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Abstract: This study aimed to investigate the effect of combining an innovative bioceramic α-calcium
sulfate hemihydrate (α-CSH, CaSO4·0.5H2O) bone graft and platelet-rich plasma (PRP) to accelerate
bone healing and regeneration in a rabbit model. The bone graft material was implanted bilaterally
on rabbit’s artificially maxillary sinus defects: the right maxillary sinus received α-CSH, while α-
CSH combine with PRP (α-CSH/PRP) was grafted in left site. The quantity and quality of bone
formation after implantation were analyzed radiographically and histologically at 1, 2, and 3 weeks.
The micro-computed tomographic results indicated that the bone density of sinus implanted with
α-CSH increased and defect volume decreased most after 2 weeks. In histological analysis, both
hematoxylin and eosin and Masson trichrome staining of α-CSH/PRP displays better bone healing
and regeneration progress than α-CSH after 2 weeks implantation. Therefore, the innovative α-CSH
combined with PRP was revealed to be useful in accelerating bone healing and regeneration for the
successful defect treatment.

Keywords: α-calcium sulfate hemihydrate; bioceramic bone graft; platelet-rich plasma; bone healing;
bone regeneration

1. Introduction

Bone loss treatment due to trauma, infection, tumor, tooth extraction, and various
other diseases is a challenge for orthopedic and oral maxillofacial surgeons [1–4]. In the
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oral cavity, the challenge is becoming more severe in treating large bone loss, especially in
the posterior maxilla region, due to the lower bone density than other sites, which affects
the dental implant installation for rehabilitation purposes [5–9]. Some studies reported the
technique with aim to increase primary implant stability and the initial bone-to-implant
contact percentage in a poor bone density at maxillary region such as undersized implant
preparation, osteotomy technique to condense bone around the implant, osteodistraction
osteogenesis, and the ridge splitting technique. However, those techniques seem to show
an ineffectiveness to improve implant stability and bone density, and also exhibit various
complications post-surgery [10].

The use of autogenous bone graft that does not cause a host response is often a solution
in facilitating healing and regeneration of bone defects, even it is still the gold standard of
all types of bone graft [1,4,6,11]. However, the various problems that arise when harvesting
bone grafts from the donor site have resulted in the emergence of several bone grafts, which
have been suggested as alternatives that can replace autogenous bone grafts in treating
bone defects [1,4,6,11].

All bone graft materials encourage osseointegration improving bone quality and
quantity, as well as the process in varying times depending on the type and characteristics
of the material. The ideal bone graft will show a remodeling process that is identical to the
bone [12]. Bone healing and regeneration is a long-term process requiring a total of about 3
to 6 months [4,13]. Meanwhile, delayed healing will cause new problems such as increased
infection, prolonged treatment, and implant instability [5]. Therefore, tissue engineering,
which combines a biocompatible scaffold, osteogenic cells, and growth factors seems to be
promising in treating bone defects [2,14,15].

Bone tissue engineering involves the collaboration of various professions such as
scientists, engineers, and surgeons to create a good bone graft to increase bone repair and
regeneration. Since 1980, numerous studies and review papers on bone tissue engineering
have been published and are growing from year to year, indicating that the issue of bone
tissue engineering is rising in demand [16,17]. In the dentistry field, bone tissue engineering
is also increasing rapidly, especially bone graft application as a scaffold [18]. The bone graft
as a scaffold mostly concerns using a fixation device such as a screw and plate to stabilize
the scaffold in the defect area [19–22], which potentially leads to fracture of both the host
and the scaffold [23,24]. This issue serves as an evidence-based approach for the profession
involved in selecting techniques and finding other alternatives treatments of bone defects
by still using bone graft as a scaffold [25].

