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Abstract: Envelope analysis is a widely used tool for fault detection in rotating machines. In envelope
analysis, impulsive noise contaminates the measured signal, making it difficult to extract the features
of defects. This paper proposes a time–frequency envelope analysis that overcomes the effects of
impulsive noises. Envelope analysis is performed by dividing the signal into several sections through
a time window. The effect of impulsive noises is eliminated by using the frequency characteristics
of the short time rectangular wave. The proposed method was verified through simulation and
experimental data. The simulation was conducted by mathematically modeling a cyclo-stationary
process that characterizes rotating machinery signals. In addition, the effectiveness of the method
was verified by the measured data of normal and defective air-conditioners produced on the actual
assembly line. This simple proposed method is effective enough to detect the faults. In the future,
the approaches of big data and deep learning will be required for the development of the prognostic
health-management framework.

Keywords: fault detection; impulsive noise environment; rotating machinery; envelope analysis

1. Introduction

In order to prevent greater losses from malfunctions, unnecessary overhaul, and hu-
man loss, the fault detection of rotating machinery has been studied in various ways [1,2].
Recently, companies have been investing in automated fault-detection systems using vari-
ous sensors and equipment to accurately and efficiently improve the subjective judgment
of human operators on the factory floor [3,4]. To accomplish fault-detection systems, signal
processing techniques for detecting faults in rotating machinery that generate vibration
and noise-depending on the operating speed can transform original signals into useful
features [5]. In other words, to design an effective automated fault-detection system using
vibration and acoustic signals, appropriate techniques should be selectively used according
to the characteristics of the measured signal [6].

The cyclo-stationary (CS) process refers to a non-stationary process in which the
statistical properties of the signal have periodicity. CS approach plays a very important role
in extracting the faulty signature of a rotating machinery [7,8]. Envelope analysis has been
widely used as a tool to analyze CS signals for a long time, especially as a powerful fault-
detection technique for rolling bearings [9–11]. The fault in rolling elements periodically
impacts the mechanical system. This impact causes the system to generate amplitude-
modulated vibration signals by the resonance frequency. The envelope of a CS signal is
extracted by the Hilbert transform, always as well as a band-pass filter. This procedure
is called amplitude demodulation. Through the analysis of the extracted envelope, it is
possible to find the fault signatures inherent in the resonant frequency band excited by
the faults.

Appl. Sci. 2021, 11, 5373. https://doi.org/10.3390/app11125373 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1218-2812
https://orcid.org/0000-0002-5059-0112
https://doi.org/10.3390/app11125373
https://doi.org/10.3390/app11125373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125373
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125373?type=check_update&version=2


Appl. Sci. 2021, 11, 5373 2 of 16

Therefore, selecting an appropriate band for demodulation is important. Spectral
kurtosis (SK), also known as Kurtogram, is a well-known method in this field. SK helps
selecting the optimal frequency band that represents impulsiveness of the signal. Kurto-
sis is calculated for each band-passed signal with equal bandwidth but different center
frequency [12–14]. Mosleh et al. [15,16] proposed the method based on envelope analysis
using SK to detect the wheel flat of a railway train. The proposed system was verified by
numerical model and experiments in the laboratory. The results showed that the wheel
flat can be detected with two accelerometers spaced half the circumference of the wheel
on the rail. Another method to estimate the informative frequency band, Protrugram, is
similar to SK, but calculates the kurtosis of the envelope spectrum of the band-passed
signal with different band-pass filter [12,14]. These two methods mentioned above focus
on the impulsiveness rather than the periodicity of the fault, such as reflecting the kurtosis
that is decreased by the high rate peaks or increased by the single peak. Likewise, they
are very vulnerable to impulsive noises generated by random sources [13]. Due to these
limitations, many studies have been conducted to determine the suitable frequency band
by using the impulsiveness and periodicity of the fault together [14,17,18]. Tyagi et al. [19]
proposed the method that applied particle swarm optimization (PSO) to find the envelope
window for rolling element bearing fault detection. PSO is an optimization algorithm
inspired by the social behavior of birds and fish groups. The authors implemented the
iteration of the algorithm with the objective function to maximize the peak of the bearing
characteristic defect frequency in the envelope spectrum.

