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Abstract: This paper uses the long-span steel truss slab track as its research subject to analyze the
new type of sleeper slab track structure with an experimental method. Firstly, a full-scale model
was established in the laboratory to form a “rail–sleeper slab–self-compacting concrete cushion–steel
beam” composite structure, and a fatigue test was performed on the track structure. The cyclic load
was set up as a sine form with a range between 75 and 375 kN at a 5 Hz interval and 3 × 106 cycles.
Based on the test, the performance of the track structure under cyclic train load was studied. Secondly,
after every 106 loading cycles, the vertical static loading test and horizontal resistance test of the
track structure were carried out to obtain the strain and displacement under different loading cycles.
Finally, after 3 × 106 cycles of sine cyclic loading, the horizontal ultimate resistance test of the track
structure was carried out to study its horizontal failure mode. The aims of this paper were to verify
the applicability of the sleeper slab track, identify the mechanical properties, and determine the
unfavorable position. The findings can provide an important reference for the practical use of the
sleeper slab track structure.

Keywords: sleeper slab track; full-scale laboratory test; fatigue; mechanical characteristics

1. Introduction

With the development of railway construction in China, the proportion of bridges
in railway lines has gradually increased. When a vehicle passes through the bridge, the
wheel–rail force is transmitted to the bridge through the track structure, which causes
strain and deformation of the bridge, consequently affecting the safety and comfort of
the track structure on the bridge. Cheng et al. proposed a bridge–track–vehicle unit
model to study the interaction among the mobile vehicle, track structure, and bridge.
The results show that the bridge has a great influence on the dynamic response of track
structure [1]. Lou et al. found that the effects of track structure on vertical displacement
and vertical acceleration of the car body are significant [2]. Xiao et al. demonstrated that
the effects of the track on the lateral responses of vehicle and bridge cannot be ignored
and the reasonable and comprehensive analysis of vehicle–track–bridge interaction should
consider the effects of the track [3]. In summary, the selection of track structure on a railway
bridge is of considerable importance. At present, the ballasted track, slab ballastless track,
and wooden sleeper (composite sleeper) track on the open deck are the main track forms
used on bridges.

The ballasted track is a common track form on the steel bridge deck. It has the
characteristics of low engineering cost and strong adjustment ability. However, the use of a
ballasted track will increase the height of the track structure and the secondary dead load of
the bridge. In addition, under the repeated load of the vehicle, the deformation of the ballast
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bed will accumulate. In severe cases, the ballast will be broken and powdered. Therefore,
it is very important to study the mechanical properties and identify the ballast. Podwmna
et al. analyzed the random vibration characteristics of the vehicle–track–bridge coupling
model under different vehicle speeds, and proposed a problem of possible destabilization of
macadam ballastbeds on railway bridges. One possible solution is applying the ballastless
track structure [4–6]. By comparing the results from the cyclic loading test on the ballast
using a large-scale triaxial test apparatus with the full-scale laboratory test in the railway
test facility (RTF), Aursudkij et al. analyzed the permanent axial strains and particle size
distribution under traffic loading [7]. Moaveni et al. used an image analysis approach
based on machine vision algorithms to assess ballast condition and degradation levels [8].
However, due to the structural characteristics of the ballasted track on the bridge, it is
difficult to inspect the bridge deck and maintain the ballast bed. Consequently, this will
lead to an increase in maintenance workload.

Different from the ballasted track, the slab ballastless track can reduce the secondary
dead load of the bridge and the maintenance workload. In the meantime, the mechanical
characteristics of ballastless tracks will also be affected by the behaviors of bridges. Ruge
et al. studied the interaction between the track and bridge under the action of vehicle
loading and seasonal temperature change and proposed that stresses in track structure
on bridges are strongly influenced by the coupling interface between track and bridge in
the longitudinal direction [9]. Full-scale fatigue tests and post-fatigue loading tests were
carried out by Sheng et al. to research the mechanical behaviors and fatigue performances
of ballastless tracks laid on long-span cable-stayed bridges [10]. The results indicate that
ballastless track on bridge has good performance in fatigue property. In the work of Zheng
et al., a segmental model was developed in the laboratory, on which various types of
ballastless tracks were paved [11]. The authors suggested that appropriate track type can
improve the mechanical performance of the structure. Previous research has established
that the slab ballastless track can improve track regularity and stability. However, some
scholars proposed that it is prone to crack under the influence of temperature and bridge
deformation, which affects the durability of the structure [12–14].

