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Abstract: Cement is widely used in marine concrete, and its resistance to chloride ion corrosion has
been widely considered. In this paper, based on a laboratory test, the influence of different hydrostatic
pressures, coarse aggregate contents and w/c ratios on the chloride resistance performance is
analyzed. Based on COMSOL finite element software, a two-dimensional cementitious materials
model is established, and the simulation results are compared with the experimental results. The
results show that the penetration depth of chloride ions in cement increases with the increase of
the w/c ratio. Under the hydrostatic pressure of 0 MPa, when the w/c ratio is 0.35, the penetration
depth of chloride ions is 7.4 mm, and the simulation result is 8.0 mm. When the w/c ratio is 0.45, the
penetration depth of chloride ions is 9.3 mm, and the simulation result is 9.9 mm. When the w/c
ratio is 0.55, the penetration depth of chloride ions is 12.9 mm, and the simulation result is 12.1 mm.
Under different hydrostatic pressures, the penetration depth of chloride ions obviously changes, and
with the increase in hydrostatic pressure, the penetration depth of chloride ions deepens. Under
the w/c ratio of 0.35, when the hydrostatic pressure is 0.5 MPa, the penetration depth of chloride
ions is 11.3 mm, and the simulation result is 12.1 mm. When the hydrostatic pressure is 1.0 MPa, the
penetration depth of chloride ions is 16.2 mm, and the simulation result is 17.5 mm.

Keywords: concrete; chloride transport; hydrostatic pressure; aggregate content; w/c ratio; COM-
SOL software

1. Introduction

The durability life of a cement structure refers to the whole process from the con-
struction of a cement structure to the destruction of a cement structure [1–4]. Cement is a
kind of heterogeneous material which contains particles with different sizes and types of
pores [5–8]. As a result, seawater containing chloride ions and other harmful substances
can invade the cement, accelerate steel corrosion and cause durability damage to the
structure of the cement. The transmission process of chloride ions in cement is mainly
through the connected pores of the cement [9–13]. This process is not only restricted by
the changes of the cement’s own composition, structure and performance, but it is also
affected by the external service environment of the cement, which makes the transmission
mechanism of chloride ions in cement extremely complex [13–16]. The external service
environment of cement is complex and changeable, in which a variety of soluble salts
interact to form a multi-salt concentration field, which has been proven to be able to change
or even significantly change the diffusion coefficient of chloride ions and is in the seabed
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structure [17–22]. The cement of buildings is affected by the hydrostatic pressure field at
the same time, thus forming a multi-field coupling environment, which makes the chloride
ion transport mechanism in this environment worthy of further discussion [23–27].

Many scholars have conducted systematic research on the influence of cement on
chloride ion transport which is worthy of reference. For example, Guimaraes et al. [28]
conducted a chloride corrosion test on a marine concrete structure for 22 years, and the
results showed that the degree of water saturation had a great influence on the diffusion of
chloride ions in concrete. Roy and Chye [29] conducted a 560-day exposure experiment
on concrete blocks in a tidal zone. The test results showed that the chloride diffusion
coefficient of the concrete in a tidal zone had good correlation with the chloride diffusion
mechanism established earlier, and the diffusion coefficient changed obviously with the
w/c ratio of the concrete. Hong and Hooton [30] studied the effect of chloride entry into
HPC under dry–wet cycles. Their test results showed that longer drying times led to higher
chloride diffusion coefficients in cement-based materials. Field tests of cement structures
in a marine environment showed that the structures exposed to tides and experiencing
dry–wet cycles were more vulnerable to chloride corrosion damage than other parts in the
immersion zone and atmospheric zone. S. L. Lee [31] measured the distribution of chloride
ions in 0.6 w/c ratio concrete under the action of the water head pressure and concentration
gradient, but the experiment only measured the depth of the chloride ions in the concrete
under different pressure heads and action times with the AgNO3 spraying method, and the
distribution of chloride ion concentrations in the concrete along the direction of chloride
ion invasion was not given.

