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Abstract: In recent studies, self-supervised learning methods have been explored for monocular
depth estimation. They minimize the reconstruction loss of images instead of depth information
as a supervised signal. However, existing methods usually assume that the corresponding points
in different views should have the same color, which leads to unreliable unsupervised signals and
ultimately damages the reconstruction loss during the training. Meanwhile, in the low texture region,
it is unable to predict the disparity value of pixels correctly because of the small number of extracted
features. To solve the above issues, we propose a network—PDANet—that integrates perceptual
consistency and data augmentation consistency, which are more reliable unsupervised signals, into a
regular unsupervised depth estimation model. Specifically, we apply a reliable data augmentation
mechanism to minimize the loss of the disparity map generated by the original image and the
augmented image, respectively, which will enhance the robustness of the image in the prediction of
color fluctuation. At the same time, we aggregate the features of different layers extracted by a pre-
trained VGG16 network to explore the higher-level perceptual differences between the input image
and the generated one. Ablation studies demonstrate the effectiveness of each components, and
PDANet shows high-quality depth estimation results on the KITTI benchmark, which optimizes the
state-of-the-art method from 0.114 to 0.084, measured by absolute relative error for depth estimation.

Keywords: self-supervised; depth estimation; low texture; perceptual consistency; data augmentation

1. Introduction

Estimating depth from a single image is a significant computer vision task in enabling
computers to comprehend real scenes. It has been widely applied in AR (augmented
reality) [1], robotics navigation [2], and self-driving cars [3] for generating high-quality
depth from color instead of using expensive LiDAR sensors. Although the monocular
camera is cheap and light weight, the depth estimation task is still challenging for the
traditional SfM/SLAM algorithm [4].

In the deep learning method of monocular depth estimation, it can be coarsely clas-
sified into two categories, supervised and self-supervised learning. For the supervised
learning task, the original view to be estimated and its ground-truth depth data are both
the input of the neural network [5]. The depth map is obtained by expensive LiDAR
sensors [6], which is sparse compared with the original image on the pixel level. In the
case of poor ambient light, the capability of LiDAR will be greatly affected. Therefore,
the generalization ability of the prediction network trained by the ground truth depth
map obtained by the LiDAR sensor is insufficient. When the trained model is applied to a
new camera or to predict the depth of a new scene, the reliability of the prediction will be
greatly reduced. Meanwhile, obtaining significant ground-truth depth data for the dataset
is challenging. However, unsupervised learning methods utilize geometric constraints
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of stereo images as the only source of supervision, i.e., unsupervised learning takes the
image obtained by a monocular camera as input and uses view synthesis to supervise the
training network. This method is simpler than supervised learning and has a stronger
generalization ability between different cameras and different scenes.

However, self-supervised methods still do not perform as well as supervised methods
on the standard benchmarks. The reason lies in the weak supervision of the photometric
consistency, which refers to the pixel-level difference between the image from a perspective
and the reconstructed image generated by another perspective. Most of the previous
unsupervised monocular depth estimation methods rely on the color constancy hypothesis,
which assumes that if the original image and the reconstructed image are identical at
corresponding pixels, then they should have the same RGB values at each other’s positions.
However, in reality, as Figure 1 shows, many factors will cause color fluctuation, which may
affect the color distribution. For example, the light intensity, noise and the reflection of light,
etc., are different in two different views. Therefore, the unsupervised loss we use is easily
affected by these common factors that interfere with the color. When the reconstructed
image is generated from another image disturbed by the above factors, the losses incurred
in the undisturbed areas are inaccurate, so that causing unreliable results when generating
a depth map. The problem caused by color constancy hypothesis is referred to as the color
fluctuation problem.

Reflection Light Intensity

Real-world Situation:

Figure 1. Illustration of the color constancy hypothesis problem in previous self-supervised depth
estimation task, where Il and Ir represent the left and right view, dr represents the disparity map
of the right view, ij represents the coordinates on an image, and RGB represents the RGB value on
each pixel.

At the same time, the low texture problem also affects the depth estimation. In the
low texture region of the two images, if the feature information is ambiguous, then the
disparity map generated by the model may not be accurate. For example, when calculating
the photometric loss in those regions, the loss values could be very small for the model to
represent, but in fact, the two areas may not be the same.

