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Abstract: Governments, policy makers, and officials around the globe are working to mitigate
the effects of the COVID-19 pandemic by making decisions that strive to save the most lives and
impose the least economic costs. Making these decisions require comprehensive understanding of
the dynamics by which the disease spreads. In traditional epidemiological models, individuals do
not adapt their contact behavior during an epidemic, yet adaptive behavior is well documented
(i.e., fear-induced social distancing). In this work we revisit Epstein’s “coupled contagion dynamics of
fear and disease” model in order to extend and adapt it to explore fear-driven behavioral adaptations
and their impact on efforts to combat the COVID-19 pandemic. The inclusion of contact behavior
adaptation endows the resulting model with a rich dynamics that under certain conditions reproduce
endogenously multiple waves of infection. We show that the model provides an appropriate test
bed for different containment strategies such as: testing with contact tracing and travel restrictions.
The results show that while both strategies could result in flattening the epidemic curve and a signifi-
cant reduction of the maximum number of infected individuals; testing should be applied along with
tracing previous contacts of the tested individuals to be effective. The results show how the curve is
flattened with testing partnered with contact tracing, and the imposition of travel restrictions.

Keywords: COVID-19; epidemics; epidemiology; agent-based modeling

1. Introduction

COVID-19 has posed a distinct challenge to the world, the likes of which have been
rarely witnessed before. It is yet another historical example for the concern that a more
connected and intertwined world, has brought us more stability and fragility at the same
time [1]. The recent catastrophe of COVID-19, has swept through all continents and most
countries [2]. As of the time of writing this manuscript, 171 million cases have been
reported, with a death toll of more than three million. In the absence of a vaccine or
a definite treatment for the disease, governments and officials have enforced isolation
rules to control the increasing number of infected people and take off the burden put on
healthcare systems and workers.

Understanding the dynamics by which the disease spreads and making the right
decisions is vital in combating and containment of this disease. For more than a hundred
years, mathematicians and later epidemiologists have put effort into making models that
can predict statistical properties of epidemics with focus on key parameters like the R0 [3].
Besides predicting the future state of a pandemic and the number of infections involved,
a model to assist decision and policy makers to take the necessary and optimal decisions
is necessary. In the case of COVID-19, some governments have adopted epidemiological
models and enacted urgent policies based on those models (see for example [4]). Epidemio-

Appl. Sci. 2021, 11, 5367. https://doi.org/10.3390/app11125367 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8328-8473
https://orcid.org/0000-0002-0026-5725
https://orcid.org/0000-0001-7441-5186
https://orcid.org/0000-0001-9215-694X
https://doi.org/10.3390/app11125367
https://doi.org/10.3390/app11125367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125367
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125367?type=check_update&version=2


Appl. Sci. 2021, 11, 5367 2 of 12

logical models can be divided into two groups, that of the deterministic and the stochastic.
There is the classical Kermack Mckendrick model(SIR) [5], SI [6], SEIR [7] which are all
classified as deterministic models and their features are discussed by [8]. The other group
of epidemic models, the stochastic, mostly draw on the theory of Markov processes [9]
which are generally more reliable when dealing with populations of smaller sizes.

While providing insight into the threshold nature of epidemics [10], the majority of
these traditional models do not incorporate direct contact between individuals as they treat
individuals as an aggregate collection. They make demanding unrealistic assumptions
such as perfect mixing, usually missing the heterogeneity of agents’ behaviors, which could
have nonlinear effects (e.g., super spreaders from occupations that frequently travel). They
also often fail to address complex spatial and temporal factors such as variable population
densities and dynamics.

Agent-based modeling approaches allow for a detailed focus on the dynamics of inter-
actions between individuals [11]. They can be used to capture complex social networks
and the direct contacts between agents and can overcome the limitations of compartmental
and meta-population models [12]. These models have been successfully applied to sim-
ulate the spread of 1918 “Spanish Flu” epidemic [13–15], spread of cholera [16], seasonal
influenza outbreaks [12], spread of H1N1 [17], and Ebola epidemic [18]. Besides being
able to incorporate links contained in individual mobility data, agent-based modeling
approaches can explore and investigate the complexities of transmissions of diseases over
space and time. They can be integrated with geographic information systems (GIS) and
account for the geospatial context of the spread of communicable diseases [19]. The work
of [20] is an example of utilizing crowd-sourced geographic information to develop an
agent-based model that simulates the aftermath of a catastrophic event. Other studies
have also attempted to employ geographic information systems to build spatially explicit
agent-based models and simulate and investigate the spread of diseases [21,22].

