on the control flow graph; thus, the program
does not have a specific statement related to one programming language [43]. However, it
would have been better to test the time spent on implementing the paths in each language
using the same programming language. The algorithm created by Braun et al. [11] was
previously compared with that of Cytron et al. [32], and the results indicated that a non-
optimized implementation of the algorithm of Braun et al. [11] is somewhat faster than
Cytron et al.’s [32] algorithm. Therefore, using Braun et al. [11] algorithm, our results were
significantly better than the results obtained using KLEE, as the Braun algorithm helped to
reduce the number of instructions to be analyzed and the time required to generate the
paths. However, to increase the confidence in the results, in the future, we aim to enhance
the proposed approach with other algorithms and provide a full comparison based on PHP
(as there are no currently available studies conducted on PHP).

7. Discussion

The proposed approach aims to strengthen studies on detecting feasible paths based
on PHP. We selected PHP for two reasons. First, it is widely used in server side web
application development, with PHP programs having been used in some 21 million online
domains. Second, PHP has long been the center of prior research on the static detection
of Internet vulnerabilities, and thus, it has readily available benchmarks. Therefore, the
proposed approach would be useful for future studies by implementing their security
vulnerability method on the detected feasible paths to help reduce the false positive rate in
their results.
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To our knowledge, no study has focused on detecting feasible paths in PHP. Thus, we
compared our outcomes with related studies that used C language [7,66], and the results
demonstrate the efficiency of our proposed approach in detecting feasible paths, avoiding
the detection of duplicated paths, and reducing the time required to generate paths. Static
analysis differs from dynamic analysis in that it can cover 100% of code lines. However,
it cannot be conducted on multiple technologies such as PHP, Java, etc. Each approach
focuses on one technology and analyzes that technology only.

KLEE [7] is a symbolic execution tool implemented as a virtual machine for LLVM.
Nevertheless, the LLVM compiler uses the algorithm of Cytron et al. [32] while mimicking
non-SSA by placing every local variable into memory, which is typically not in the SSA
form. This method comes at the expense of expressing simple definitions and the use
of such variables involving memory operations. Around 25% of all instructions shown
to be generated by the LLVM front end can be categorized as such. These variables are
eliminated by SSA construction immediately following IR construction. The algorithm that
we used to generate the minimal SSA form, by Braun et al. [11], was compared with that
of Cytron et al. [32], and the results indicated that a non-optimized implementation of the
algorithm of Braun et al. [11] is somewhat faster than the heavily optimized implementation
of Cytron et al.’s [32] algorithm within the LLVM compiler. The experimental results of
the proposed approach indicate that our approach is more effective than KLEE [7] in terms
of the time required to generate paths amongst program instructions. Furthermore, we
introduced a method to avoid detecting duplicated feasible paths.

It is worth mentioning that the proposed approach could be implemented using other
programming languages such as C or Java. However, first, this would require finding the
minimal SSA representation of those languages by applying on-the-fly optimization to the
original SSA form, in a similar manner to the algorithm by Braun et al. [11]. Then, the
symbolic interpreter and path generation could be used to generate the path conditions. In
addition, the proposed path weight method proved to be useful to address the duplicated
paths and could be implemented using other programming languages to eliminate the
duplicated paths.

The limitation of the proposed approach is that it focused only on PHP, because the
nature of static analysis is that it can only analyze the source code of one technology
at a time. The solution for this issue is to build the proposed approach based on those
technologies or to propose an approach based on dynamic analysis. However, using
dynamic analysis would mean that 100% of LoC cannot be covered, causing some missing
paths to not be detected [67]. Furthermore, with such dynamic analytical approaches, it
might not be possible to acquire a deeper understanding of how an application should
behave, which may lead to lower rates of detection.