This paper studied the chloride diffusion performance of concrete with different w/c
ratios and different aggregate contents under different hydrostatic pressures based on
COMSOL finite element software and compared the simulation results with the experimen-
tal results to verify the effectiveness of the simulation method. Specifically, this paper is
mainly divided into four parts. The first part introduces the research status of the chloride
model for cement. The second part introduces the basic conditions and experimental
methods of the raw materials which were used in the experiment. The third part introduces
the chloride ion transport model and its solution. The fourth part discusses the influence
of different hydrostatic pressures, coarse aggregate contents and w/c ratios on chloride ion
transport. The main content and conclusions of this paper will be elaborated upon in the
fifth part.

2. Experimental Method
2.1. Materials

The cement was PII 52.5 Portland cement with a density of 3.0 g/cm3, which was
produced by Anhui Tongling Conch Cement Co., Ltd., Anhui, China. Its oxide composition
is shown in Table 1, and its chloride ion content is shown in Table 2.

Table 1. Chemical composition of the cement.

Sample
Oxide Composition (Mass Ratio, %)

Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO MnO Fe2O3 LOI

Cement 0.61 0.72 5.71 22.2 0.07 1.55 0.83 64.1 0.03 3.15 1.03

Table 2. Chloride ion components of the cement.

Sample
Chloride Ion Content (Mass Ratio, %)

Total Chloride Ions Water-Soluble Chloride Ions

Cement 0.1578 0.0625

Deionized water was used in the whole process. The fine aggregate’s medium sand
density was 1.4 g/cm3, and its modulus of fineness was 2.6, while the coarse aggregate’s
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crushed stone density was 2.5 g/cm3, and its particle size was 5–16 mm. The water-
reducing agent (polycarboxylate super plasticizer) was produced by Shanghai Meister
construction engineering high-tech Construction Chemical Co., Ltd., Shanghai.

Based on the requirements of test code DL/T5150-2001 for hydraulic concrete, corre-
sponding matching was designed, which can be seen in Table 3.

Table 3. Mix proportion design of mortar concrete (kg/m3).

Number W/C Cement Water Sand Stone Stone Volume

S-0.35 0.35 450 158 1350 - -
S-0.45 0.45 450 203 1350 - -
S-0.55 0.55 450 248 1350 - -
C-0% 0.50 672 336 1350 0 0%
C-20% 0.50 563 282 1125 530 20%
C-30% 0.50 450 250 900 1060 40%
C-40% 0.50 338 169 675 1590 60%

Note: W/C is the w/c ratio, and C-x% is the content of stone volume in concrete. For example, C-40% means the
stone volume is 40%.

2.2. Experimental Equipment
2.2.1. Determination of Open Porosity

The open porosity in cementitious materials is the main means of chloride ion and
water transmission. Therefore, the measurement of the open porosity of cementitious
materials can effectively lead to understanding the transmission process of chloride ions
and water in the pores of cementitious materials. Based on the mix proportion, the concrete
and cement’s size was 80 mm× 80 mm, and this was cured in a fog chamber with a relative
humidity of 95% at 20 ± 5 ◦C for 28 days based on the GB/T50082-2009 standard for
testing methods of the long-term performance and durability of ordinary concrete. The
high-precision electronic scale and vacuum saturator are shown in Figure 1.

According to Equation (1), the open porosity of the cementitious materials was calcu-
lated, which can be seen in Table 4:

PV =
(MC −M0)

VCρw
(1)

where PV is the open porosity (%); MC is the average mass of the sample after vacuum
filling (g); M0 is the average mass of the sample after drying (g); VC is the volume of the
test piece after being full of water (mL); and ρw is the water density (g/mL).

Table 4. Open porosities of cementitious materials.

Number MC/g M0/g VC/mL3 PV/%

S-0.35 123.782 112.349 58.1 19.67
S-0.45 127.331 113.864 58.6 22.98
S-0.55 132.574 114.352 59.4 30.67
C-0% 128.163 114.324 59.6 23.21

C-20% 127.212 114.404 59.2 21.64
C-40% 125.759 114.196 59.0 19.59
C-60% 129.954 116.163 59.9 23.02



Appl. Sci. 2021, 11, 5322 4 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 12 
 

crushed stone density was 2.5 g/cm3, and its particle size was 5–16 mm. The water-reduc-
ing agent (polycarboxylate super plasticizer) was produced by Shanghai Meister construc-
tion engineering high-tech Construction Chemical Co., Ltd., Shanghai. 