Bone grafts used as a scaffold in tissue engineering should be osteoconductive, os-
teoinductive, and biocompatible [15,26–29]. Based on our previous study, an innovative
α-calcium sulfate hemihydrate (α-CSH, CaSO4·0.5H2O) bioceramic bone graft has met the
criteria as a scaffold that is potentially used in tissue engineering with its osteoconduc-
tive properties derived from a bone graft framework that allows bone and blood tissue
to grow on its surface [12]. The α-CSH osteoinductive is associated with absorption of
calcium, which induces osteogenic activity and increases local acidity, thereby promoting
growth factor release in the defect area, while the biocompatibility of α-CSH is related
to non-irritating, non-toxic, and is not at risk of immunological rejection [12,24,30,31].
However, the α-CSH properties need to be improved to accelerate better bone healing and
regeneration. Platelet-rich plasma (PRP), which is a platelet concentrate containing various
autologous growth factors, is often used to promote bone regeneration, although its use still
raises various controversies related to the effectiveness of platelet concentrates in wound
healing and tissue regeneration [2,6,9,13,32–36]. Nevertheless, numerous authors stated
the potential of autologous platelet concentrate use in several orthopedics and oral surgery
scenarios, which not only stimulate bone regeneration but also acted as local hemostatic,
facilitate wound-healing, and can be used as medication-related osteonecrosis to reduce
pain and increase the quality of life patient [37–40]. Hence, the present investigation aimed
to further evaluate the potential rapid bone healing and regeneration of α-CSH bone graft
combined with PRP in rabbit’s artificial maxillary sinus defect for biomedical applications.
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2. Materials and Methods
2.1. Materials

The material used in the current study was synthesized from calcium sulfate dihydrate
(Acros Organics, Morris Plains, NJ, USA) through the microwave-irradiation method that
produced α-CSH with guaranteed purity, which during the synthesis process did not
involve various chemicals as described in our earlier studies [12,24,31]. The investigated
sample used α-CSH combined with autologous platelet gel that is obtained from the
platelet-rich plasma (PRP) of New Zealand White (NZW) rabbits. For easy classification,
the α-CSH combined with PRP gel is denoted as α-CSH/PRP. While the α-CSH alone was
adopted as a control group for comparison in this study.

2.2. Animal Study

The present animal study used six male NZW rabbits with average weight of 3.58 kg
and aged 5 months purchased from the Livestock Research Institute (Tainan, Taiwan). All
NZW rabbits received an equivalent implantation procedure and evaluation, then were
sacrificed at different time points (1 week, 2 weeks, and 3 weeks) to observed the healing
process with 2 rabbits involved per each time point.

2.2.1. PRP Preparation

All NZW rabbits received general anesthesia using a combination of Zoletil 50
(50 mg/mL) 15 mg/kg and Rompun (23.32 mg/mL) 5 mg/kg induction, administered
via intramuscular injection. The preparation of PRP were performed immediately before
surgery and approximately 20 mL whole blood was withdrawn via intracardiac puncture.
The sodium citrate was added in a 20 mL sterile tube with blood and then centrifuged
at 1600 revolutions per minute for 15 min, leading to the separation of red blood cells,
plasma with platelets, and leucocytes. Subsequently, plasma was aspirated and transferred
into another sterile tube. Plasma was centrifuged again at 2000 revolutions per minute for
15 min to separate the PRP at the bottom of the platelet button. Part of the platelet-poor
plasma was removed and remaining PRP was to be used in the implantation procedure.

2.2.2. Implantation Protocol

Each NZW rabbit was assigned bilateral maxillary sinuses under sterile surgical
condition (Figure 1). The skin at nasal dorsum area was shaved (Figure 1a), disinfected,
and local anesthesia (0.5 ml of lidocaine with 1:100.000 epinephrine) was injected in the
middle of this area (Figure 1b). A 2.5–3.0 cm vertical periosteal incision was performed at
midline nasal dorsum (Figure 1c) and the periosteum was deviated laterally to disclose the
nasal bone. A bilateral rectangular window was carried out by made two circular windows
vertically (the distance of each window is 1 cm) using a 2.5 mm diameter trephine bur,
located approximately 0.5 cm laterally to the midline nasal bone (Figure 1d), and each
circular window then connected to shape rectangular window (Figure 1e). Hereafter, the
investigated α-CSH/PRP (0.3 g) and α-CSH (0.3 g) samples were randomly implanted in
the rectangular window. Finally, the skin and periosteum were returned and sutured to the
original position.
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1176 (Bruker Skyscan, Kontich, Belgium) under 80 kV, 300 µA tube current, 400 ms expo-

sure time, and 18 µm of voxel resolution to scan the investigated sample. A thin copper 

and aluminum filter was used to diminish the noise image. The images obtained from µ -

CT then reconstructed into a two-dimensional image using NRecon software (Kontich, 

Belgium). The regions of interest (ROI) were drawn using CTAn software v.1.18 (Kontich, 

Belgium), and the implanted area (8 mm diameter, 3 mm depth) was preferred as an ROI. 

Subsequently, the micromorphometric parameters such as bone mineral density (BMD) 

and new bone volume could be evaluated using the software. The regional BMD of the 

sample were determined from the Hounsfield unit (HU) value, which was obtained from 

the ROI each sample. The defect volume of the sample was obtained from the total volume 

of the entire ROI minus volume of the new bone. 