Compared with the traditional ballasted track and ballastless track, the sleeper track
on the open deck has a simpler structure with a smaller secondary dead load. Wooden
sleepers are the main track structure used on the open deck of steel truss bridges. However,
wooden sleepers have poor durability and can easily decay and crack. Scholars from all
over the world began to look for new materials to replace wooden sleepers [15,16]. In
the work of Cantero et al., the mechanical properties of composite sleepers and wooden
sleepers were compared and analyzed by the finite element method. The research showed
that the performance of composite sleepers is equivalent to that of wooden sleepers, and
only one-third of the volume of standard wooden sleepers is needed [17]. Manalo et al. used
the four-point static bending test on composite sleepers to study the strength and failure
mechanisms [18]. Data from the above research suggest that composite sleepers have good
performance in flexural behavior. Ferdous et al. proposed to coat epoxy-based polymer
concrete on the sleeper surface to protect the sleeper from unfavorable environments and
increase the strength of the rail-seat area [19]. After summarizing the material properties
of various composite sleepers, Ferdous et al. pointed out the problems existing in the
application and development of composite sleepers [20,21]. The primary obstacles to the
composite sleepers are their prohibitive cost, low anchorage capability of holding screws,
formation of voids in the body of the sleeper, permanent deformation due to creep and
temperature variations, and insufficient lateral resistance.

Nansha Port Railway in Guangzhou is a mixed passenger and freight railway with a
design speed of 120 km/h. It has a through bridge with a steel truss and arch. The total
length of the bridge is 996 m. In order to prolong the maintenance period of the track
structure and reduce the secondary dead load of the bridge, a new type of concrete sleeper
slab track structure on the open deck was adopted. The integrity of the structure was
improved by prefabricating two sleepers into one and setting up vertical and horizontal
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limit devices. The adjusting cushion, sleeper slab, and cushion under the slab were set
up between the sleeper slab and the steel beam. High strength bolts were used to connect
the structure vertically, as shown in Figure 1. In practical engineering, the train operation
produces a large vertical force and when the train passes through the curve section or has
a hunting motion, it produces a large transverse force. Furthermore, the train operation,
breaking, and passing through the ramp also produces a large longitudinal force. The
coupling effect of the three-dimensional force has a great impact on the track structure
and even damages it [22,23]. In order to study the mechanical properties and long-term
performance of the new type of sleeper slab track structure, this paper carried out a full-
scale indoor modal loading test of the concrete sleeper slab track structure to provide a
reference for the engineering application.
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Figure 1. Sleeper slab track structure.

2. Specimen Geometry and Materials

The indoor full-scale sleeper slab track structure consists of a rail, fastening system,
sleeper slab, self-compacting concrete cushion, and flange slabs of steel truss bridge (simu-
lated by two steel beams), as shown in Figure 2. The sleeper slab and the self-compacting
concrete are made of C60 and C40 concrete, respectively. The concrete specimens were
cured under the same conditions and the dimensions are 150 mm × 150 mm × 150 mm.
After 28 days, the cube compressive strengths measured by the prefabrication plant are
70.1 and 48.4 MPa. The steel beams are elastically supported within a certain range (the
support spacing is 1.6 m) in order to simulate the vertical deformation of the steel truss
bridge and the support form of the track structure in practical engineering.
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In the test, the dimensions of the sleeper slab are 1200 mm (length) × 2720 mm
(width) × 240 mm (height) and each sleeper slab is made of double sleepers with a spacing
of 625 mm between them. The dimensions of the self-compacting concrete cushion are
1150 mm (length) × 580 mm (width) × 120 mm (height), and each sleeper slab track
structure has two symmetrical cushions. Moreover, the 60 kg/m rail is used in this
structure, and the density is 7850 kg/m3.