To solve the above problems, we propose a novel self-supervised depth estimation
network—PDANet, which contains two extra unsupervised signals: (1) the perceptual
consistency uses the loss in the high-order semantics level rather than the pixel level, which
brings abstract matching clues for the model to match the low texture and color fluctuation
region. (2) The data augmentation consistency effectively enhances the robustness of the
image to color fluctuation caused by illumination and other factors instead of applying
color constancy hypothesis.

For the perceptual consistency, we use the outputs of several layers of the pre-trained
VGG16 model to extract the abstract semantic information of the image and utilize the
pyramid feature aggregation method to aggregate high-order and low-order features.
Model training is supervised by minimizing the perceptual consistency loss between the
generated image and the original image.

For the data augmentation consistency, we compare the unprocessed areas of two
disparity maps, which are obtained by feeding the original image and the image after data
augmentation on some areas into the network.
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Table 1 shows the comparison between the above approaches and PDANet in terms
of data acquisition, generalization ability, limitations, and prediction effect.

Table 1. Comparison of different approaches.

Supervised Unsupervised PDANet

Ground Truth Needed Not Needed Not Needed
Acquisition of Depth Map Hard - -
Generalization ability Low - -
Color Constancy Hypothesis Problems No Yes No
low-texture regions Problems No Yes No
Quality of Prediction High Low Relatively High

An example result from our algorithm is illustrated in Figure 2. Specifically, our
contributions are as follows:

1. Based on the baseline monocular depth estimation network, we integrate data aug-
mentation consistency and perceptual consistency as supervised signals to overcome
the color constancy hypothesis and image gradient disappearance in low-texture
regions for previous work.

2. We propose a new unsupervised loss based on perceptual consistency to excavate the
deep semantic similarity before and after image reconstruction so that the model still
obtains genuine image differences in low texture and color fluctuation regions.

3. We also innovatively propose a heavy data augmentation consistency to solve the
color fluctuation problem and greatly enhance the generalization of the model.

1

Figure 2. Examples of PDANet’s results on KITTI2015 [6]. From left to right: input images, ground
truth disparity maps, and results of PDANet.

2. Related Work
2.1. Supervised Depth Estimation

Since the ground truth is used as the supervising signal for the network in the super-
vised approaches, the deep network directly learns the mapping between the RGB map
and the depth map. Eigen et al. [5] first use CNNs for the monocular depth estimation,
the architecture consists of two components: coarse-scale networks to extract global infor-
mation, and fine-scale networks to refine local information. Based on [5], they propose a
unified multiscale network for three tasks: depth estimation, semantic segmentation, and
normal vector estimation [7]. Laina et al. [8] propose a fully convolutional network, using
residual networks to extract global information and designing residual up-sampling blocks
to improve the quality of depth estimations.

Many methods have converted depth estimation to a classification problem.
Cao et al. [9] discretize continuous depth values into several bins and use a CNN to
classify them. Fu et al. [10] propose a spacing-increasing discretization strategy to dis-
cretize the depth, reconstructing deep network learning as an ordered regression problem
to prevent over-strengthened loss.

Supervised methods require annotated datasets, while the acquisition of these datasets
are costly. To alleviate the burden of the annotation task, weakly supervised methods in
the form of supervised appearance matching terms [11], parse ordinal depths [12], and
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known object sizes [13] have been proposed. Since research on these tasks have reached a
bottleneck, self-supervised monocular depth estimation has been explored in recent studies.

2.2. Self-Supervised Depth Estimation

The self-supervised approach is under photometric and geometric constraints instead
of costly depth values. Many methods are developed in a supervised manner, either using
stereo pairs or exploiting monocular sequences. Here, we concentrate on research related
to self-supervised depth estimation based on stereo pairs.

Garg et al. [14] first present self-supervised depth estimation by converting the depth
estimation problem into a left–right view stereo matching problem with photometric loss.
Godard et al. [15] extend reconstruction constraints by disparity smoothness loss and
left–right depth consistency loss. Tosi et al. [16] introduce a traditional depth estimation
method, which generates proxy labels as supervised signals in the form of reverse Huber
loss, image reconstruction loss, etc. Wong et al. [17] propose a new objective function
to illuminate the bilateral cyclic relationship between the left and right disparity and
introduce an adaptive regularization scheme to deal with the co-visible and occluded
regions in stereo pairs.

To optimize the quality of depth estimation, various approaches have been developed,
such as generating virtual three-eye views from stereo pairs [18], utilizing the adversarial
learning framework [19,20], and designing a context-aware network [21].