Multiple computational studies are being proposed to tackle COVID-19 pandemic.
The work of [23] has proposed a coupled SIR with an opinion dynamics epidemic model
which evaluates the effect of opinions on severity of an epidemic. Ref. [24] developed an
agent-based model that simulates the spread of COVID-19 in Australia and applies several
intervention strategies and compares the results. The work of [25] develops a network
model, calibrated by empirical data, that shows targeting hubs would robustly improve
the containment of the epidemic. Ref. [26] highlights the effect of time-delay in the progress
of epidemics in the meta-population networks. In [27] the authors proposed a new SIR
type model in which reproduction number of the disease evolves dynamically with time
to account for societal and state official reactions. The work of [28] provides an agent-
based model of COVID-19 to evaluate the transmission risk in facilities, by considering
individual profiles for agents that defines their social characteristics. The work of [29]
proposes an agent-based implementation of SEIR model that involves people, businesses
and government, calibrates it for the case of Brazil, and applies seven social distancing
interventions and reports the results. Ref. [30] develops a network epidemic model and
investigates a threshold that instigates the public awareness and its effect on the final size
of the epidemic.

The rapid spread of COVID-19 has forced many governments to apply various inter-
ventions and containment strategies in their respective societies (eg that in Italy [31]). There
are a range of common intervention strategies being applied by governments, such as
applying travel restrictions, testing and contact tracing, school closings, preventing public
gatherings, and others [32]. While these interventions are vital in combating the spread
of the disease until a vaccine or a definite cure is secured, there are unavoidable conse-
quences, primarily economical. Therefore, it’s imperative to analyze the effectiveness and
consequences of different containment strategies. On the other hand, while numerous
epidemiological modeling efforts are put forth to investigate the size and effects of COVID-
19 pandemic and under different intervention strategies, little attention has been paid to
developing models that account for the possibility of multiple waves of the disease spread.
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In this study, drawing on the work of [33], we develop a variation of that model which also
accounts for the incubation period of COVID-19. We also test two containment strategies
on the model, present the results and show that the model could be used as a test-bed for
experimenting various kinds of intervention strategies under different scenarios.

Epstein et al. proposed a coupled contagion model of disease and fear dynamics [33].
Contagion of fear could be interpreted in the context of emotional contagion [34]. It
should be noted that the fear variable in the work of Epstein et al. is a more general term
than being ’scared’, and rather should be interpreted as a ‘concerned awareness’ which
is a “behavior-inducing transmissible signal distinct from the pathogen itself” [33]. Such
a factor can provide motivation for agents to engage in activities (such as self isolation)
based upon their own understanding of the situation. One exceptional feature of this
model is the ability to produce multiple waves of contagion, the phenomena which was
observed in 1918 pandemic of “Spanish Flu” [35], and is currently occurring in multiple
places during the COVID-19 pandemic. Being able to foresee these ’waves’ is crucial in
order to prepare in advance.

In this work we propose a model of contagion of disease and ‘concerned awareness’.
Agents who interact with others could be infected by the disease, by fear, or by both.
Section 2 explains the model in details; The two simultaneous and coupled transmission
processes are explained, as well as the states that an agents can occupy and parameters of
the model. We show that the model could also be implemented as a classical well-mixed
ordinary differential equation, and provide the governing system of equations, as well
as derive the required terms to calculate the basic reproductive number (R0). Section 3.1
describes the ability of the model to produce multiple waves of infection. Finally, Section 3.2
describes the containment strategies that are tested on the population of agents, along with
presentation and interpretation of the results.

2. Methodology
2.1. Possible States of an Agent

An agent can only belong to one of these states at any time. A susceptible agent (S)
is one that is neither infected by the disease nor by the fear yet. A susceptible agent (S)
might get infected by fear or disease. A feared agent (F) is one that is infected by fear.
An infected agent (I) is one that is infected by the disease and is aware and has symptoms.
On the other hand, an agent which is infected and is contagious (i.e., can infect others) but
shows no symptoms yet and is unaware of his infection, is in exposed state (E). The exposed
state is imperative in modeling the dynamics of COVID-19, as the incubation period for
SARS-CoV-2 is reported to extend to 14 days, with a median of 5.1 days [36]. Contrary to
assumption made in most implementations of SEIR model, an exposed agent with state E
is infectious and infects other agents with whom he interacts. In this model, an agent with
exposed state always transforms to infected state after 5 time steps (representing 5 days).