Moreover, it is necessary to remove various noise in the measured signals to effectively
carry out envelope analysis because it reflects the shape of variations in time signals. Elasha
et al. [20] developed envelope analysis method for signals with an adaptive filter to remove
deterministic signals from gears and shafts that mask the defective signals in planetary
bearings. Peeters et al. [21] conducted envelope analysis using long pass liftered cepstrum
and wavelet denoising as noise reduction methods. Cepstrum is known as inverse Fourier
transform of the logarithmic spectrum of the signal. Numerous studies on noise-removal
methods for envelope analysis have focused on Gaussian noise or deterministic parts of
gears [22–24].

In this paper, impulsive noise means short-time noise independent of the measurement
signal, such as external noise that may occur when a door is slammed, external knocks on
the bearing housing, and electromagnetic interference. There can be many unpredictable
noises on the factory floor and industrial application, such as noises generated by other
technical processes around the inspection sites or by the activities of workers [18,25,26].
To address this issue that degrades the performance of the CS-approach-based method
in impulsive noise environment, various methods have been proposed, such as cyclic
correntropy [13,27,28], gini-index guided bearing fault diagnosis to replace kurtosis [18],
and infogram using both periodicity and impulsiveness of fault signature [14]. Cyclic
correntopy shows good performance of the fault diagnosis even in the presence of im-
pulsive noise, but there is concern about computation time. Smith et al. [17] proposed an
optimized spectral kurtosis method that can be applied to signals with poor kurtogram
and protrugram performance due to electromagnetic interference noise. Indeed, on the
factory floor, efforts have been made to improve the detection rate of noise-defects by
making soundproof rooms that block various noise, including impulsive noise [5,29–31].
However, it is difficult to completely block impulsive noise because it has high energy in a
wide frequency range within a short time.

In the previous studies for condition monitoring or defect detection in impulsive
noise environment, deep perceptions of the mathematical approaches are required for
practical application. We propose a simple approach based on time–frequency analysis for
defect detection or condition monitoring in the presence of impulsive background noise.
Because time–frequency analysis combines both information in the time and the frequency
domain, it is thus an effective approach for non-stationary signal analysis in machine fault
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diagnosis [32,33]. Many methods based on time–frequency analysis have been proposed
for effective condition monitoring or defect detection [4,33–36].

To mitigate the effects of impulsive noises independent of the fault signal of a rotating
machinery, envelope analysis using a time window was first performed and the frequency
response characteristics of a single short time rectangular wave was used. The proposed
method was validated using synthetic signals modeled as a CS process and real data
measured in an air-conditioner (AC) production line. The contribution of the proposed
method is simple, easy to apply, and can alleviate the strict constraints of the environment
for fault diagnosis. This method also helps diagnose faults using microphones, which are
non-invasive sensors but are sensitive to background noise [5]. In the future, approaches of
big data [8,37,38] and deep learning [39,40] will be needed to develop failure prediction
and prognostic health management (PHM) technology.

The rest of this paper is organized as follows. Chapter 2 describes the modeling of a CS
signal representing the characteristics of a rotating machinery. Then, through simulation of
the modeled synthetic signal, it shows the performance degradation of envelope analysis
caused by contamination of impulsive background noises. In chapter 3, it is verified that
defect detection through envelope analysis is improved by applying the proposed method
to the signal model. In chapter 4, the real case is presented to verify the effectiveness of the
proposed method by using normal and defective signals measured on an assembly line for
ACs with fans as rotating machine parts.