3. Method

Here, we describe our PDANet for monocular depth estimation in detail. The PDANet
is designed to require only a left view Il as input and output a disparity map dl , which
is used to estimate depth on each pixel from the input image. As shown in Figure 3, the
PDANet consists of three components: data augmentation consistency, photometric consis-
tency, and perceptual consistency. It adopts the monocular depth estimation (Monodepth)
model proposed by Godard et al. [13] as the baseline. The architecture is designed to
enforce the depth estimation and robustness on low texture and color fluctuation areas.
Moreover, it preserves spatial structures as much as possible.

Depth Estimation Network

Photometric Consistency

Data Augmentation 
Consistency

Perceptual Consistency

Left View

Augmented Left View

Pre-trained VGG 16 Feature Pyramid

Augmented Disparity Map 

Left&Right Disparity Map 

Left&Right View

Left&Right Reconstructed View

Aggregation Block

……

……

2×116,622

……

……
2×116,622

Level 1

Level 2

Level 3

Level 4

Figure 3. Illustration of the overall architecture of PDANet, which consists of three components: data augmentation
consistency, photometric consistency, and perceptual consistency.

3.1. Backbone of Depth Estimation

Most of the existing training methods are supervised learning methods. By comparing
the real depth map with the predicted depth map, a loss is generated to reverse the
prediction network and converge the model. However, due to different scenarios, it is
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challenging to obtain quantitative ground-truth depth data. However, Godard et al. [15]
propose the Monodepth, which is a CNN-based model to calculate the disparity value of
each pixel, a depth D is calculated by predicted disparity map d, as shown in Equation (1).

D = T f /d, (1)

where f represents focal length of binocular cameras, and T represents the baseline distance.
The model applies the reconstruction loss, the disparity smoothness loss, and the left–

right disparity loss as unsupervised signals to replace the ground-truth depth data. This
model produces state-of-the-art results and even outperforms some supervised methods.
Hence, we used Monodepth [15] as the basis of our depth estimation work. Next, we
introduce the above-mentioned losses of photometric consistency.

3.1.1. Reconstruction Loss

Similar to [15], we input two images at the training time; the purpose is to generate
the disparity map of the left image and calculate its corresponding depth map, the right
view is the same. As shown in Equation (2) , Lrecons is the loss before and after image
reconstruction, Il is the original input image, Ĩl is the image generated by the network, α is
set to 0.15, which is used to balance two weights. structural similarity (SSIM) and L1 are
combined to generate Lrecons to ensure that the reconstructed image is consistent with the
original input image in the spatial domain.

Lrecons =
1
N ∑

i,j
α

1− SSIM
(

Il
ij, Ĩl

ij

)
2

+ (1− α)
∥∥∥Il

ij − Ĩl
ij

∥∥∥
1
. (2)

3.1.2. Disparity Smoothness Loss

As discontinuities often occur at image gradients [15], Lsmooth is a smooth term on
the disparity maps in Equation (3), which ensures the disparity maps are locally smooth.
Here ∇ is a differential operator that computes the gradients of the disparity map and the
input image. d represents the disparity map generated from the left view, and i, j are used
to locate the coordinate of an image.

Lsmooth =
1
N ∑

i,j

∣∣∣∇1
(

dl
ij

)∣∣∣e−∇1
(

Il
ij

)
. (3)

3.1.3. Left–Right (LR) Consistency Loss

To generate more accurate disparity maps, our network predicts both left and right
disparity maps, while only receiving input as the left view to the CNNs part. To ensure the
coherence, L1 left–right disparity penalty is applied to minimize the different between the
left disparity map and the projected map. Equation (4) shows the LR consistency where dl

or dr represents the left or right disparity map generated from the left view.

Llr =
1
N ∑

i,j

∥∥∥∥dl
ij − dr

ij+dl
ij

∥∥∥∥
1
. (4)

3.2. Perceptual Consistency

In previous self-supervised depth estimation networks such as Monodepth, the recon-
struction work is supervised by minimizing the difference between the input image and its
reconstruction image on a pixel level. However, in the low texture and color fluctuation
areas, the ignorance of high-level semantic information affects the photometric consistency.