2.4. Hystopathological analysis 

The NZW rabbits were euthanized at a prearranged timetable, their maxillary was 
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in 10% EDTA solution. The decalcified samples were washed in distilled water, dehy-
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Figure 1. The implantation procedure on rabbit’s created-maxillary sinus: (a) fur shaving at nasal
dorsum area, (b) local anesthesia injection, (c) periosteal incision, (d) circular window, (e) rectangu-
lar window, and (f) implantation of the investigated α-CSH/PRP and α-CSH bone graft samples
(randomly).

2.3. Micro-Computed Tomographic (µ-CT) Analysis

The investigated sample scanning was carried out by means of a µ-CT scanner model
1176 (Bruker Skyscan, Kontich, Belgium) under 80 kV, 300 µA tube current, 400 ms exposure
time, and 18 µm of voxel resolution to scan the investigated sample. A thin copper and
aluminum filter was used to diminish the noise image. The images obtained from µ-
CT then reconstructed into a two-dimensional image using NRecon software (Kontich,
Belgium). The regions of interest (ROI) were drawn using CTAn software v.1.18 (Kontich,
Belgium), and the implanted area (8 mm diameter, 3 mm depth) was preferred as an ROI.
Subsequently, the micromorphometric parameters such as bone mineral density (BMD)
and new bone volume could be evaluated using the software. The regional BMD of the
sample were determined from the Hounsfield unit (HU) value, which was obtained from
the ROI each sample. The defect volume of the sample was obtained from the total volume
of the entire ROI minus volume of the new bone.

2.4. Hystopathological Analysis

The NZW rabbits were euthanized at a prearranged timetable, their maxillary was cut,
and the area involving sinuses and implant were retrieved. The samples were rinsed in
sterile saline to decontamination, fixed in 10% buffered formaldehyde, and decalcified in
10% EDTA solution. The decalcified samples were washed in distilled water, dehydrated
in ascending series of ethanol, embedded in paraffin wax, and cut into 5 µm sections. The
sectioned samples were stained with Hematoxylin and Eosin (H&E) and Masson Trichrome,
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and observed through a digital image capture pathology scanner (Aperio CS model, Leica
Biosystems, Bualo Grove, IL, USA) under different magnifications.

2.5. Statistical Analysis

The microarchitectural data were analyzed using SPSS statistic software (Version 19.0.,
SPSS Inc., Chicago, IL, USA). The difference between multiple groups were determined
by one-way analysis of variance (ANOVA) followed by Tukey’s HSD post hoc test with a
value of p < 0.05 was indicated statistically significant.

3. Results
3.1. Bone Healing Characteristics of the Grafted Materials

Figure 2 displays the BMD in the sinuses obtained from the HU value, which was
measured by µ-CT scanning. Based on the HU value obtained from the sinuses implanted
by α-CSH and α-CSH/PRP, the sinuses treated with α-CSH/PRP showed a continuously
increasing HU value during the observation time. Moreover, the α-CSH/PRP group expe-
rienced a significant 21% increase in HU value than the control group at the second week
after implantation. The increase in HU value in the sinus group grafted with α-CSH/PRP
was supported by the healing of the sinus wound over time during the observation period
as shown in Figure 3.
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Figure 2. HU values and µ-CT images of the sinuses defect at 0, 1, 2, and 3 weeks after treatment with α-CSH and
α-CSH/PRP bone graft samples. (HU was obtained by determining the intensity of gray area in the ROI of µ-CT image
(yellow circular area)). Week 0 is the defect area without bone graft, which to be used as the reference value. A lower
intensity of gray area in the ROI was detected in both samples at week 1. The α-CSH/PRP sample exhibited higher intensity
of gray area as compared with α-CSH sample at week 2 (*p < 0.05). Both samples presented similar intensity of gray area at
week 3. The intensity of gray area in the ROI increased with healing time increasing.
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Figure 3. Defect volume of the sinuses at 0, 1, 2, and 3 weeks after treated with α-CSH and α-
CSH/PRP bone graft.

Figure 3 represents wound healing in the sinuses treated with either α-CSH or α-
CSH/PRP. The results express that both α-CSH and α-CSH/PRP can heal sinus wounds,
yet α-CSH/PRP appear to show a faster healing progress. In line with the rise in HU
value in the α-CSH/PRP group at the second week, sinuses with α-CSH/PRP experienced
37.05% total wound healing compared to sinuses implanted with α-CSH with only 23.67%.