3. Test Content

The test contents carried out in this paper include the vertical static load test, the
vertical fatigue test, and horizontal resistance test of the sleeper slab. A PMS-500 digital
display pulsing machine was used for vertical static load and sine cyclic load. A distribution
beam was set on the middle of the track structure to simulate vehicle uniaxial load. The
static load was 625 kN, which is 2.5 times the equivalent wheel load (250 kN) [24]. In the
vertical static load test, the displacement and strain were measured by sensors to study
the bearing capacity and force characteristics of the track structure. The transverse and
longitudinal static loads on the sleeper slab were applied using a jack. In the test, the
longitudinal and transverse forces adopted were F1 = 36 kN and F2 = 100 kN, respectively.
The resistance of the horizontal limit device of the sleeper slab was studied by measuring
the displacement of the sleeper slab relative to the steel beam. In the vertical fatigue test,
the maximum load applied was 375 kN, which is 1.5 times the equivalent wheel load
(250 kN), while the minimum load was 75 kN, which is 10% of the maximum load [14,25].
The train load conformed to the normal distribution; therefore, the cyclic load was set
up as a sine form with 5 Hz and a total of 3 × 106 cycles. In addition, the vertical static
load test and horizontal resistance test were carried out after every 106 cycles to study the
bearing capacity and durability of the sleeper slab track. The above tests are of great value
to understand the mechanical properties of the new track structure.

3.1. Arrangements of Strain Gauges

When the track structure bears the train load, the concrete strain at the edge is the most
unfavorable. Therefore, the strain state of the concrete at the edge is studied emphatically
in this paper. To avoid the damage of concrete strain gauges, the surfaces of the strain
gauges were protected with structural glue. There were a total of 12 measuring points on
the structure. Among them, the sleeper slab and the self-compacting concrete cushion had
six measuring points, respectively. The arrangements of the measuring points are shown in
Figure 3.

On the sleeper slab, 1, 2, 5, and 6 are the angle crack measuring points of the sleeper
slab. Points 3 and 4 are the middle measuring points of the sleeper slab.

On the self-compacting concrete cushion, 7 and 10 are the middle measuring points
of the short side; 8 and 11 are the end measuring points of the right long side; and 9 and
12 are the middle measuring points of the right long side. The measuring points of the
self-compacting concrete cushion are at the middle height of the sides.
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Figure 3. Sensor arrangements of strain gauges. (a) Arrangements of strain gauges, (b) Upper surface
of sleeper slab, (c) Long side of self-compacting concrete cushion and (d) Short side of self-compacting
concrete cushion.

3.2. Arrangements of Displacement Sensors
3.2.1. Vertical Displacement of Static Load Test

A total of 15 vertical displacement sensors were arranged on the structure. The
arrangements were as follows: two rail displacement sensors were used to measure the
rail displacement relative to the sleeper slab; eight sleeper displacement sensors were used
to measure the sleeper slab displacement relative to the steel beam; and five steel beam
displacement sensors were used to measure the displacement of the steel beam fulcrum,
middle position, and quarter position. The arrangements of the measuring points are
shown in Figure 4.
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3.2.2. Horizontal Displacement of Resistance Test

In the horizontal resistance test, a total of eight horizontal displacement sensors were
arranged on the structure. This included four longitudinal displacement sensors and four
transverse displacement sensors. These sensors were used to measure the displacement of
the sleeper slab relative to the steel beam in the horizontal direction. The arrangements of
the measuring points are shown in Figure 5, and the loading devices used in the horizontal
resistance test are shown in Figure 6.
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4. Test Results
4.1. Strain of the Sleeper Slab Track

The strain variation law of the track structure under 2.5 times the train load after
different sine cycles is shown in Tables 1 and 2 and Figures 7 and 8.

Table 1. Surface strain of sleeper slab.

Sine Cyclic Loading Numbers Before Cyclic Loads 1 Million 2 Million 3 Million

Strain (µε)

point 1 −19.750 −14.028 −13.972 −12.417
point 2 −12.778 −9.167 −8.583 −9.417
point 3 −67.778 −59.639 −67.556 −67.722
point 4 −64.139 −54.083 −64.833 −65.861
point 5 −86.500 −73.028 −77.639 −77.028
point 6 −109.389 −97.667 −108.056 −109.861

Note: positive value means pull, negative value means pressure.
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Table 2. Vertical strain of the cushion.