For the low-texture areas, we present the reasons in detail by calculating the gradient
through the reconstruction loss [22]. Assuming that L is the direct loss of the original image
and the generated image at the pixel level, the gradient of L on dij is calculated as follows:
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∂L
∂dl

ij
=

∂`

(
Il
ij, Ir

ij+dl
ij

)
∂Ir

ij+dl
ij

·
∂Ir

ij+dl
ij

∂
(

ij + dl
ij

) · ∂
(

ij + dl
ij

)
∂dl

ij
. (5)

The gradient of reconstruction loss mainly depends on the
∂Ir

ij+dl
ij

∂
(

ij+dl
ij

) . In the low texture

region, the gradient is close to zero so that the value of the entire equation closes to zero,
resulting in the disappearance of the image gradient. However, high-level semantic features
such as contours in the low-texture regions enhance the feature representation, greatly
increase the image gradient, and improve the prediction capability of the model.

As for the color fluctuation regions, it is unreliable to use RGB values to evaluate the
image reconstruction effect; however, the semantic features such as shapes and sizes of
the objects in this region will not be affected by external factors; therefore, using high-
level semantic features to evaluate the effect of image reconstruction will produce more
reliable results.

Therefore, the perceptual loss is utilized to solve the above problems by ensuring
multi-scale feature consistency. In this section, we describe our approaches, including
feature extraction, feature aggregation, and computation of perceptual loss.

3.2.1. Feature Extraction

The perceptual loss aims at calculating multi-scale image losses at the semantic level.
The pre-trained VGG16 is capable of feature extraction, e.g., some CNN layers of VGG16
are exploited to evaluate semantic differences between images in the field of style trans-
formation and single-image super-resolution issue [23], etc. To evaluate the feature-wise
differences in the reconstruction work, we apply a pre-trained VGG16 to extract feature
representations. The backpropagation is not necessary for the feature extraction to work.

As shown in Figure 4, the output of VGG16 is a feature pyramid, which consists of
four scale features obtained by convolution layer 2, 4, 7, and 9 of VGG16. Each layer is
followed by an activation function ReLU. Fl represents the feature maps extracted at level l
(l ∈ (1, 2, 3, 4) for feature pyramid).

Feature Pyramid Aggregation Block

1×1
filter

4
×

Up
F1 F2 F3 F4

F1
F2
F3
F4

α1 α2 α3 α4· · 1×1
filter

2
×

Up
· · 1×1

filter

2
×

Down

Level 3

Input Image

Feature Map

Level 1

Level 2

Level 3

Level 4

Figure 4. Visualization of a feature fusion sample result and a brief illustration of feature aggregation.
For each level, each layer of the original feature pyramid is resized to specific size and the number of
channels and fused with specific weights.

3.2.2. Feature Aggregation

Multi-scale feature maps generated by VGG16 are used to excavate perceptual dif-
ferences. Meanwhile, to refine our loss functions, we draw inspiration from recent works
that aggregate features [24,25] to weave context information from multiple scales. At each
new level, the aggregation block is constructed to fuse feature maps at all the levels in the
pyramid. In Figure 4, the three steps of feature aggregation are exhibited: feature resizing,
1 × 1 filter, and feature aggregation.
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Here, the 1× 1 convolution filter is utilized to modify the number of channels of Fi to
that of Fl . For level l, we resize the feature maps Fi at the other level i (i 6= l) to the same
size as that of F1. Feature maps at four levels in the feature pyramids have different shapes,
so we apply the up-sampling and down-sampling strategies to modify the shape at each
level, e.g., at level 3, F1 and F2 need to be upsampled by transposed convolution and F4
needs to be downsampled by a 3× 3 convolution layer with a stride of 2.

To achieve better fusion for feature maps of the different receptive fields, we assign
different weights to create stronger representative feature maps instead of using the sum of
pixel wise.

Fl
agg = α1 · F1→l + α2 · F2→l + α3 · F3→l + α4 · F4→l. (6)

The adjustment in weight parameters represents the contribution of feature fusion.
Here, set αi = 0.7(i = l) and αi = 0.1(i 6= l), for F3

agg, F1, F2 and F4 are suppressed, and F3
is enhanced by feature aggregation.

3.2.3. Perceptual Loss

At last, the multi-scale feature maps Fagg are generated by the VGG16 and the ag-
gregation block, which contain contextual information from low-level to high-level rep-
resentation, so we propose the perceptual loss based on Fagg to integrate self-supervision
constraint to depth estimations.

Finally, the perceptual loss is measured by calculating L1 loss between Fl
agg generated

by the input left image I and F̃l
agg generated by the reconstruction.