3.2. Bone Regeneration Properties of the Grafted Materials

Figure 4 illustrates the results of H&E staining of the sinus sample treated by α-CSH
and α-CSH/PRP at 1, 2, and 3-weeks evaluation periods. In the first week’s evaluation,
there was no significant difference in the histological appearance of the sinuses implanted
with α-CSH and α-CSH / PRP. Sinus grafted with α-CSH at two-week evaluations showed
granulation tissue and increased osteoblasts in the area around the bone graft, indicating
bone regeneration. The area circled with a yellow dotted line demonstrates the renewal area
by bone graft, while the circle with the blue dotted line reveals the bone graft placement.
Sinuses treated with α-CSH/PRP at two weeks demonstrated the presence of granulation
tissue, fibroblasts, and more osteoblasts surrounding grafting material indicating better
bone renewal than the control group. The area circled in the green dotted line represents the
implanted α-CSH/PRP and tissue renewal. Moreover, it appears that the aggregation tissue
is denser compared to the control group, which suggests that the regeneration phenomenon
is more pronounced. In the third week, both the α-CSH/PRP and the control group as a
whole showed increased bone thickness due to resorbed bone graft and established a large
amount of adipose tissue.
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Figure 4. H&E staining results of the α-CSH and α-CSH/PRP at 1, 2, and 3 weeks after implantation. (The higher
magnification images were taken from the investigated samples in each time point marked as black circular and rectangular
areas, respectively).

Figure 5 was obtained from Masson trichrome stain analysis consistent with H&E
staining, which overall shows that in the two-week observation period there is a significant
increase in granulation tissue and fibroblasts around α-CSH/PRP. As demonstrated by
H&E staining at two weeks after implantation, the control group displays granulation of
tissue, indicating bone regeneration. The area circled in the control group shows repaired
tissue around the α-CSH placement. There is an increase in osteoblasts, and the tissue
arrangement is relatively irregular in areas, which are also part of the new tissue. Two
weeks after α-CSH/PRP implantation showed granulation tissue marked with red arrows,
new denser tissue around the implant (yellow dotted line), and angiogenesis (indicated by
black arrows). This finding also indicated that α-CSH/PRP showed a better regeneration
phenomenon than the control group.
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areas, respectively).

4. Discussion

The choice of bone graft material can affect the success of healing and bone regen-
eration during osseointegration in areas experiencing bone loss, which is estimated by
BMD parameters, volume defects, and histology of the sample studied. Since BMD is
relevant to the HU value [41], in present study, BMD can be accessed via HU value, which
is determined from the µ-CT imaging system. In the current study, the trend of increasing
HU value in α-CSH bone graft combined with PRP showed an increase in BMD in the sinus
area supported by a decrease in sinus defect volume two weeks after implantation. The
rise in BMD indicates an improvement in bone quality influenced by the healing period,
which has an impact on bone regeneration [42,43]. Several studies have demonstrated the
increased performance of PRP in bone regeneration when combined with an autogenous
bone graft or mesenchymal stem cells [2,6,8,14,32,44,45]. Although autogenous bone graft
is the gold standard in treating various bone defects, its use causes some specific problems
such as limited stock availability, extended surgical time, and complications in the donor
area such as pain, easy infection, and prolonged healing time [1,8,46,47].

The α-CSH bone graft resembles autogenous bone graft in that it promotes osseoin-
tegration with superior properties such as high purity, high calcium, quick setting, low
temperature, bone booster formation, and ease to handle [12,24]. However, the α-CSH bone
graft itself exhibited a slow progression in elevating BMD. A similar incident occurred in
our previous study, which revealed a better progression of increasing BMD existed at 8 and
12 weeks after α-CSH implanted in the defect [12]. Nevertheless, the research using the
combination of PRP with mesenchymal stem cell or an autogenous bone graft on in vivo
sinus floor elevation rabbit seems to be in line with our study that increased bone volume in
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the second week after implantation [8]. Another study that combined PRP and autogenous
bone graft in treating rabbit’s artificially calvarium defect demonstrated that new bone
formation at four weeks after receiving autogenous graft with the combination of PRP was
the same as a new bone formation that only obtained autogenous graft without PRP at
12 weeks post grafted [9]. The increase in bone volume and the reduction in defect volume
in a short time can be provoked by the property of PRP, which increases the formation of
new bone and accelerates wound healing [8]. Therefore, PRP combined with α-CSH can
contribute to favorable conditions to speed up bone regeneration.