Sine Cyclic Loading Numbers Before Cyclic Loads 1 Million 2 Million 3 Million

Strain (µε)

point 7 −141.944 −134.800 −115.292 −142.400
point 8 −75.778 −72.815 −63.846 −72.123
point 9 24.778 31.846 22.831 20.554

point 10 −89.250 −77.538 −55.354 −55.538
point 11 −60.750 −58.831 −43.169 −35.446
point 12 4.833 8.492 7.631 6.400

Note: positive value means pull, negative value means pressure.
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Figure 8. Vertical strain of the cushion.

The development of the surface strain of the sleeper slab under the sine cyclic loading
process is shown in Table 1 and Figure 7. The upper surface of the sleeper slab was in the
compressive state during loading. The strain at the inner side of the sleeper (5 and 6) was
greater than that at the middle of the slab upper surface (3 and 4), and the strain at the
outside of the sleeper (1 and 2) was the smallest among the strain measuring points of the
slab. During the sine cyclic loading process, the surface strain of the sleeper slab varied
slightly. The average strain change rate of measuring points 5 and 6 was −4.594%. The
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average strain change rate of measuring points 3 and 4 was 1.263%. Only the average strain
change rate of measuring points 1 and 2 reached −32.878%. This is probably because the
strain values of 1 and 2 are very small. It can be seen from the above data that the sleeper
slab can still maintain excellent mechanical properties after 3 million cycles of sine cyclic
loading. It is well known that one of the main functions of the sleeper is to transfer the
huge pressure from the rail to the track bed. The corner of the sleeper is a bulge, which
can easily cause strain concentration. It has been demonstrated that the strain here is in a
large state [26]. In the test, measuring points 5 and 6 were not only located at the corner of
the sleeper, but also at the outside of the self-compacting concrete cushion, which means
that the bottom of points 5 and 6 was in the suspended state. As a result, the location
of maximum transverse compressive strain was at the inner side of the sleeper, and the
average value was 97.944 µε. Although measuring points 1 and 2 were also located at the
corner of the sleeper, the strain was relatively small due to the concrete cushion support at
the bottom.

The development of the vertical strain of the cushion under the sine cyclic loading
process is shown in Table 2 and Figure 8. The vertical strain of the cushion at the middle
position of the short side was compressive strain, that at the middle position of the long
side was tensile strain, and that at the corner was compressive strain. The values of tensile
and compressive strain were kept at low levels. During the sine cyclic loading process, the
tensile strain at the long side of the cushion remained stable. The average strain change
rate of measuring points 9 and 12 was −8.974%. The average compressive strain at the
short side and the corner had a gradual decrease first and then increased slightly. After
3 million cycles of sine cyclic loading, the average strain change rates of measuring points
7 and 10 and 8 and 11 were −14.384 and −21.211%, respectively. The location of maximum
tensile strain was at the middle of the long side with a value of 31.846 µε (1 million). The
location of maximum compressive strain was at the middle of the short side with a value
of 142.400 µε (3 million).

It can be seen from Figures 7 and 8 that when the number of cyclic loading is low,
the strain of the sleeper slab and self-compacting concrete cushion is reduced, which
may be due to the loose contact between the track structures in the early stage. After
1 million cycles of sine cyclic loading, the fatigue deformation accumulation of the sleeper
slab concrete could be observed. After 2 million cycles of sine cyclic loading, the fatigue
deformation accumulation of the self-compacting concrete cushion could also be observed.
Compared with the strain before cyclic loading, there was only a small change in concrete
strain after 3 million cycles of sine cyclic loading. The fatigue damage of the structure was
in a low state.

4.2. Vertical Displacement of the Sleeper Slab Track

Table 3, Table 4, and Table 5 show the displacement variation of the rail, sleeper
slab, and steel beam under 2.5 times the train load (625 kN) after certain sine cyclic
loading numbers.

Table 3. Average displacement of rail (relative to sleeper slab).

Sine Cyclic Loading Numbers Before Cyclic Loads 1 Million 2 Million 3 Million

Vertical displacement/mm −0.356 −0.264 −0.519 −0.559

Table 4. Average displacement of sleeper slab (relative to steel beam).