Lper =
1
N ∑

i,j

4

∑
l=1

∥∥∥Fl
agg, F̃l

agg

∥∥∥
1
. (7)

3.3. Data Augmentation Consistency

Some works [26,27] in contrastive learning show the benefits of data augmentation
in self-supervised learning. The purpose is that data augmentation creates challenging
samples, which interfere with the reliability of unsupervised learning losses and provide
robustness towards different inputs. However, data augmentation is rarely used in un-
supervised methods because it brings natural color interference to the original image.
Therefore, we conduct the unsupervised learning by comparing the original data with the
augmented sample output, rather than optimizing the original objective of view synthesis.

Laug =
1

‖Mθ‖1
∑
∥∥(d− d̄θ

)
�Mθ

∥∥
2. (8)

Assuming that a random vector θ is used to parameterize any data augmentation
operation to the input image I, so an image Iθ is generated after θ operates on the original
image I. As Equation (8) shows, the disparity map obtained by inputting an original image
I generated by the disparity estimation network is d. Relatively, the disparity map obtained
by inputting an augmented image Iθ through network prediction is dθ . We compare the
disparity maps obtained before and after data augmentation through L1. Under the real-
world situations, if we exclude the augmentation part of the two images, the remaining
part of the disparity map generated by the two images should be the same. The disparity
prediction is not interfered with by the changes of other pixels, which indicates that
the prediction model generated in this case is robust. Therefore, the data augmentation
consistency is guaranteed by minimizing the difference between d and dθ .Mθ is a three-
dimensional (1×Height×Width) matrix containing only a true or false value, which
represents the unoccluded mask generated by augmentation operation θ. � is an operation
used to obtain unprocessed parts in two images. The epipolar constraints between views
confine us not to change the spatial location of pixels.
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3.3.1. Random Masking

To simulate the possible occlusion problem in two images, we randomly add a binary
mask to some areas of the original image to block these areas and project these masks to
the corresponding positions of the right image. Assuming that the unoccluded regions are
not affected by the occluded area when predicting the depth, we compare the unoccluded
area of the original sample and the data augmentation sample to generate a loss that affects
the model prediction. The random masking operation is presented by θ1.

3.3.2. Gamma Correction

Gamma correction is a nonlinear operation to change the light intensity of the image.
In this way, we strengthen the robustness of the interference caused by different scenes
of light, so that the model adapts to the interference under different ambient light. The
gamma correction operation is in form of θ2.

3.3.3. Color Jitter and Blur

Many transformations on the image bring color interference to the image, such as
color jitter, random blur, and so on. Owing to the color fluctuation, the loss generated
by the regular training method based on color constancy may generate inaccurate results.
Therefore, our method creates difficult scenes to strengthen the robustness of the model for
color fluctuation problem under unsupervised training. The color jitter and blur operation
is θ3. Therefore, the final data augmentation transformation θ is combined by the above-
mentioned three augmentations:

θ = θ1 ◦ θ2 ◦ θ3, (9)

where ◦ represents function composition.

3.4. Overall Architecture and Loss

Above all, we use the additional perceptual consistency and data augmentation
consistency as unsupervised signals on the baseline structure to solve the color constancy
hypothesis problems mentioned above and enforce robust prediction towards low-texture
regions. Hence, the final loss is defined as follows:

L = λ1 Lrecons + λ2 Lsmooth + λ3 Llr + λ4 Lper + λ5 Laug , (10)

where the weights are set as: λ1 = 1, λ3 = 1, λ4 = 0.2, λ5 = 0.1. To have the same
smoothness at each scale, r is used to rescale the disparity smoothing term αds. Thus
λ2 = 0.1/r, where r is the downsampling factor of this layer relative to the input image.

4. Results

Comprehensive experiments were conducted to evaluate our PDANet model. Firstly,
we describe the experimental process and parameter settings of the baseline monocular
depth estimation model using a single image as input. Secondly, the superior performance
of the model on low texture and color fluctuation regions are presented by comparing
our PDANet with the existing supervised and unsupervised models. Meanwhile, to
demonstrate the effectiveness of each part of PDANet, we perform an ablation experiment
by evaluating the performance of the Monodepth with and without perceptual consistency
or data augmentation consistency.