An agent with an EF state is one that is both infected by fear and also exposed to
infection (a yet incubated infection). State of IF shows an agent that is infected by fear and
the disease (has symptoms and is aware of his infection). An agent with state of QF is one
that is infected by fear and has isolated himself (quarantined). A state of QEF shows an
agent which has underlying infection (exposed), infected by fear, and also has isolated
himself from the rest of the population (quarantines). A state of QIF shows an agent that
is infected by the disease and fear, and has put himself into isolation. Finally, a state of R
shows an agent that is recovered from the disease and is taken out of the cycle. Table 1
shows all possible states that an agent can occupy during the course of the simulation.
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Table 1. Possible states of agents in the epidemiological model.

State Description

S Susceptible
E Exposed
F Feared
EF Exposed and Feared
I Infected
IF Infected and Feared
QF Self-quarantined Feared
QEF Self-quarantined Exposed and Feared
QIF Self-quarantined Infected and Feared
R Recovered

2.2. Transmission of Disease and Fear

There are two contagion processes at play:

1. Transmission of disease: in this model the disease can be transmitted by an interaction
with a disease-infected agent. This disease infected agent might be in their incubation
period and show no symptoms, in which case we call them exposed shown with E, or
be infected and their infection be obvious, in which case they are infected and shown
with I.

2. Transmission of fear: Fear is transmitted between agents. Agents can contract fear
by interacting with agents that are feared (F, IF, EF), or by interacting with agents
that are infected and have symptoms (I). As discussed before, fear in this model
should be looked at as a concerned awareness. This quality gives the model a more
realistic essence, by giving agents an incentive to put themselves into self-isolation
(In the absence of such as a contagion process and the absence of a feared population,
the model reduces to a simple SEIR epidemic). In this model, agents that have isolated
themselves because of fear, get out of self-isolation with a certain rate that is explained
in Section 2.3.

2.3. Parameters and Movement of Agents

The model parameters are as follows:

• α: Per-contact fear transmission rate
• β: Per-contact disease transmission rate
• λ1: Rate of removal of those infected with fear (F, EF, and IF) to self-isolation (QF, QEF,

and QIF, respectively)
• λ2: Rate of recovery (R) of all agents infected with disease (I, IF, and QIF)
• ε: Rate of progression from exposed to infected (the reciprocal is the incubation period).
• H: Rate of return of agents from isolation back to the epidemic cycle.

Figure 1 shows all states, their relationship and transition rates between these states.
The model subsumes the classic SEIR model, and it assumes constant population. Lets
review some possible interactions between agents with different states and the outcome:
a susceptible (S) that interacts with an exposed agent (E), remains susceptible with prob-
ability (1 − β) or turns into an exposed (E) with probability β. As another example,
a susceptible (S) which interacts with an infected and feared agent (IF), stays susceptible
with probability (1 − α)(1 − β), becomes exposed (E) with probability (1 − α)β, becomes
only feared with probability (1 − β)α, and finally becomes both exposed and feared (EF)
with probability αβ. Agents which are feared (F, EF, IF), go into self-isolation with rate
λ1. Agents which are in self-isolation on the other hand (QF, QEF, QIF), return back to
the cycle with rate H, and turn into S, E, and I, respectively. In the end, it should be noted
that agents that are exposed (E, EF, QEF), turn into infected (I, IF, and QIF, respectively)
after they pass their five incubation days.
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Figure 1. Model Flowchart. Here, all ten possible states of an agent in the model are depicted.
In addition, parameters of λ1 shows the rate at which agents self-isolate due to fear, and parameter
λ2 shows the rate at which disease infected agents recover from the disease. Parameter H shows
the rate at which agents finish their self-isolation and return to circulation.

The model takes place on a two dimensional lattice which consists of patches (squares).
For example, a 160 × 160 lattice consists of 25,600 patches. Each patch inside the lattice
therefore is surrounded by 8 neighbors. In each timestep of simulation, each agent ran-
domly chooses another empty patch among all the patches in the lattice and moves there.
After movement, each agent might have up to 8 other neighboring agents occupying its
neighboring patches, with one of whom he might interact based on rules of interaction
previously mentioned.

2.4. Differential Equations and Basic Reproduction Number

The proposed model can also be implemented as a classical well-mixed ordinary dif-
ferential equation (ODE) system. Appendix A presents the generalizations and governing
differential equations. The basic reproduction ratio, R0 is one classical epidemiological
measure which is associated with the reproduction power of a disease. It is an important
threshold quantity and denotes the average number of secondary cases that are produced by one
infected individual into a population of susceptible individuals [37]. The details of calculating this
number for the model is discussed in Appendix B. The calculated number with respect to
the parameter setting that was used for running the experiments was calculated to be 1.95.