The histological evaluation of α-CSH and α-CSH/PRP indicated the appearance
of bone regeneration by the second week. However, α-CSH/PRP showed better bone
regeneration than α-CSH because both new tissue and osteoblasts were more common
in the experimental group. Moreover, in the α-CSH/PRP group, angiogenesis was seen,
which is essential in providing nutrition to the defect area to accelerate healing and lead to
bone regeneration [48–50]. The use of PRP is known to regenerate bone in a short time due
to the various bioactive molecules properties along with their physiological functions to
induce bone regeneration in the defect area, such as adhesive protein, which services in
intercellular interactions, adhesion, and osteoblast migration; growth factors, cytokines,
and chemokines that function in adhesion, proliferation, migration, differentiation of
osteogenic and osteoblasts, inhibit osteoclasts from occurring in bone resorption, stimulate
angiogenesis, and stimulate bone repair in a fast time [9,13,34]. However, several studies
have reported that PRP alone does not accelerate bone regeneration [3,6,9,35].

Using PRP alone in the treatment of defects is unfixed, caused difficulty to adapt in
defect areas, and degrades very quickly [3,24]. Therefore, PRP needs to be combined with a
graft material to make it more rigid. Platelet concentration and growth factor as a result of
the preparation procedure are also factors that influence the effectiveness of PRP [6]. In the
current study, a double centrifugation method was performed to produce optimal platelets
to regenerate the bone at a concentration of 5 times higher than whole blood, while even
higher concentrations could reduce osteoblast cell proliferation [6].

One of the osteoconductive properties of the graft material owns the resorption rate
similar to bone formation [12]. Our previous study using α-CSH on a rabbit’s artificial
femur defect revealed that the graft material began to absorb, and there was an increase
in bone volume at eight weeks post-implantation [12]. Another previous study also used
α-CSH on rat’s artificial hind leg bones defect presented the complete absorbing of graft
material at seven weeks after implantation [24]. Referring to the biological process of
fractured bone repairing, bone remodeling will begin with the formation of granulation
tissue and soft callus, which in animal models occurs seven to nine days after injury, while in
humans it occurs at two to four weeks post-trauma [51,52]. In the current study, granulation
tissue is more pronounced at two weeks in defects treated with α-CSH/PRP. At the same
time, angiogenesis is seen, which is a crucial part promote bone regeneration [51]. Other
studies have shown that the combination of PRP and autogenous bone graft can increase
the absorption of bone graft material, which is related to the new bone formation [6]. The
absorption of α-CSH bone graft allow the defect to absorb bioactive component such as
calcium, which responsible for re-mineralizing the defect [12,24].

The rapid regeneration of bone as a result of the combination of PRP and α-CSH
provides the advantage of a single-stage dental implant clinical procedure that has the
potential to fail due to the lack of osseointegration during the healing period, especially in
the installation of dental implants in the maxilla region, which have a lower bone density
than the mandible leading to implant instability [8,53]. Moreover, various factors that affect
wound healing in the maxillary sinus such as low vascularity, low oxygen pressure, and
intra-antral pressure make the use of PRP useful due to accelerating revascularization [6,33].
Several studies also have reported the use of synthetic bone grafts to be ineffective in
extensive segmental defects or areas requiring load-bearing resistance due to their weak
mechanical strength [54,55]. Although mechanical strength is required when restoring
a defect in the jaw for chewing purposes, the use of α-CSH bone graft is successful in
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treating large bone loss before implant placement, which is evident six months after implant
placement, radiographs show osseointegration in the defect area, and the implant remains
in a stable state [24]. As discussed above, we suggest that the combination of PRP and
α-CSH can have a synergistic effect in rapid bone regeneration for clinical application.
Nevertheless, the limitations of the present study are performed on small sample size, were
conducted on animal samples, and have a short evaluation period. Hence, further study
with a larger sample size, long-term evaluation period, and tested in clinical application is
needed to support the current findings of the effectiveness α-CSH in combination with PRP.

5. Conclusions

The using of α-CSH bone graft in combination with PRP to treat maxillary sinus
defect was better than α-CSH without PRP, which showed an increase of BMD, a decrease
defect volume, and an increase of granulation tissue, osteoblast, and angiogenesis at two
weeks after implantation. The result in the present study indicated the innovative α-CSH
bioceramic with PRP is beneficial to accelerate bone healing and regeneration particularly
in the case of treating large bone loss before implant placement in maxillary posterior,
which requires a satisfactory healing with more osseointegration to lead to implant stability.
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