4.1. Implementation Details

Our PDANet was implemented in PyTorch with about 31 million parameters and
trained on a Titan RTX. The parameter setting and the split of dataset were the same as [15].
We trained the model for 30 epochs using the Adam optimizer; the batch size was set to 8.
The initial learning rate was set to λ = 10−4, which keeps constant for the first 10 epochs,
then halved every 10 epochs until the end. Initially, we tested the reverse transmission of
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data augmentation loss separately; the model takes a single image as an input using the
reconstruction loss as supervised signal, then serially uses another augmented image to
acquire data augmentation loss as another supervision to the network. However, we notice
that the results were not as expected by training in a serial way. Finally, we parallelized
the data augmentation component and the depth prediction component and minimized
the reconstruction loss combined with the data augmentation loss together to achieve
promising experimental results.

To optimize the prediction results, we applied two extra operations that enforces the
detail representations of images to our model. The operations are as follows.

4.1.1. Post Processing

To reduce the impact of stereo occlusion, we adopt a post-processing step similar
to [15]. For the input image I , we calculate the disparity map dl′ of the image after its
mirror flip I′. A disparity map dl′′ is obtained by turning this image dl′ back. The final
disparity map is generated by assigning the first 5% on the left from dl′′ and the last 5%
on the right of the image using dl . The central part is the average of dl′′ and dl . This
post-processing improves accuracy and reduces visual artifacts, which is called pp.

4.1.2. Low-Texture Regions

Based on the perceptual consistency, we add a regularization Llt to ensure the loss to
provide a large gradient on low-texture regions. In formula, ∇1 is a differential operator
that computes the gradients of the feature map and the orignal image.

Llt = −
1
N ∑

i,j

∥∥∥∇1Fl
agg

∥∥∥
1
. (11)

4.2. KITTI

Following the Eigen split mentioned in [5], the KITTI dataset [6] was divided into
two subsets: one contains 22,600 images from 32 scenes for training and the other contains
697 images from 29 scenes for testing. We limited the maximum prediction value of all
networks to 80 m.

To compare with existing works, estimation on the KITTI 2015 was performed, in-
cluding the models trained on different datasets. The evaluation indicators of monocular
depth estimation generally contains root mean square error (rmse), absolute relative error
(abs_rel), and square relative error (sq_rel). So we compared PDANet with some typical
supervised and unsupervised models based on these indicators; the comparison results
are shown in Table 2. We quantitatively analyzed that our model performs better than
other models in most of the indicators. Supervised models tend to have better performance
on accuracy indicators, while unsupervised models usually achieve better performance
on integrity indicators. It can be concluded that the proposed method is similar to the
supervised model in terms of indicator tendency. At the same time, compared to the model
with better performance using photometric consistency as the main supervision method,
our architecture struggled to fall into local minimum. Instead, it optimizes the whole
training process.

In addition to quantitative comparative tests, we also present a qualitative analysis, as
shown in Figure 5. Our method not only deals with low texture pixels but also obtains a
clear contour when encountering billboards and landmarks. The blue patches show the
differences in detail between our model and the baseline model. As for challenging scenes,
our method still effectively segments the depth information of each instance, with fewer
overlaps and blurry contours. The depth assessment indicators are calculated as Table 3:
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Input Image Monodepth PDANet

4 2

7 3

Figure 5. Comparison between PDANet and Monodepth on KITTI 2015 [6]. PDANet achieves much
better performance than Monodepth in terms of edges, land marks, and low-texture areas.

Table 2. Comparison between PDANet and other models. Best results in supervised methods are
in bold, and in unsupervised methods are underlined. For metrics with ↓ the lower the better,
for metrics with ↑ the higher the better. All models are tested on KITTI 2015 [6]. Our PDANet
outperforms the other models in all metrics; specifically, the abs_rel error is significantly lower than
the other models.

Methods Strategy abs_rel ↓ sq_rel ↓ rmse ↓ 1.25 ↑ 1.252 ↑ 1.253 ↑
Eigen [6] supervised 0.190 1.515 7.156 0.692 0.899 0.967
Cao [28] supervised 0.180 6.311 0.771 0.917 0.966
Xu [29] supervised 0.122 0.897 4.677 0.818 0.954 0.985
Zhang [30] supervised 0.101 4.137 0.890 0.970 0.989
Amiri [31] supervised 0.096 0.552 3.995 0.892 0.972 0.992
Garg [12] unsupervised 0.169 5.104 0.740 0.904 0.958
Godard [13] unsupervised 0.114 4.935 0.861 0.949 0.976
Zhan [11] unsupervised 0.151 1.257 5.583 0.810 0.936 0.974
Ranjan [32] unsupervised 0.140 1.070 5.326 0.826 0.941 0.975
Poggi [18] unsupervised 0.126 0.961 5.205 0.835 0.941 0.974
Wong [14] unsupervised 0.133 1.126 5.515 0.826 0.934 0.969
Chen [33] unsupervised 0.118 0.905 5.096 0.839 0.945 0.977
Zhou [34] unsupervised 0.121 0.837 4.945 0.853 0.955 0.982
Casser [35] unsupervised 0.108 0.825 4.750 0.873 0.957 0.982
Chen [36] unsupervised 0.099 0.796 4.743 0.884 0.955 0.979
Tosi [16] unsupervised 0.111 0.867 4.714 0.864 0.954 0.979
PDANet unsupervised 0.084 0.961 4.701 0.916 0.970 0.988