2. Envelope Analysis to Detect Defects in Rotating Machinery
2.1. Hilbert Transform

Defects in rotating machinery such as bearings and gearboxes generate periodic impact
signals. Envelope analysis of acoustic and vibration signals is used to detect such defective
signals. Envelope analysis is first performed by filtering with a frequency band containing
the resonant frequency excited by the defects [9,11,19,22]. The envelope is extracted by the
Hilbert transform of the filtered signal. Then the envelope spectrum is analyzed to detect
defects in rotating machinery.

For a time signal x(t), the analytic signal z(t) can be expressed as shown in Equation (1).
When the signal x(t) is expressed as an analytic signal, it can be expanded to a complex
dimension, making it easier to analyze the amplitude and phase. Analytic signals can be
used to demodulate amplitude-modulated or frequency-modulated signals.

z(t) = x(t) + jx̂(t) (1)

The Hilbert transform of the time signal is expressed by Equation (2). In the time
domain, it can be defined as the convolution of 1/πt and x(t). Equation (3) represents the
Hilbert transform in the frequency domain, with the phase of positive frequencies shifting
by −90 degrees and those of negative frequencies by +90 degrees [19,41].

x̂(t) =
1

πt
∗ x(t) =

1
π

∫ ∞

−∞

x(τ)
t− τ

dτ (2)

X̂(ω) = −j sgn(ω) X(ω),−j sgn(ω) =


j, f or ω > 0
0, f or ω = 0
−j, f or ω < 0

(3)

2.2. Signal Modeling for Simulation

In this study, the characteristics of the envelope through the Hilbert transform are
analyzed, and signals generated in rotating machinery are modeled to find improvements.
In general, it is known that acoustic and vibration signals measured in rotating machinery
are CS process [42,43], so the signal of the rotating machinery is divided into first-order
CS, second-order CS, and high-order CS processes. The first-order CS process mx(t) with
period T is expressed by Equation (4), and the second-order CS process Rx(t1, t2) with
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period T is expressed by Equation (5). Here the expected value E{·} means ensemble
average. The first-order CS process is deterministic, and the second-order CS process is
stochastic. It is known that the signals caused by defects comply with the second-order CS
process [7,23,42].

mx(t) , E{x(t)} = mx(t + T) (4)

Rx(t1, t2) , E{x(t1)x(t2)} = Rx(t1 + T, t2 + T) (5)

It is modeled as follows, assuming a fault with the rotating machinery. Equations (6)
and (7) are models complied with the deterministic process and the stochastic process,
respectively. The synthetic signals expressed by these equations are shown in Figure 1a,b.
As mentioned above, these two signals simulate the first-order CS and second-order CS
processes generated from rotating machinery, respectively. Equation (6) expresses the
deterministic part, which is expressed by convolving an arbitrary three-degree-of-freedom
transfer function hd(t) on the superposition of the cosine wave with the harmonic frequency
of the rotation frequency. Equation (7) expresses the stochastic part by multiplying white
noise by the superposition of cosine signals with the harmonic frequencies of the rotation
frequency. Al and Am represent the arbitrary amplitude for each cosine wave.

d(t) =

[
∑

l
Alcos(2π.l. frotat.t− ϕl)

]
∗ hd(t) (6)

s(t) =

[
W(t)∑

m
Amcos(2π.m. frotat.t− ϕm)

]
∗ hs(t) (7)

Figure 1. Cyclo-stationary signal model: (a) deterministic part and (b) stochastic part.

Equations (8) and (9) are for the normal and defective signals composed of a combi-
nation of Equations (6) and (7), respectively. Equation (8) assumes that the signal can be
measured in normal rotating machinery without the defective signal. It is the sum of the
deterministic part shown in Equation (6) and white noise w(t). Equation (9) is the sum of
the deterministic part d(t), the stochastic part s(t), and white noise w(t), assuming that the
signal occurs in faulty rotating machinery.

xnormal(t) = d(t) + w(t) (8)

x f ault(t) = d(t) + s(t) + w(t) (9)

Figure 2a shows the synthetic signal models of normal and defect expressed by
Equations (8) and (9), respectively. It is difficult to distinguish between normal and
defective signals in the time domain. However, comparing the spectrums in Figure 2b, the
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signal with defect shows a distinct difference in the band of 3.4 to 3.7 kHz compared to the
normal signal. This band excited by the defect can be clearly differentiated by conducting
envelope analysis according to the following method.