3. Results
3.1. The Second Wave of Infection

The case of 1918 pandemic of Spanish Flu has brought our attention to the concern
of a possible second wave [38]. The proposed model is able to generate multiple waves of
infection. Figure 2 shows two instance of this resurgence of infection cases. The mechanism
by which the second wave is generated in Figure 2a is as follows: as the number of
infections starts to decrease, individuals that had isolated themselves start exiting their
self-isolation and returning back to the cycle. This phenomena is simulated by increasing
parameter H, which is analogous to the case that individuals stop fearing about the disease
and presume that epidemic is over and starting coming out of self quarantine. Looking
at Figure 2, it should be noted that the second wave happens with a delay with respect to
the sudden change of parameter H, which is manifested in the sudden fall in the number
of quarantined agents. In Figure 2b on the other hand, the second wave is produced by
a sudden fall in all λ1 parameter.
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(a) (b)

Figure 2. Two waves of infection. (a) shortly after the number of infected agents starts decreasing,
quarantined agents start coming out of self isolation, a sudden increase in parameter H, which results
in occurrence of a second wave of infections. (b) a sudden decrease in λ1 parameter, which show
the rate at which agents in a state of fear quarantine themselves, produces a second wave of infection.
These two scenarios describe how a second wave can be produced under different parameterizations.

3.2. Applying Containment Strategies to Flatten the Curve

As the number of COVID-19 cases surges, the term flatten the curve is very commonly
used. The idea that a virus’ spread slows down so that fewer people need to seek treatment
at any time is called ‘flattening the curve’. Flattening the curve is important so as to avoid
the health care system from getting overloaded beyond its capacity and also averting
the adverse economical impacts of the pandemic [39]. In this work we investigate two
containment strategies that are mostly used by governments and officials: 1-testing and
contact tracing 2-applying travel restriction. In testing each scenario and model run,
we record the maximum number of people that are infected with the disease and have
symptoms: I, IF, and QIF. We call this recorded number peak infection; A flattened curve
will have a lower peak infection number, as it has been flattened and its maximum must
have become smaller.

The model is implemented in NetLogo [40]. The number of agents is kept 5000 in all
simulations, and the world is a 160 × 160 grids of patches which form a two dimensional
lattice. In each timestep, agents are first randomly positioned in patches, and then each
agent looks at its neighbors (8 surrounding patches) and uniformly chooses one of its
8 neighbors to interact with. The result of the interaction between the two agents is
determine by rules of interaction discussed in Section 2.3.

3.2.1. Testing and Contact Tracing

While merely testing individuals will not stop the spread of the disease, WHO recom-
mends a combination of testing and tracing the contacts of individuals that have been tested
positive [41]. The successful containment of COVID-19 in some countries such as South
Korea are attributed to their rigorous testing and contact tracing and isolation strategy [42].
In this section, we apply this testing and contact tracing strategy on the proposed model
and investigate the results. The parameters used in this model are all fixed on 0.2, that is
to say λ1 = λ2 = H = 0.2. Per-contact disease transmission rate (β) and per-contact fear
transmission rate (α) are also fixed on 0.2. two quantities determine the experiment: daily
testing size and number of contacts tracing. In each timestep, a number of agents, the number
of which is determined by daily testing size, are chosen and tested for being infected with
the disease. If they are tested positive, that is to say they have a state of E, EF, I, or IF, they
are then put into isolation (QEF, or QIF), and their previous contacts are traced, tested, and
put into isolation either if they are also positive. The number of their previous contacts
which are traced, is determined by number of contacts tracing parameter.