Table 3. Evaluation indicators for depth estimation models, where d∗ presents the ground-truth
depth, d denotes the predicted depth, and |D| is the number of predicted depth.

Abs Rel : 1
|D| ∑d∈D

∣∣d∗ − d
∣∣/d∗ RMSE :

√
1
|D| ∑d∈D‖d∗ − d‖2

Sq Rel : 1
|D| ∑d∈D

∥∥d∗ − d
∥∥2/d∗ RMSE log :

√
1
|D| ∑d∈D‖log d∗ − log d‖2

δt : 1
|D|

∣∣∣{d ∈ D | max
(

d∗
d , d

d∗
)
< 1.25t

}∣∣∣× 100%

4.3. Other Datasets

To demonstrate the generalization ability of our network, we use Cityscapes dataset [37]
and Make3D dataset [38] for testing. Although these datasets are different in camera pa-
rameters, image resolution, etc., our network still achieves reliable results.
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4.3.1. Cityscapes

The CityScapes dataset [37] uses stereo video sequences to record 50 different city
street scenes, including 22,973 stereo pairs. We also applied our model to the Cityscapes
for testing and obtain a better test result, as shown in Figure 6. We preprocessed the images
by removing the hood part of the car and retain only the top 80% of the image. Although
KITTI [6] and Cityscapes differ in image size, scene content, and camera parameters, our
model still achieves superior results. The low-texture areas such as billboards are clearly
predicted, and good predictions are obtained for objects such as cars and streetlights. All
of these show that the PDANet has a strong generalization ability.

Original Images Depth Maps

Figure 6. Results on the Cityscapes dataset [37]. The strongly reflective Mercedes-Benz logo is
removed and only the top 80% of the output image is retained.

4.3.2. Make3D

Make3D [38] consists of RGB monocular images and their depth maps, but stereo
images are not available, so the unsupervised depth estimation model cannot be trained on
this dataset. We therefore tested the Make3D with PDANet trained only on the KITTI, using
the same camera parameters as those provided by the KITTI dataset. As a requirement
of the aspect ratio of the images in the model, we cropped the input images. As shown
in Table 4, the model achieves reasonable results, surpasses the baseline model, and even
outperforms some supervised models in some metrics. The ground truth matrix of Make3D
is too sparse, which prevents the supervised model from estimating the depth of each pixel
properly. Our self-supervised learning method ignores this problem and obtains better
depth results, as shown in Figure 7, although it cannot obtain numerically as good results
as the supervised model.

Input
Image GT Karsch[39] Laina[8]

Mon-
odepth Ours

Figure 7. Results and comparison on Make3D dataset [38].

4.4. Ablation Study

To present the impact of our data augmentation consistency and perceptual con-
sistency improvement on the overall effect, an ablative analysis was implemented by
combining different components. The quantitative results of different loss combinations
are shown in Table 5. It shows that the prediction capability of the model improves with
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the addition of perceptual consistency and data augmentation consistency, and achieves
the best results when the two components are integrated. Visualization of improvements
by different components are shown in Figure 8, as shown in the blue patches, the edge
performance, and detail representation significantly improve.

Table 4. Results on the Make3D dataset [38]. Losses are calculated on the cropped central images
and the depth is lower than 70 m.