Figure 2. Signal models for envelope analysis: (a) normal signal model (top) and faulty signal model (bottom); (b) spectrum
of normal signal model (green) and spectrum of faulty signal model (black).

Figure 3a shows the filtered signals with aforementioned frequency band and en-
velopes of them. The top and bottom represent the normal signal model and the faulty
signal model, respectively. When comparing the two, it can be seen that the faulty model
shows a difference as much as the stochastic signal in Figure 1b.

Figure 3. Process of envelope analysis: (a) band-pass filtered signal models and envelope signals in time domain (top:
normal signal model, bottom: faulty signal model); (b) envelope spectrum.

Figure 3b shows the spectrums obtained by Fourier transform on the two envelope
signals, and are significantly different at the frequency corresponding to the period of
the stochastic signal. In Figure 3b, a large magnitude means that the degree of envelope
fluctuation and amplitude modulation are large. In other words, the signature of defect can
be well observed. Therefore, the peak of the rotation frequency of the envelope spectrum
can distinguish the faulty from the normal, and furthermore, it can be regarded as a feature
to diagnose faults. In this study, threshold checking using these peak values is used to
simply distinguish between normal and defective.
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2.3. Degraded Detection Performance by Impulsive Noise

In the previous section, a general method of detecting defects through envelope
analysis was introduced for cases in which rotating machinery has a periodic defective
signal. However, various types of noise exist in an environment in which the fault detection
of rotating machinery is implemented in practice. Unpredictable background noise causes
the accuracy of envelope analysis to degrade. In particular, impulsive noise affects a wide
frequency band, making it difficult to detect faults in envelope analysis. In the present
study, we investigate the effect of impulsive noises on envelope analysis and propose an
improvement method. Equations (10) and (11) represent the normal and defective signals
in the presence of the impulsive noises i(t). i(t), given by Equation (12), is modeled as a
rectangular wave with short time τ.

x′normal(t) = d(t) + w(t) + i(t) (10)

x′f ault(t) = d(t) + s(t) + w(t) + i(t) (11)

Figure 4 shows the normal model as a situation in which impulsive noise is contained
at one time at 0.1 s. The signal to which the band-pass filter is applied and its envelope
are shown in Figure 4a. Figure 4b shows the envelope spectrums. Compared to Figure 3b,
which does not include the impulsive noise, the baseline of the spectrum is increased,
and the peak of the spectrum due to the defective signal s(t) is less distinct. Figure 5
shows the envelope spectrums for the case where the impulsive noises are contained
in four times. Red dotted line means the faulty signal without impulsive noise as the
reference. Compared with Figure 4b, in which the impulsive noise is mixed in one time, it
can be seen that the peak of the spectrum representing the defective signal is more difficult
to distinguish from that of the normal signal. It is very hard to differentiate the peak
magnitude of the defective signal without impulsive noise (red dotted line) and that of
the normal signal with four impulsive noises (green line). This ambiguity occurs because
not only the increase of the baseline by the impulsive noise, but also the periodicity of the
impulsive noise is considered.

Figure 4. (a) Filtered normal signal model with one impulsive noise at around 0.1 s. (b) Envelope spectrum of the normal
and faulty model with one impulsive noise at around 0.1 s.

Impulsive noises are likely to be contained in several times in a short moment unless
specific facilities such as anechoic chamber are installed for measurement. In this section, it
has been confirmed that it is hard to distinguish between the normal and fault conditions
when there are many impulsive noises where defects in rotating machinery are detected.
In the next section, we propose a method to detect the signature of defect generated from
rotating machinery even in the presence of such impulsive noises.
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Figure 5. Case where impulsive noises are contained four times at around 0.1, 0.4, 0.5, and 0.8 s. (a) Filtered normal signal
and (b) envelope spectrum.