Three daily testing size of 1, 100, and 200 were tested. Also, three number of contact
tracing sized were tested: 1, 10, and 20. Each experiment was run 2000 times (a total of
3 × 3 × 2000 = 18,000 simulations) and the quantity that was recorded in each experiment,
as explained in Section 3.2, is peak infection(the maximum number of people that are infected
with the disease at any time during the course of the simulation).
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Figure 3 shows the results of the simulation. For each parameter setting, peak infection
number in all 2000 experiments are recorded and then probability density function (PDF)
of peak infection is drawn. The results of the experiment show that, as the size of daily
testing size increases, the median of peak infection also decreases (compare the median of
1774 when daily testing size and contact tracing numbers are 1, with the median of 1384
when daily testing size is 200 and number of contact tracing is set on 20). A Mann-Whitney
U test between the two distributions (distribution 1: daily size = 200 and tracing size = 20
and distribution 2: daily size = 1 and tracing size = 1) was conducted and a p-value of
2.28 × 10−123 shows that the two distributions are significantly different. Perhaps, the most
interesting result of this experiment is that the importance of contact tracing is revealed with
large daily testing size. Increasing daily testing size, needs to be joined with contact tracing,
in order to be really effective. This effect is pronounced with higher daily testing size
numbers (Figure 3b,c). A Mann-Whitney U test between the two distributions (distribution
1: daily size = 200 and tracing size = 20 and distribution 2: daily size = 200 and tracing
size = 1) were conducted and a p-value of 1.24 × 10−25 shows that the difference between
the two distributions is statistically significant.

Figure 3. The effect of applying containment strategy I (testing and tracing) on the population. Here
the effects of daily test size and contact tracing size on pdf (probability density function) of maximum
daily number of infected agents during the course of epidemic is shown. (a) A daily testing size of 1
is applied with three tracing sizes of 1, 10, and 20. (b) Daily test size of 100, with tracing sizes of 1, 10,
and 20. (c) Daily test size of 200, with tracing sizes of 1, 10, and 20. It can be seen how testing and
contact tracing together are required in order to change the distribution.

3.2.2. Travel Restriction

Travel restrictions and limitations are among the most common government interven-
tions during the COVID-19 pandemic and it has been shown to be an effective measure [43].
In this section, we simulate application of this intervention in our proposed model and
investigate its effect. This experiment could be analogous to travel restriction and hu-
man mobility restrictions set in place in some countries such as Italy in earlier days of
the pandemic.

As mentioned in Section 3.2 the world in which the model is implemented is a
160 × 160 grids of patches which form a two dimensional lattice. For this experiment,
the world is divided into 4 quadrants: region I with positive x and y coordinates, region
II with negative x coordinate and positive y coordinate, region III with negative x and y
coordinates, and region IV with positive x coordinate and negative y coordinate. Upon
starting the simulation, all 5000 agents are created and randomly put into a patch, which
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happens to be in one of the four regions. Contrary to the previous experiment in which
agents could freely choose another empty patch among all 25,600 patches and move
there, in this experiment agents are only allowed to move and change positions within
the boundaries in which they were created and are not allowed to change their region. For
instance, an agent that is created in position (20,30) is not allowed to move to (−15,30)
or (27,−48). The model is run for 4000 runs with no restrictions, and 4000 times with
the restrictions present, and in each run the peak infection number is recorded. Similar to
the previous experiment, all parameters are fixed at 0.2. The results of the simulation are
shown in Figure 4. It is observed that by applying the travel restriction, the median of peak
infection distribution is moved from 1775 to 1659. A Mann-Whitney U test between the two
distributions was conducted and a p-value of 1.79 × 10−8 shows that the two distributions
are significantly different. A more pronounced effect could be reached by applying more
extensive restrictions.

Figure 4. The effect of applying containment strategy II (zoning and travel restriction) on the popula-
tion. This figure shows the effect of applying travel a restriction strategy on the p.d.f. (probability
density function) of maximum daily number of infected agents during the course of epidemic. Here
the zoning applies to agents so that they do not cross different areas of the urban space which is
anchored from the initial position.

Figure 5 shows the effectiveness that applying both containment strategies have on
flattening the curve. In Figure 5a, both simulation runs are performed with the same random
number generator seed. As could be observed, test and contact tracing strategy is able
to reduce the maximum number of infected agents by 27%. Figure 5 also shows two
simulations with the same random number generator seed. The results show that applying
travel restriction strategy is also effective in reducing the maximum number of infected
agents by 31%.

(a) (b)

Figure 5. The effect of applying containment strategies (test and contact tracing and travel restriction)
on the contagion curves. This figure shows the effect of applying the containment strategies on
epidemic curves. (a) Applying test and contact tracing has reduced the maximum number of infected
agents by 27%. (b) Applying travel restriction has reduced the maximum number of infected agents
by 31%.
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4. Conclusions