Based on the requirements of test code DL/T5150-2001 for hydraulic concrete, corre-
sponding matching was designed, which can be seen in Table 3. 

Table 3. Mix proportion design of mortar concrete (kg/m3). 

Number W/C Cement Water Sand Stone Stone Volume 
S-0.35 0.35 450 158 1350 - - 
S-0.45 0.45 450 203 1350 - - 
S-0.55 0.55 450 248 1350 - - 
C-0% 0.50 672 336 1350 0 0% 

C-20% 0.50 563 282 1125 530 20% 
C-30% 0.50 450 250 900 1060 40% 
C-40% 0.50 338 169 675 1590 60% 

Note: W/C is the w/c ratio, and C-x% is the content of stone volume in concrete. For example, C-
40% means the stone volume is 40%. 

2.2. Experimental Equipment 
2.2.1. Determination of Open Porosity 

The open porosity in cementitious materials is the main means of chloride ion and 
water transmission. Therefore, the measurement of the open porosity of cementitious ma-
terials can effectively lead to understanding the transmission process of chloride ions and 
water in the pores of cementitious materials. Based on the mix proportion, the concrete 
and cement’s size was 80 mm × 80 mm, and this was cured in a fog chamber with a relative 
humidity of 95% at 20 ± 5 °C for 28 days based on the GB/T50082-2009 standard for testing 
methods of the long-term performance and durability of ordinary concrete. The high-pre-
cision electronic scale and vacuum saturator are shown in Figure 1. 

  
(a) Vacuum saturator  (b) High-precision electronic scale 

Figure 1. Test instrument. 

According to Equation (1), the open porosity of the cementitious materials was cal-
culated, which can be seen in Table 4: 𝑃௏ = (𝑀஼ − 𝑀଴)𝑉஼𝜌௪  (1)

Figure 1. Test instrument.

2.2.2. Determination of the Chloride Diffusion Coefficient

According to GB/T50082-2009, the chloride ion diffusion coefficient can be calculated
based on Equation (2), and the RCM rapid chloride analyzer is shown in Figure 2:

DRCM =
0.0239× (273 + T)L

(U − 2)t

Xd − 0.0238

√
(273 + T)LXd

U − 2

 (2)

where DRCM is the unsteady ion transfer of specimens (m2/s); U is the absolute voltage
used; T is the temperature (◦C); L is the thickness of the specimen (mm); Xd is the depth
(mm); and t is the test time (h). The results can be seen in Table 5.
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Table 5. Measured values of the chloride diffusion coefficients of cement-based materials.

Number Chloride Diffusion Coefficient/m2/s

S-0.35 9.8 × 10−12

S-0.45 15.1 × 10−12

S-0.55 19.3 × 10−12

C-0% 14.2 × 10−12

C-20% 9.66 × 10−12

C-40% 7.13 × 10−12

C-60% 6.38 × 10−12

3. Chloride Transport Theory
3.1. Solution of the Concentration Term in the Convection Diffusion Equation

In the one-dimensional model, the concentration C(x, t) is a function of the cross-
section position x and the diffusion time t, such that [32]

∂C(x, t)
∂t

= Di
∂2C(x, t)

∂x2 (3)

For the above solution, the variable u = x/
√

t is introduced so that C(x, t) can be
transformed into a function about the single variable U, and the above formula can be
rewritten as

∂C
∂t

=
dC
du
·∂u

∂t
= −dC

du
· x

2t
3
2
= −dC

du
· u
2t

∂2C
∂x2 =

∂2C
∂u2 ·

(
∂u
∂x

)2
=

d2C
du2 ·

1
t

(4)

By taking the above two formulas into Equation (3) and simplifying them, an ordinary
differential equation is obtained:

2Di
d2C
du2 + u

dC
du

= 0 (5)

After solving the ordinary differential equation, we can get

C(x, t) = A
∫ u

0
e(−

u2
4D )du + B (6)

From Equation (6), the following can be derived:

C(x, t) = 2A
√

Di

∫ β

0
e(−β2)dβ + Bβ =

u
2
√

Di
=

x
2
√

Dit
(7)

Finally, the solution of Equation (3) can be obtained:

C(x, t) = C0 + (Cs − C0)[1− erf(
x

2
√

Dit
)] (8)

where C0 is the initial chloride concentration in the porous media, Cs is the concentration
of the chloride solution on the surface of the porous material, and the boundary conditions
and initial conditions can be expressed as [33]

t > 0, x = 0, C(t, 0) = Cs, β = 0
t = 0, x > 0, C(0, x) = C0, β = ∞

(9)

3.2. Simulation of the Chloride Ion Transport Process Based on COMSOL

COMSOL multiphasic is high-level numerical simulation software which solves PDE
based on the finite element method. It can not only solve the complex differential equation
hidden behind the multi-physical field but also easily realize the coupling process between
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multiple fields. In addition, it does not need to spend a lot of time on the complicated
process of programming and solving problems. This feature makes the software a very
convenient tool for theoretical realization in scientific research, rather than black box
software which can only input the parameters for a solution [34,35].

When the eroded surface of cementitious materials makes contacts with the chloride
solution, the water and chloride ions in the solution can enter the interior of the cementi-
tious materials under the drive of a concentration field and hydrostatic pressure field. At
this time, the water concentration in the solution was considered to be 1. The concentration
of the solution remained unchanged. The specific boundary conditions were as follows [36]:

θ(x = 0, t) = 1C(x = 0, t) = CS (10)

where θ is the surface saturation; C and Cs are the chloride concentration chloride concen-
tration of the external solution, respectively; x is the distance from the outside bed surface
of the cementitious materials; and t is the duration of erosion.

The initial conditions were the moisture content and chloride ion content of the
cement-based materials. Therefore, it was necessary to avoid the effect of the initial
conditions, strictly control the chloride ion content of the corresponding materials during
the molding time and dry the specimens before the experiment. The initial conditions were
as follows [37,38]:

θ(x, t = 0) = 0C(x, t = 0) = 0 (11)

The model parameters of the cement mortar test block are shown in Table 6.

Table 6. Model parameters of the cement mortar block.

Number w/c Ratio Porosity
(%)

Permeability Coefficient
(×10−13 m/s)

Diffusion Coefficient
(×10−12 m2/s)

Volume Fraction of
Fine Aggregate (%)

S-0.3 0.3 19.67 2.47 0.98 28.2
S-0.4 0.4 22.98 5.90 1.71 27.9
S-0.5 0.5 30.67 14.7 2.53 27.5

The external environment parameters of the cementitious materials in the simulation
process are shown in Table 7.

Table 7. External environment parameters of the simulation.

Number w/c Ratio Hydrostatic Pressure (MPa) Duration (d) Chloride Concentration (%)

S-0.35/S-0.45/S-0.55 0.35/0.45/0.55
0

30 5%0.5
1.0

4. Results and Discussion
4.1. Effect of Hydrostatic Pressure
4.1.1. Experimental Results

It can be seen from Figure 3 that when the hydrostatic pressure was 0.5 MPa, the depth
of chloride ion diffusion in the concrete changed with different w/c ratios. Specifically,
when the w/c ratio was 0.35, the chloride ion diffusion depth was 11.3 mm; when the w/c
ratio was 0.45, the chloride ion diffusion depth was 16.7 mm; and when the w/c ratio was
0.55, the chloride ion diffusion depth was 19.4 mm. In addition, the chloride ion diffusion
depths of the concrete with different w/c ratios under different hydrostatic pressures are
shown in Table 8.
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4.1.2. Numerical Results and Comparative Analysis