3. Improvement of Envelope Analysis
3.1. Time–Frequency Domain Approach for Envelope Analysis

In the previous section, the usefulness of envelope analysis was described in condition
monitoring and fault detection related to the rotational speed of rotating machinery. In
addition, the result of simulation showed that envelope analysis is no longer useful in cases
contaminated by impulsive noises. In the present section, we propose a method that can
utilize envelope analysis for defect detection even in the presence of intermittent impulsive
noises. The method requires the transient signal analysis for the measured signals, unlike
the analysis used in the previous section. In other words, a time–frequency analysis such
as STFT or wavelet transform analysis should be used.

Time-frequency envelope analysis can also be performed by extracting the feature
value of the envelope spectrum for a short-enough time and observing the change over the
entire time of the measured data. Figure 6a shows STFT with a 0.33-s-length time window
(both time resolution and frequency resolution are considered), which was the case applied
to the envelope of the faulty model without impulsive noises shown in Figure 3b. Figure 6b
shows the magnitude at the rotational frequency over time in the STFT shown in Figure 6a.
Since the short time window is applied, there is a slight delay with the time axis. It is
shown that the normal model and the faulty model are clearly distinguished.

Figure 6. Case without impulsive noise. (a) STFT of envelope of faulty signal model. (b) Magnitude at rotational frequency
of 18 Hz over time with 0.33-s-length time window and 90% overlap.
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Figure 7a shows the STFT for the faulty envelope with impulsive noise mixed in one
time shown in Figure 4. The impulsive noise at around 0.1 s shown in Figure 4b has a large
value in a wide frequency range from 0 to 0.25 s, and the time range is longer than the
duration of impulsive noise because of the time window and overlap. Figure 7b shows the
magnitude at the rotation frequency over time in the STFT shown in Figure 7a. Comparing
the normal and faulty models, it is difficult to set a threshold to differentiate the normal
model from the faulty model because the magnitude is larger in the 0 s to 0.25 s section
due to the presence of impulsive noise at around 0.1 s.

Figure 7. Case where impulsive noise is contained one time at 0.1 seconds. (a) STFT of envelope of faulty signal model.
(b) Magnitude at rotational frequency of 18 Hz over time with 0.33-s-length time window and 90% overlap.

Figure 8 shows a comparison of the peak value at the rotation frequency over time
in the normal and faulty envelope spectrum when impulsive noises are mixed in four
times, as shown in Figure 5. The area indicated by the red dotted square is the section
affected by the impulsive noises. It can be seen that it is difficult to define a threshold for
distinguishing between the normal model and faulty model in the entire time of measured
signal. It is very contrasting with Figure 6b, which has no impulsive noise. Moreover,
in practice, impulsive noises are not mixed in at the same time and the same magnitude
for each measured signal. Therefore, we propose the method that can still detect defects
through envelope analysis in the presence of impulsive noises as follows.

Figure 8. Magnitude at rotational frequency of 18 Hz over time with 0.33-s-length time window and
90% overlap. Case where impulsive noises are contained four times at 0.1, 0.4, 0.5, and 0.8 s.
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3.2. Methods for Overcoming Impulsive Noises

We investigated the phenomenon where the performance of defect detection through
envelope analysis was degraded due to impulsive noise. Figure 9 shows the spectrum at
0.2 s in Figure 7a, which is contaminated by the large impulsive noise, and the spectrum at
0.7 s in Figure 7a, which is sufficiently out of the effect of the impulsive noise. In Figure 9a,
the effect of impulsive noise compared to Figure 9b greatly increases the baseline of the
spectrum, regardless of whether it is defective. As a result, the relative magnitude of the
peak due to the defect is smaller than that in Figure 9b, making it difficult to set a threshold
for defect detection.