Method Strategy sq_rel ↓ abs_rel ↓ rmse ↓ rmse_log ↓
Train set mean supervised 15.517 0.893 11.542 0.223
Karsch [39] supervised 4.894 0.417 8.172 0.144
Laina berHu [8] supervised 1.665 0.198 5.461 0.082
Monodepth unsupervised 9.515 0.521 10.733 0.238
Monodepth + pp unsupervised 5.808 0.437 8.966 0.216
Ours unsupervised 8.497 0.491 10.525 0.233
Ours + pp unsupervised 5.054 0.418 8.671 0.212

4.4.1. Effect of Perceptual Consistency

Perceptual loss uses multi-scale high-level features to optimize the contrast effect of
reconstruction loss. It not only considers the differences between pixels but also reflects
the differences in semantics. Large numbers of the input images with uneven illumination
and shadows appear in the datasets, and the effect of prediction is significantly improved.
As shown in Table 5, compared with the network without perceptual loss, the model with
perceptual loss has a significant improvement in each indicator. Both of them contain the
same data augmentation and reconstruction loss function, and the abs_rel error decreases
from 0.0921 to 0.0846.

Table 5. Ablation study of different components in PDANet.

Lper Laug pp abs_rel ↓ sq_rel ↓ rmse ↓ d1_all ↓ 1.25 ↑ 1.252 ↑ 1.253 ↑
0.1016 1.7372 5.581 17.200 0.905 0.964 0.983

X 0.0920 1.2444 5.127 17.382 0.909 0.969 0.987
X 0.1013 1.7183 5.539 17.154 0.905 0.964 0.983
X X 0.0921 1.2345 4.996 17.890 0.912 0.970 0.987

X 0.0948 1.3093 5.264 17.089 0.908 0.965 0.985
X X 0.0855 1.0402 4.797 16.514 0.915 0.971 0.988
X X 0.0916 1.1597 5.150 16.909 0.910 0.966 0.985
X X X 0.0846 0.9613 4.701 16.683 0.916 0.970 0.988

4.4.2. Effect of Data Augmentation Consistency

It is always necessary for unsupervised training to perform data augmentation, which
improves the results of the self-supervised depth estimation network without affecting
training time. As shown in Table 5, all indicators are better than the basic model. At
the same time, data augmentation improves the generalization ability of the model and
facilitates the migration of the model.
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Input Image Monodepth Laug Lper Laug + Lper

4

5

6
2

7
8

9

3

Figure 8. Visualization of ablation study. From left to right: input images, the result of Monodepth, the result of Monodepth
with data augmentation consistency, the result of Monodepth with perceptual consistency, and the result of PDANet, where
Laug is the data augmentation consistency loss and Lper is the perceptual consistency loss. Blue patches show the different
effects in detail when applying each module separately.

5. Conclusions

In this paper, we innovatively propose an unsupervised depth estimation method
(PDANet) based on Monodepth. It aims at solving the problems of unreliable prediction
caused by the color constancy hypothesis in the previous work of image reconstruction and
the failure to obtain reliable image reconstruction loss in low-texture regions. The proposed
method enforces the data augmentation consistency; consequently, the model has strong
robustness in dealing with color interference. On the other hand, perceptual consistency
solves the problem of image gradient disappearance in low-texture regions and enhances
the consistency of reconstructed images at higher semantic levels. Experiments and ablation
analysis on KITTI benchmark demonstrate the effectiveness of our unsupervised learning
model. We also tested our model on Cityscapes and Make3D datasets and obtained superior
results. Our model shows not only strong deep prediction capability but also generalization
ability on different datasets.

Although our proposed perceptual consistency and data augmentation consistency
improve the quality of the results, the method still has some limitations. Our model still
fails to perform better when encountering transparent areas such as glass. Further, the
training process of our model requires the input of two high-quality images with different
perspectives to generate unsupervised signals, meaning that our model cannot be trained
on a dataset with only a single perspective image.

In future work, we will extend our model to video by considering the relationship
among multiple frames and ensuring the consistency of the same region among video
frames. We will also further investigate the limitations mentioned above in subsequent
research, improve the effectiveness of self-supervised depth estimation, bridge the gap
between our method, and fully supervised learning methods.
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Abbreviations
The following abbreviations are used in this manuscript:

SfM Structure from Motion
SLAM Simultaneous Localization and Mapping
VGG16 Visual Geometry Group Network with 16 convolutional layers
LiDAR Light Detection and Ranging
RGB Red Green and Blue
CNN Convolution Neural Network
Monodepth Monocular Depth Estimation Network proposed by Godard et al.
SSIM Structural Similarity
L1 Least Absolute Deviation
PP Post Processing
RMSE Root Mean Square Error
abs_rel Absolute Relative Error
sq_rel Square Relative Error
GT Ground Truth
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