It can be seen from Figure 4 that when the hydrostatic pressure was 0.5 MPa, the
calculated depth of chloride ion diffusion in the concrete changed with different w/c ratios.
Specifically, when the w/c ratio was 0.35, the chloride ion diffusion depth was 12.1 mm;
when the w/c ratio was 0.45, the chloride ion diffusion depth was 15.5 mm; and when
the w/c ratio was 0.55, the chloride ion diffusion depth was 18.5 mm. In addition, the
calculated depths of chloride ion diffusion of the concrete with different w/c ratios and
different hydrostatic pressures are shown in Table 8. Obviously, with the increase of the
water-to-cement ratio—that is, the diffusion coefficient of chloride increased—the diffusion
depth of the chloride increased with the same chloride concentration and the same erosion
time. Furthermore, it can be concluded that the multi-physical field calculation method
based on COMSOL software had higher accuracy by comparing the experimental results
with the calculated results.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 12 
 

   

(a) W/C = 0.35 (b) W/C = 0.45 (c) W/C = 0.55 

Figure 3. Test results of chloride ion diffusion under different w/c ratios while under hydrostatic pressure of 0.5 MPa. 

Table 8. Test and simulation results for the cement mortar. 

Hydrostatic Pressure: 0 MPA 

Number 
First 

Group 
Second 
Group 

Third 
Group 

Experimental 
Value 

Simulation 
Value Error 

(%) 
(mm) 

S-0.35 7.2 8.1 7.0 7.4 8.0 7.6 
S-0.45 8.9 9.4 9.6 9.3 9.9 6.4 
S-0.55 12.3 12.7 13.7 12.9 12.1 6.2 

Hydrostatic Pressure: 0.5 MPA 

Number 
First 

Group 
Second 
Group 

Third 
Group 

Experimental 
Value 

Simulation 
Value Error 

(%) 
(mm) 

S-0.35 10.3 12.1 11.6 11.3 12.1 6.7 
S-0.45 15.9 16.3 17.9 16.7 15.5 7.1 
S-0.55 19.1 18.4 20.7 19.4 18.5 4.6 

Hydrostatic Pressure: 1 MPA 

Number 
First 

Group 
Second 
Group 

Third 
Group 

Experimental 
Value 

Simulation 
Value Error 

(%) 
(mm) 

S-0.35 16.1 15.3 17.3 16.2 17.5 7.8 
S-0.45 18.9 19.1 20.6 19.5 20.8 6.5 
S-0.55 26.7 26.3 23.7 25.6 24.1 5.7 

4.1.2. Numerical Results and Comparative Analysis 
It can be seen from Figure 4 that when the hydrostatic pressure was 0.5 MPa, the 

calculated depth of chloride ion diffusion in the concrete changed with different w/c ra-
tios. Specifically, when the w/c ratio was 0.35, the chloride ion diffusion depth was 12.1 
mm; when the w/c ratio was 0.45, the chloride ion diffusion depth was 15.5 mm; and when 
the w/c ratio was 0.55, the chloride ion diffusion depth was 18.5 mm. In addition, the cal-
culated depths of chloride ion diffusion of the concrete with different w/c ratios and dif-
ferent hydrostatic pressures are shown in Table 8. Obviously, with the increase of the wa-
ter-to-cement ratio—that is, the diffusion coefficient of chloride increased—the diffusion 
depth of the chloride increased with the same chloride concentration and the same erosion 
time. Furthermore, it can be concluded that the multi-physical field calculation method 

Figure 3. Test results of chloride ion diffusion under different w/c ratios while under hydrostatic pressure of 0.5 MPa.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 12 
 

based on COMSOL software had higher accuracy by comparing the experimental results 
with the calculated results. 

   

(a) W/C = 0.35 (b) W/C = 0.45 (c) W/C = 0.55 

Figure 4. Simulation results of chloride ion diffusion under different w/c ratios and under a hydrostatic pressure of 0.5 
MPa. 

4.2. Effect of Coarse Aggregate Content 
4.2.1. Experimental Results 

The depth of chloride ion diffusion in the concrete with different aggregate volume 
fractions when the hydrostatic pressure was 0.5 MPa can be seen in Figure 5. Specifically, 
when the volume fraction of the aggregate was 0%, the chloride ion diffusion depth was 
20.9 mm; when the volume fraction of the aggregate was 20%, the chloride ion diffusion 
depth was 15.3 mm; when the volume fraction of the aggregate was 40%, the chloride ion 
diffusion depth was 13.5 mm; and when the volume fraction of the aggregate was 60%, 
the chloride ion diffusion depth was 12.6 mm. In addition, the chloride ion diffusion 
depths of the concrete with different aggregate volume fractions under different hydro-
static pressures are shown in Table 9. 