Figure 9. Comparison of envelope spectrum (a) without an impulsive noise and (b) in the presence of an impulsive noise.

Defect detection through envelope analysis distinguishes between the normal and
defect by using the magnitude at the rotational frequency of the rotating machinery, as
described above. However, the magnitude of the impulsive noises in a wide frequency
range that is irrelevant to rotation also affects the rotational frequency, making it difficult to
detect defects. To overcome this disadvantageous phenomenon, we propose using the dif-
ference in magnitude at the rotation frequency and at frequencies sufficiently lower than the
rotational frequency as a feature of defect detection. This idea is inspired by the frequency
characteristics of very short time single rectangular wave given by Equations (12) and (13).
τ is duration of impulsive noise i(t) and I is the amplitude of i(t). As τ gets shorter, I( f )
appears as the horizontal stretched sinc function in frequency domain. Therefore, it can be
seen that the magnitude of the relatively lower frequency is larger due to the short τ. This
applies similarly to a single triangle wave.

i(t) =
{

I,− τ
2 < t < τ

2
0, elsewhere

(12)

I( f ) = F{i(t)} = Iτ
sin(τπ f )

τπ f
= Iτ · sinc(τπ f ) (13)

The flowchart is shown in Figure 10. The window length T is selected considering time
resolution for impulsive noise and frequency resolution for rotating frequency. The time
step is defined by the degree of overlap, window length T, and total length of the measured
signal. The window length T should be selected as short as possible, but the frequency
resolution ∆ f , is reciprocal value of T, sufficient to detect the rotational frequency frot must
also be guaranteed. Then the magnitude Mn is calculated from first time step to the end of
time step N. We can calculate the detection value at the end of the flowchart to define the
threshold that can differentiate between normal and faulty.
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Figure 10. Flowchart for proposed method.

The proposed method uses the characteristics of the impulsive rectangular signal,
which has a very large instantaneous magnitude in the time domain but has broadly
magnitudes from low to high frequencies in the frequency domain. In the spectrums
with and without impulsive noise in Figure 9, in the normal signal, there is no difference
between the magnitude at the rotational frequency of 18 Hz and the baseline magnitude of
the lower frequencies in both. However, the defective signal shows the difference between
the peak magnitude at the rotational frequency of 18 Hz and the baseline magnitude of the
lower frequencies in both Figure 9a,b.

Figure 11 represents the cases of normal and defect depending on the number of im-
pulsive noises contained. In the STFT of Figure 6a without impulsive noises, the difference
between the magnitude at the rotational frequency of 18 Hz and the baseline magnitude
of the lower frequencies is shown in Figure 11a. As shown in Figure 6b, which compares
only the magnitude at the rotation frequency in the STFT, the normal and the defect in
Figure 11a are clearly distinguished. Figure 11b shows the difference between the peak
magnitude at the rotational frequency of 18 Hz and the baseline magnitude of the lower
frequencies for the STFT in the presence of an impulsive noise shown in Figure 7a. In
Figure 11, every normal case appears very close to zero or negative values. On the other
hand, the defect has a much larger value, and even if much impulsive noises occur, the
difference from the normal and the defect is still large. In the conventional method of
detecting defects through envelope analysis, if the magnitude at the rotation frequency
is larger than the threshold, it is judged as a defect. The method proposed in this study
judges a defect if the difference between the magnitude at the rotational frequency and
the baseline magnitude of the lower frequencies in the envelope spectrum is larger than
the threshold.
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Figure 11. The result of the proposed method to the signal models. The difference between the magnitude at rotational
frequency and the baseline lower frequencies in short time envelope spectrum: (a) case without impulsive noises; (b) case in
the presence of impulsive noise at 0.1 s; (c) case in the presence of four impulsive noises at 0.1, 0.4, 0.5, and 0.8 s.