Sine Cyclic Loading Numbers Before Cyclic Loads 1 Million 2 Million 3 Million

Vertical displacement/ mm 0.271 0.567 0.376 0.302
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Table 5. Displacement of steel beams (relative to ground).

Measuring Points 1 2 3 4 5

0/mm −0.752 −1.155 −1.211 −1.169 −0.945
1 million/mm −1.254 −1.674 −1.617 −1.672 −1.463
2 million/mm −0.721 −1.132 −1.138 −1.169 −0.945
3 million/mm −0.605 −0.930 −0.908 −0.990 −0.757

Note: negative value means downward, positive value means upward.

According to Figure 9, the displacement of the rail relative to the sleeper slab decreased
during the loading process of 1 million cycles. Before the cyclic loading, the contact between
the rail and fastener system was not tight enough. This resulted in a large displacement
of the rail under the vertical load of 625 kN. Under the action of cyclic loading, the loose
state was eliminated rapidly, and the displacement of the rail after 1 million cycles of sine
cyclic loading was less than before. Moreover, the loading position was in the middle of
the two fasteners, which is the most unfavorable position as discussed by Gao et al. [27].
When the vertical load was applied on the rail, because of its bending stiffness, the force
at the front and end of the fasteners was not consistent, and the pad was not in uniform
force. As a result, only part of the nominal contact area was effective, which led to the
reduction in fastener supporting stiffness. The above discussion is similar to the research of
Chen et al. [28]. With the growth of the sine cyclic loading numbers, the rail displacement
increased gradually. This result may be explained by the fact that the reduction in the
fastener clamping force and the supporting stiffness occurred under the action of cyclic
loading. The displacement variation of the sleeper slab is also described in Figure 9. As the
sleeper slab, self-compacting concrete cushion, and steel beam are not a whole and there is
the certain gap between the above components, the displacement of the sleeper slab relative
to the steel beam increased during the initial 1 million loading cycles. With the gradual
compaction between the components of the track structure, the relative displacement of
the sleeper slab gradually decreased and tended to be stable in the later stage of the test.
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Figure 9. Vertical displacement of rail and sleeper slab. Figure 9. Vertical displacement of rail and sleeper slab.

Figure 10 shows the deformation trend of the steel beam relative to the ground during
the sine cyclic loading process. The track components did not have tight contact at the
initial time and the structural integrity was not in the best condition, which led to the
increase in the steel beam displacement after 1 million cycles of sine cyclic loading. After
that, with the growth of the sine cyclic loading numbers, the stiffness of the rubber fulcrum
increased gradually. Consequently, the displacement of the whole steel beam began to
decrease. What can be clearly seen in Figure 10 is that the deformation law of the steel beam
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is almost the same during the loading process. The displacement value of the midspan
(point 3) was always less than that of the 1/4 span (point 2 and 4) from 1 million to 3 million
cycles of cyclic loading. This illustrates that the rib structure can effectively improve the
bending stiffness and reduce the midspan displacement. The difference between the
total displacement of the steel beam (measured by sensors) and the displacement of the
fulcrum is defined as the actual displacement. After 3 million cycles of sine cyclic loading,
the maximum displacement change rate of the steel beam was 11.005%. As a result, the
structure was still in good working condition.
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4.3. Horizontal Displacement of Sleeper Slab

In the sleeper slab track structure, high-strength bolts are mainly used to provide the
horizontal limit. Unfortunately, the long-term effect of train load may lead to a reduction
in the binding force of the limit device. The main aim of this section was to investigate the
horizontal resistance of the sleeper slab after certain sine cyclic loading numbers.

4.3.1. Longitudinal Loading

The longitudinal resistance test was carried out on a sleeper slab with a longitudinal
thrust of F1 = 36 kN. The maximum longitudinal displacement of the sleeper slab under
different sine cyclic loading numbers is shown in Table 6

Table 6. Maximum longitudinal displacement of sleeper slab (relative steel beam).