Table 9. Chloride ion penetration test and simulation results of the concrete. 

Hydrostatic Pressure: 0.5 MPA 

Number 
First 

Group 
Second 
Group 

Third 
Group 

Experimental 
Value 

Simulation 
Value Error 

(%) 
(mm) 

C-0% 20.3 20.9 21.5 20.9 20.1 3.83 
C-20% 15.8 15.6 14.5 15.3 17.3 13.1 
C-40% 12.6 12.9 15.1 13.5 15.0 10.8 
C-60% 11.9 11.4 14.6 12.6 13.2 4.48 

Hydrostatic Pressure:1 MPA 

Number 
First 

Group 
Second 
Group 

Third 
Group 

Experimental 
Value 

Simulation 
Value Error 

(%) 
(mm) 

C-0% 31.6 31.0 32.9 31.8 32.2 1.15 
C-20% 22.4 20.7 24.1 22.4 25.5 13.8 
C-40% 15.3 19.5 20.1 18.3 20.5 12.0 
C-60% 13.2 18.5 20.41 17.37 15.2 12.5 

Figure 4. Simulation results of chloride ion diffusion under different w/c ratios and under a hydrostatic pressure of 0.5 MPa.



Appl. Sci. 2021, 11, 5322 8 of 12

Table 8. Test and simulation results for the cement mortar.

Hydrostatic Pressure: 0 MPA

Number
First Group Second

Group
Third
Group Experimental Value Simulation Value Error

(%)
(mm)

S-0.35 7.2 8.1 7.0 7.4 8.0 7.6
S-0.45 8.9 9.4 9.6 9.3 9.9 6.4
S-0.55 12.3 12.7 13.7 12.9 12.1 6.2

Hydrostatic Pressure: 0.5 MPA

Number
First Group Second

Group
Third
Group Experimental Value Simulation Value Error

(%)
(mm)

S-0.35 10.3 12.1 11.6 11.3 12.1 6.7
S-0.45 15.9 16.3 17.9 16.7 15.5 7.1
S-0.55 19.1 18.4 20.7 19.4 18.5 4.6

Hydrostatic Pressure: 1 MPA

Number
First Group Second

Group
Third
Group Experimental Value Simulation Value Error

(%)
(mm)

S-0.35 16.1 15.3 17.3 16.2 17.5 7.8
S-0.45 18.9 19.1 20.6 19.5 20.8 6.5
S-0.55 26.7 26.3 23.7 25.6 24.1 5.7

4.2. Effect of Coarse Aggregate Content
4.2.1. Experimental Results

The depth of chloride ion diffusion in the concrete with different aggregate volume
fractions when the hydrostatic pressure was 0.5 MPa can be seen in Figure 5. Specifically,
when the volume fraction of the aggregate was 0%, the chloride ion diffusion depth was
20.9 mm; when the volume fraction of the aggregate was 20%, the chloride ion diffusion
depth was 15.3 mm; when the volume fraction of the aggregate was 40%, the chloride
ion diffusion depth was 13.5 mm; and when the volume fraction of the aggregate was
60%, the chloride ion diffusion depth was 12.6 mm. In addition, the chloride ion diffusion
depths of the concrete with different aggregate volume fractions under different hydrostatic
pressures are shown in Table 9.
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Table 9. Chloride ion penetration test and simulation results of the concrete.

Hydrostatic Pressure: 0.5 MPA

Number
First Group Second

Group
Third
Group Experimental Value Simulation Value Error

(%)
(mm)

C-0% 20.3 20.9 21.5 20.9 20.1 3.83
C-20% 15.8 15.6 14.5 15.3 17.3 13.1
C-40% 12.6 12.9 15.1 13.5 15.0 10.8
C-60% 11.9 11.4 14.6 12.6 13.2 4.48

Hydrostatic Pressure:1 MPA

Number
First Group Second

Group
Third
Group Experimental Value Simulation Value Error

(%)
(mm)