4. Practical Example of the Proposed Method

The method proposed in this study was applied to the detection of noise-defects in
an assembly line for ACs. The indoor AC unit is equipped with various types of fans to
spread cold air in a room. However, if a problem occurs with constantly rotating fans or
components around the fan, abnormal noise related to the rotation frequency of the fan is
generated. The abnormal noise causes degradation of the product quality and consumer
dissatisfaction. Therefore, companies that produce ACs have an inspection process to
thoroughly sort out noise-defects before shipping out products.

In this process, noise-defects had been detected using the senses of workers. Recently,
an automatic system has been developed to detect noise-defects by analyzing the noise
signal measured near a product and has been installed in factories. However, in the site
where noise is measured, there are various noises caused by random sources in other
assembly processes, which make it difficult to detect defects effectively. Although an
additional soundproof booth is installed to block out unpredictable noises from other
processes, it not only can not completely block out the noises, but also increases the burden
for cost and space. In particular, the impulsive noise caused by a conveyor belt moving
products makes it more difficult to detect noise-defects.

Figure 12a shows the STFT of the acoustic signal of a normal AC measured for 5 s
inside a soundproof booth where the product can enter and exit by a conveyor belt. The
sounds from the back of ACs were measured for 5 s by fixed microphones while the ACs
were moved at equal distance by the conveyor belt. The situation being measured was not
controlled for testing, it was actually in production. In this figure, the impulsive noise seen
at around 3 s (big white line circle) was investigated as noise caused by other technical
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processes. It was confirmed that the noise observed between 2 and 3 kHz and around 1 s
(small white line circle) was introduced from the outside. Figure 12b shows the STFT of the
acoustic signal of the AC investigated as a noise-defect caused by foreign substances hitting
the blower fan. As the blower fan rotates, periodic noise is generated whenever it hits
foreign substances. In order to automatically detect this noise-defect, the time–frequency
envelope analysis method proposed in this study was applied.

Figure 12. Spectrogram of acoustic signals measured at near blower of air-conditioner (AC): (a) case of normal AC with
impulsive noises and beep sounds; (b) case of faulty AC with abnormal noises.

A bandpass filter with cut-off frequencies of 3 and 6 kHz was applied to extract the
signature of abnormal noises in conventional envelope spectrum. The bandwidth and
center frequency of the filter were selected as the band representing the difference between
normal and abnormal in frequency spectrum investigated in anechoic chamber conditions.
At this time, frequencies of 2 to 3 kHz were not included in the band to exclude a beep
sound that is not related to the noise-defect. Figure 13 shows the band-pass filtered time
signal. Figure 13a,b shows the acoustic signals of the normal AC and the noise-defective
AC, respectively. In the upper left of Figure 13a, the section between 0.5 and 1.5 s is enlarged
and shown in the same scale as Figure 13b. Periodic impact signal, a feature of defective
signal, is not observed. In Figure 13a, the impulsive noise is clearly visible at around 3 s,
and no distinctive features appear in other time zones. On the other hand, in Figure 13b,
the abnormal noise has the same period as the fan’s rotation speed and occurs in the form
of impacts.

Figure 13. Band-pass filtered acoustic signals: (a) normal AC with impulsive noises and beep sounds; (b) faulty AC with an
abnormal noise.
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Figure 14a compares the magnitude at the rotation frequency of around 13 Hz in
the spectrum obtained with a 0.5-s-length time window (considering the time resolution
and frequency resolution) and 50% overlap for the envelope of the normal and noise-
defective signals shown in Figure 13. This figure shows only the magnitude at the rotational
frequency according to the conventional method, and it is not possible to distinguish
between the normal and the noise-defect signals due to impulsive noise at around 3 s.
Figure 14b shows a graph considering the baseline magnitude of the low frequencies
obtained by the method proposed in this study. The noise-defective signal shows almost
no difference from Figure 14a, whereas the normal signal has a value close to zero overall.
In particular, the value showed very dramatic improvement at around 3 s, at which the
impulsive noise was mixed into the normal signal.