Sine Cyclic Loading Numbers 1 Million 2 Million 3 Million

Longitudinal displacement/ mm 0.027 0.050 0.049

According to Table 6, with the increase in sine cyclic loading numbers, the maximum
longitudinal displacement of the sleeper slab increased first and then tended to stabilize
gradually. When the sine cyclic loading number varied from 1 million to 3 million, the
longitudinal displacement increased by 81.5%. According to the test results, after 3 million
cycles of sine cyclic loading, the displacement of the sleeper slab was only 0.049 mm
under the action of thrust. Consequently, the track structure can still maintain a strong
transverse restraint.
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4.3.2. Transverse Loading

A transverse resistance test was carried out on the sleeper slab with the transverse
thrust of F2 = 100 kN. The maximum transverse displacement of the sleeper slab under
different sine cyclic loading numbers is shown in Table 7.

Table 7. Maximum transverse displacement of sleeper slab (relative steel beam).

Sine Cyclic Loading Numbers 1 Million 2 Million 3 Million

Transverse displacement/mm 0.255 0.269 0.290

According to Table 7, with the increase in sine cyclic loading numbers, the maximum
transverse displacement of the sleeper slab continuously increased. When the sine cyclic
loading number varied from 1 million to 3 million, the transverse displacement increased
by 13.7%, and the maximum transverse displacement of the sleeper slab was recorded as
0.290 mm. These results indicate that the track structure has its usual strong transverse
restraint after 3 million cycles of sine cyclic loading.

4.4. Horizontal Failure Test of Sleeper Slab Track

Under the action of transverse thrust F2 (100 kN), the maximum transverse displace-
ment of the sleeper slab after 3 million cycles of sine cyclic loading was 0.290 mm, and
the structure had no damage. To obtain the maximum transverse load that the structure
could bear, the transverse thrust was continuously increased. During the loading process,
the lateral displacement of the sleeper slab was recorded, and the status of the structure
components was observed. The criterion for transverse damage of the track structure is
defined as follows: a sharp increase in the displacement occurs when the load reaches a
certain degree. Finally, the maximum transverse thrust that caused damage to the track
structure was recorded as 413.4 kN. After the appearance of damage, loading was continu-
ously applied to the track in the longitudinal direction. As a result, the longitudinal thrust
of the structure was still more than 100 kN. Overall, these results indicate that the track
structure has good performance in horizontal load resistance.

After the transverse failure test of the sleeper slab track, the main failure modes
observed were as follows: the separation between the self-compacting concrete cushion
and the steel beam, the crack between the self-compacting concrete cushion and the sleeper
slab, and the deformation of the iron plate at the bolt position, as shown in Figure 11. These
findings may help us to detect the unfavorable position of the sleeper slab track structure,
thereby allowing maintenance staff to focus on the inspection of the above position.
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5. Conclusions

In the present paper, full-scale laboratory tests on the sleeper slab track structure were
proposed, consisting of the vertical static load test, vertical fatigue test, and horizontal
resistance test. From the test results, the mechanical characteristics and fatigue behavior of
the sleeper slab track were evaluated. The conclusions of this research are as follows.
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These experiments confirmed that after 3 million cycles of sine cyclic loading, the
sleeper slab track is considered to maintain excellent mechanical properties. As the number
of loading cycles increased, the strain of the sleeper slab and self-compacting cushion
varied slowly. The unfavorable positions were found in the inner side of the sleeper, the
mid-span of the slab, and the middle of the short side of the cushion. Compared with the
strain, the change in vertical displacement was considered to be more obvious due to the
stiffness change under the action of cyclic loading.

The results of the transverse ultimate resistance test indicate that failure occurred in the
track structure when the transverse force reached 413.4 kN. The main failure modes were
separation between the self-compacting concrete cushion and steel beam, crack between
the sleeper slab and cushion, and deformation of the iron plate at the bolt position. In
addition, the longitudinal resistance test also showed that the track structure can still bear
a longitudinal force of up to 100 kN after transverse failure.

The new type of track structure proposed in this paper is planned to be applied to the
long-span steel truss bridge to overcome the weaknesses of the traditional track structure
on the open deck, such as poor integrity, difficult sustenance of track geometry, and heavy
maintenance work. The main purposes of the current study were to verify the applicability
of the sleeper slab track on the long-span steel truss bridge and to investigate the mechan-
ical characteristics during the fatigue process with an experimental method. In order to
investigate the performance parameters of the track structure more comprehensively, future
work to be performed by the authors will be focused on the precise numerical simulation
of the track structure.
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