C-0% 31.6 31.0 32.9 31.8 32.2 1.15
C-20% 22.4 20.7 24.1 22.4 25.5 13.8
C-40% 15.3 19.5 20.1 18.3 20.5 12.0
C-60% 13.2 18.5 20.41 17.37 15.2 12.5

4.2.2. Numerical Results and Comparative Analysis

The calculated depths of chloride ion diffusion in the concrete with different aggregate
volume fractions when the hydrostatic pressure was 0.5MPa can be seen in Figure 6.
Specifically, when the volume fraction of the aggregate was 0%, the chloride ion diffusion
depth was 20.9 mm; when the volume fraction of the aggregate was 20%, the chloride ion
diffusion depth was 15.3 mm; when the volume fraction of the aggregate was 40%, the
chloride ion diffusion depth was 13.5 mm; and when the volume fraction of the aggregate
was 60%, the chloride ion diffusion depth was 12.6 mm. In addition, the chloride ion
diffusion depths of the concrete with different aggregate volume fractions under different
hydrostatic pressure values are shown in Table 9. Obviously, with the increase of the
concrete’s aggregate volume, the diffusion path of the chloride ions became more and
more tortuous, and the diffusion depth of the chloride ions also increased under the same
chloride ion concentration and the same erosion time. This is because the aggregate can
inhibit chloride ion diffusion in concrete, and it becomes more obvious with the increase
in the aggregate content. The inhibition mechanism was due to the tortuous effect of the
aggregate, and the increase in the chloride ion diffusion depth required longer time and
more energy.
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The deviation value of the data in Table 8 shows that the error of the physical test
results and simulation results increased after the introduction of a coarse aggregate into the
cementitious materials. The maximum error of the mortar test block comparison results
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was only 7.8%, while the maximum error of the concrete test block comparison results
was 13.8%. This is a sharp increase, and the dispersion of the concrete contrast error was
large. At the same time, the average contrast error of the mortar test block was 6.54%, and
the average error of the concrete test block was 8.97%. This phenomenon shows that the
model in this paper had some deviation in the study of the concrete model, and it needs
further improvement. Furthermore, it was proven that the cement would produce a large
dispersion of the whole structure after the introduction of a coarse aggregate, and this
needs to be paid attention to in future research.

4.3. Effect of the w/c Ratio

As is shown in Figure 7, the change of the w/c ratio of the mortar block had a great
influence on the chloride penetration depth under hydrostatic pressure. The internal reason
can be explained by the variation diagram of the porosity and diffusion coefficient of the
mortar in Figure 8. With the increase of the w/c ratio, the porosity of the mortar increased,
and the chloride diffusion coefficient of the mortar increased, indicating a high correlation.
When the w/c ratio was large, the mortar sample was not dense enough, and there were
many pores with large pore diameters. When the w/c ratio was large, the amount of
cement was lower, and cement hydration formed. The hydration products of the chloride
ions were relatively lower, and the chloride ions could be adsorbed and combined with
fewer attachments.
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5. Conclusions

This paper studied the chloride diffusion performance of concrete with different w/c
ratios and different aggregate contents under different hydrostatic pressures based on
COMSOL finite element software, and it compared the simulation results with the experi-
mental results to verify the effectiveness of the simulation method. The main conclusions
drawn from this study are summarized as follows:

(1) Under the same w/c ratio and different hydrostatic pressures, the penetration depth of
chloride ions in mortar had a very obvious change. When the w/c ratio of the mortar
was 0.35, the final penetration depth of the chloride ions increased by 43.1% and
123.6% with the increase in hydrostatic pressure from 0 MPa to 1.0 MPa, respectively.

(2) The chloride diffusion depth decreased linearly with the increase in the aggregate
content, and this linear relationship did not change with the diffusion time. Further
analysis showed that the final diffusion depth of the chloride ions decreased by 18.9%,
32.8% and 55.6% when the volume fraction of the concrete aggregate increased from 0
to 20%, 40% and 60% after 120 days of concrete infiltration under hydrostatic pressure,
respectively.

(3) Under hydrostatic pressure, the depth of chloride ion transport was greatly affected
by the change in the w/c ratio and increased rapidly with the increase in the w/c
ratio of the cementitious materials.
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