In this work, we provided an agent-based model of epidemics to simulate the spread of
COVID-19 disease. The model is an SEIR model that is endowed with fear component that
acts as an incentive for agents to self-isolate and get out of the epidemic cycle. We showed
that the model can also be implemented as a classical well-mixed epidemic model and
provided the process to calculate basic reproductive number of the disease. One significant
aspect of this model is being capable of producing multiple waves of infections which
is imperative in studying dynamics of COVID-19 epidemic. We applied two common
containment strategies that are practiced by governments to the model: (1) testing and
contact tracing, and (2) travel restrictions. The results of the experiments showed that both
strategies could be effective in flattening the curve, i.e., reducing the maximum number of
infected individuals in a single day (highest), over the course of the epidemic. In testing
and contact tracing strategy, it’s important to note that the results of experiments show that
testing alone is not adequate and should be applied along with contact tracing to be effective
in flattening the curve. A future direction for this study is investigating different scenarios
under which multiple waves of epidemic occurs. Another future research idea is to explore
conditional containment strategies currently not used by governments but hypothesized
as better candidates, in relation with various vaccine regimes. An implementation of
the proposed model in the context of EMD (Evolutionary Model Discovery) which allows
for the rule design automation and search in the vast space of possible behavior rules [44]
that produce multiple waves of infection is another future research idea.
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Appendix A

An advantage of agent-based models is that novel constraints and experiments could
be implemented, and the results being interpreted. This is the case for the two containment
strategies implemented in this work, as they are not easily implemented in a classical well-
mixed ordinary differential equation model. Nevertheless, the model without constraints
could be implemented as a classical well-mixed ordinary differential equation system.
The governing differential equations are:
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dS
dt

=− β(S)(E) + (αβ − α − β)(S)(EF)− α(S)(F) + (αβ − α − β)(S)(I) + (αβ − α − β)(S)(IF)

+ H(QF)
dE
dt

=− α(E)(EF)− α(E)(F)− α(E)(IF) + β(S)(E) + β(1 − α)(S)(EF) + β(1 − α)(S)(I)

+ β(1 − α)(S)(IF)− ε(E) + H(QEF)

d(EF)
dt

=αβ(S)(EF) + αβ(S)(I) + αβ(S)(IF) + α(E)(EF) + (α + β)(E)(F) + α(E)(IF) + β(EF)(F)

+ β(F)(I) + β(F)(IF)− λ1(EF)− ε(EF)
dF
dt

=− β(E)(F)− β(EF)(F)− β(F)(I)− β(F)(IF) + α(S)(EF) + α(S)(F)− αβ(S)(EF) + α(S)(I)

− αβ(S)(I) + (α − αβ)(S)(IF)− λ1F
dI
dt

=− α(EF)(I)− α(F)(I)− α(I)(IF)− λ2(I) + H(QIF) + ε(E)

d(QEF)
dt

=λ1(EF)− H(QEF)− ε(QEF)

d(IF)
dt

=α(EF)(I) + α(F)(I) + α(I)(IF) + ε(EF)− λ1(IF)− λ2(IF)

d(QF)
dt

=λ1(F)− H(QF)

d(QIF)
dt

=− H(QIF)− λ2(QIF) + ε(QEF) + λ1(IF)

dR
dt

=λ2(I) + λ2(QIF) + λ2(IF)

(A1)

Appendix B

The method used to calculate the basic reproduction number is called generation
matrix and is described in [45]. With this method, R0 is defined as spectral radius of
the ’next generation operator’. If the population consists of n compartments, in which m
compartments are infected, we define the vector x̄ = xi, i = 1, . . . , n, where xi denotes
the number of individuals in the ith compartment. Each compartment consists of Fi(x̄)
which is the rate of appearance of new infections in compartment i and Vi(x̄) which
includes all other transfers of individuals between compartments. The rate of change of
each compartment xi is therefore Fi(x̄)− Vi(x̄). If G denotes the next generation matrix,
it is comprised of multiplication of two matrices: Gm×m = FV−1, where F =

[
∂Fi(x0)

∂xj

]
and V =

[
∂Vi(x0)

∂xj

]
. After multiplying matrix F by the inverse of matrix V, the spectral

radius (largest eigenvalue) of the resultant matrix will be R0. In our model, the infected
compartments include E, EF, I, QEF, IF, and QIF compartments. F and V are then calculated:

F =



β β − αβ β − αβ 0 β − αβ 0
0 αβ αβ 0 αβ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

&V =



ε 0 0 −H 0 0
0 λ1 + ε 0 0 0 0
−ε 0 λ2 0 0 −H
0 −λ1 0 H + ε 0 0
0 −ε 0 0 λ1 + λ2 0
0 0 0 −ε −λ1 H + λ2

 (A2)

Matrix G is easily calculable by calculating FV−1, and then the largest eigenvalue of
G would be the R0 of the model.
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