Figure 14. Comparison of detection methods. (a) Conventional method using the peak value at the rotational frequency;
(b) the proposed method using difference between the magnitude at the rotational frequency and the baseline magnitude of
the lower frequencies.

To confirm the practicality of the proposed method, it was applied to 500 ACs that
were under production. At this time, the detection rate was verified by also putting five
ACs into the assembly line that had been investigated for noise-defects by the interference
between foreign substances and the fans. Figure 15 shows the results of the proposed
method for 500 normal ACs and the 5 noise-defective ACs for verification. The detection
value used for the result is the mean of the values shown in Figure 14. Figure 15a shows
the mean values obtained over time (0.5-s-length time window and 50% overlap) for
only the magnitude of the rotation frequency in the envelope spectrum according to the
conventional method. Figure 15b shows the difference between the magnitude at the
rotational frequency and the baseline magnitude of the lower frequencies, which is the
method proposed in this study. In Figure 15a, the five defects are not clearly distinguished
from the 500 normal conditions. In comparison, Figure 15b shows the proposed method,
and the 500 normal conditions and 5 defects are well distinguished.

The practical application was verified by using acoustic signals measured in an as-
sembly line producing ACs. The measured ACs were 500 normal units and 5 units with
noise-defects. The detection performance was degraded because it was difficult to distin-
guish between the normal and the defects in the presence of impulsive noises using the
conventional envelope analysis method. By eliminating the effects of the impulsive noises
with the proposed method, the distinction between the normal and the defects became
clear, and the detection performance was improved. However, the samples used in the real
test for validation are 500 normal ACs and only 5 defective ACs caused by interference
between the foreign materials and the fans. In the future, we will have to verify more
defective ACs and various types of defects or other rotating machinery.
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Figure 15. Comparison of detection results: (a) conventional method; (b) the proposed method.

5. Conclusions

In this study, the simple time–frequency envelope analysis has been proposed to
improve the degradation of the detection performance when impulsive noises contaminate
the measured signals for condition monitoring and fault detection of the rotating machinery.
When the impulsive noise is mixed in one time, the baseline of the envelope spectrum
slightly increases, and the sharpness of the peak related to the defect becomes dull. When
the impulsive noises are mixed in multiple times, the peaks related to the time interval
between the impulsive noises can be observed to increase in the baseline of the envelope
spectrum. This makes the sharpness of the peak indicating a defect that is very blurry and
makes it impossible to distinguish between normal and defective signals.

Impulsive noise occurs for a very short time, so its effect can be eliminated by con-
ducting envelope analysis on each section divided into several sections through a time
window. The difference between the baseline magnitude was increased by the effect of
the impulsive noise and the magnitude at the rotational frequency, which was used as an
index for detecting defects. The improvement effect of the proposed method was verified
through two methods: the simulation of a mathematically modeled signal and practical
application to an assembly line that produces ACs.

For the simulation of synthetic signals, the models based on CS process representing
typical properties of rotating machinery were used. Impulsive noise caused by unpre-
dictable sources was modeled as single rectangular wave with short time. The proposed
method was inspired by frequency characteristics of single rectangular wave in which the
magnitude decreases as the frequency increases. The performance of the proposed method
was verified by comparing to conventional method depending on the number of impulsive
noises contained in the measured signal.

The real test in the assembly line producing ACs was implemented to verify the
proposed method. The measured dataset using microphones consist of 500 normal ACs
and 5 noise-defect ACs. The proposed method shows the ability to clearly differentiate the
noise-defects from the normal even in the presence of impulsive noises, and contributes to
the possibility of using a microphone, a non-invasive sensor, for fault detection. However,
the samples used in the real test for validation are 500 normal ACs and only 5 defective
ACs caused by interference between the foreign materials and the fans. In the future,
we will have to verify more defective ACs and various types of defects or other rotating
machinery. Moreover, the approaches of big data and deep learning will be required for
the development of the PHM framework.
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