8. Conclusions

This paper proposed an approach to detect feasible paths based on minimal SSA
representation and symbolic execution based on PHP. It starts by parsing the source code
to present an AST, followed by converting the AST to minimal SSA form, which is later
optimized to produce a minimal SSA form to decrease the number of instructions and the
number of φ functions that would be analyzed. A symbolic input for each superglobal
variable and uninitialized variable is assigned, and the paths and the conditions among
each path are generated. Furthermore, we introduced a method for avoiding detecting
duplicated feasible paths. The path conditions were the target for the Z3 solver to check
the satisfiability. To evaluate the proposed approach, we conducted experiments using
seven test programs that have been used in the related studies and 10 large scale web
applications. The results obtained indicated that the proposed approach improved the time
required to generate the paths and avoided detecting duplicated feasible paths. For future
works, we plan to implement the proposed approach based on another language such as C
or Java. The proposed approach can be improved by implementing it on a multiprocessor
or distributed systems, which it will help to decrease the time required to generate the
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paths, especially for large systems. The proposed method (PWM) has the ability to avoid
detection of duplicated feasible paths; thus, it could be combined with other evolutionary
algorithms (i.e., as part of the fitness function in genetic algorithms) to reduce the number
of iterations that will detect the same feasible paths more than once (duplicated paths).
In addition, we will attempt to combine the proposed approach with taint analysis to
detect security vulnerability in web applications. We expect the proposed approach to help
decrease the false positive and false negative rates of static taint analysis. Moreover, the
proposed approach could be extended to export the features of the source code, which
could help machine learning algorithms to obtain knowledge on program flaws.
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Abbreviations
The following abbreviations are used in this manuscript:

AST Abstract Syntax Tree
API Application Programming Interface
CUTE Concolic Unit Testing Engine
CFG Control Flow Graph
DART Directed Automated Random Testing
DFD Duplicated Feasible paths Detected
EXE Execution Generated Executions
FD Feasible Path Detected
PHP Hypertext Preprocessor
IR Intermediate Representation
Jpf Java PathFinder
LoC Line of Code
LLVM Low-Level Virtual Machine
MSR-LA Microsoft Research License Agreement
MSSA Minimal Static Single Assignment
PWM Path Weight Method
SMT Satisfiability Modulo Theory
STP Simple Theorem Prover
SSA Static Single Assignment
TFP True Feasible Paths

The following symbols are used in this manuscript:

B Program branches
CB The total number of Conditional Blocks in the current path
CBV List of the current block variables
DFDetected The number of duplicated feasible paths detected
FTrue The number of feasible paths that exist in the detected program
FFalse The number of feasible paths detected that are infeasible in reality
FDetected The number of feasible paths detected
GP List of all generated paths
i Instructions
LO The total number of Logical Operators in the path

https://github.com/Amarashdeh/FP-C-PHP-Datasets
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NB Normal Block (non-conditional block)
NFP List of new feasible paths (non-duplicated)
S Symbolic input
SGD List of all super global variables detected
SGV List of all super global variable in PHP
SNB The sum of the normal blocks
t Time
TFP Real number of feasible paths in the program
W(p) The calculated weight of the path

Appendix A

This section shows samples of the results of the proposed approach on the Peruggia
1.1 application.

Appendix A.1

Figure A1 shows a feasible path that was correctly detected as a feasible path (not dupli-
cated). The first part shows the symbolic variables of this path, followed by the conditions
that were extracted from this path. The green font color shows the Z3solver results with
a value for each symbolic variable that Z3solver suggests satisfies this condition. The
last two lines show the path weight value (7.75) and the type of path (a new path that is
not duplicated).

Figure A1. Example of feasible path detected in Peruggia application.

Appendix A.2

Figure A2 shows a duplicated feasible path that was detected as a duplicated path.
The first section shows the symbolic variables of this path. followed by the conditions that
were extracted from this path. Since the path weight was similar to a path that was detected
previously (7.24), this path was considered as duplicated, and it did not pass to the next
step (the feasibility check). The last line shows the path results for duplicated paths.
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Figure A2. Example of duplicated feasible path detected in Peruggia application.

Appendix A.3

Figure A3 shows the final results of analyzing the Peruggia application, where 3664 in-
structions (I) and 59 branches (B) were analyzed. A total number of 235 feasible paths
(FPD) was detected, while 462 duplicated feasible paths (DFP) were avoided within 1.862 s.

Figure A3. The final results of analyzing the Peruggia application.
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