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Abstract: CORrelation ALignment (CORAL) is an unsupervised domain adaptation method that uses
a linear transformation to align the covariances of source and target domains. Deep CORAL extends
CORAL with a nonlinear transformation using a deep neural network and adds CORAL loss as a
part of the total loss to align the covariances of source and target domains. However, there are still
two problems to be solved in Deep CORAL: features extracted from AlexNet are not always a good
representation of the original data, as well as joint training combined with both the classification and
CORAL loss may not be efficient enough to align the distribution of the source and target domain.
In this paper, we proposed two strategies: attention to improve the quality of feature maps and the
p-norm loss function to align the distribution of the source and target features, further reducing the
offset caused by the classification loss function. Experiments on the Office-31 dataset indicate that
our proposed methodologies improved Deep CORAL in terms of performance.

Keywords: attention; Deep CORAL; domain adaptation

1. Introduction

Deep learning-based applications have outperformed the imagination of human be-
ings in many aspects, such as computer vision, speech recognition, natural language
processing, audio recognition, etc. [1–3], but domain shifts dramatically damage the per-
formance of deep learning methods [4,5]. In such a scenario, features extracted by a deep
neural network, which was pre-trained using existing datasets (called the source domain),
can become meaningless for the target task (referred to as the target domain). Essentially,
the different data distributions between the source and target domain will hinder the gen-
eralization on the target task, which means the learned knowledge from source domains
cannot be transferred to target domains.

To relieve the domain shift issue, which is common in practical scenarios, collecting
labeled data and training a new classifier for every possible scenario can compensate the
degradation in performance. However, the cost of acquiring huge volumes of labeled data
remains expensive and time consuming. Domain Adaptation (DA) [6] is an alternative
solution, which, instead of collecting labeled data, utilizes known or labeled data to learn
a classifier for unknown or unlabeled data. Domain adaptation is a particular case of
Transfer Learning (TL), which has become commonplace in today’s deep learning-centric
computer vision.

2. Related Work

CORrelation ALignment (CORAL) [7] works well by aligning the distribution of the
source and target features in an unsupervised manner. However, it only relies on a linear
transformation to minimize the squared Frobenius norm distance of the covariances of
the source and target features, which will limit flexibility and adaptability. Furthermore,
CORAL needs to calculate the second-order statistics (covariances) at first between the
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source and target data and, after that, transform the source domain to the target domain
to align their distributions. Training an extra classifier, such as Support Vector Machine
(SVM), is necessary with transformed source domain data and, finally, classifying the target
domain dataset. In this slightly tedious process, an external classifier must be involved to
obtain the final category, which we call “not-end-to-end”.

Deep CORAL [8] has been proposed using Deep Neural Networks (DNNs), which
is a kind of nonlinear transformation to extend CORAL. Deep CORAL adds the objective
function of basic CORAL to be a part of the total loss function, making full use of the
characteristics of DNNs, which can minimize the loss function to align covariances between
the source and target domain. Hence, Deep CORAL essentially overcomes the linear
transformation dependence of CORAL attributed to the nonlinear characteristics of DNNs.
Meanwhile, in order to address the not-end-to-end dilemma, Deep CORAL introduces joint
training into neural network to reduce the influence of degenerated features induced by
minimizing the CORAL loss alone. Nevertheless, we can still point out several problems
existing in Deep CORAL.

First of all, Deep CORAL is not concerned with the quality of data, which will influence
the accuracy. Deep CORAL extracts features of the source and target datasets using AlexNet
only. AlexNet [9], designed primarily by Alex Krizhevsky, is a Convolutional Neural
Network (CNN), which became famous in 2012 since the championship with an error
rate of 15.3% in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012).
However, not all features extracted from convolutional layers can perfectly represent the
original data. Our experiments illustrated this point (see Section 4).

Secondly, according to [8], the AlexNet used by Deep CORAL could project the source
and target domain to a single point because Deep CORAL relies on the CORAL loss only.
Therefore, joint training with both the classification loss and CORAL loss has been chosen
by Deep CORAL to reduce this situation, but the classification loss could result in an offset
when Deep CORAL tries to align the distributions of the source and target domain with
minimizing CORAL loss.

Basically, minimizing CORAL loss only may align the second-order statistics of the
source and target domain properly. However, if classification loss is added to the CORAL
loss, then it will be a redundant term for CORAL, so the alignment will be disturbed
because of it. To overcome this problem, we imported the p-norm [10] to further align the
distributions and improve the generalization accuracy.

In this paper, we introduced P-norm Attention Deep CORAL (P-ADC) to address
the above challenges. The key insight underlying P-ADC is that we added attention
into DNN of Deep CORAL, which not only retained the advantages of AlexNet, but
also considered the use of attention to highlight image features, which had the effect
of image preprocessing. Meanwhile, our experimental results show that Attention Deep
CORAL provided an effective improvement when compared with traditional Deep CORAL.
Furthermore, we extended the loss function of Deep CORAL, which included two parts
into n∈ [1, ∞) parts, to ease the second challenge mentioned above. The first part of the
extended loss function still maintained the original classification loss function, and the rest
we introduced contained the p-norm to balance the offset caused by the classification loss.

3. Method

Suppose the source domain training set DS =
{

xi, yj
}

, x ∈ Rd, i ∈ {1, · · · , nS}, j ∈
{1, · · · , L}, consists of N image-label pairs

(
xi, yj

)
where xi is a source domain image,

while yj is its corresponding label, and the target domain data DT = {ui}, u ∈ Rd, which
are unlabeled. In the meantime, nS, nT , µs, µt, and CS, CT are the number, the feature vector
means, and covariance matrices of the source and target data, respectively.

3.1. CORrelation ALignment

CORAL works by aligning the distributions of the source and target features in an
unsupervised manner, matching the distributions by aligning the second-order statistics
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and the covariance, and applying a linear transformation M to minimize the Frobenius
distance metric.

min
M

∥∥CŜ − CT
∥∥2

F = min
M

∥∥M′CS M− CT
∥∥2

F (1)

where CŜ is the covariance of the transformed source features and CS and CT are the
covariance matrices. Let CS = USΣSU

′
S, CT = UTΣTU

′
T be the singular-value decom-

position (SVD) of CS, CT . Then, the final optimal value of M as M∗ =

(
USΣ+ 1

2
S U

′
S

)
(

UT[1:r]Σ
1
2
T[1:r]U

′
T[1:r]

)
where Σ+ denotes the Moore–Penrose pseudoinverse of Σ.

3.2. Deep CORAL

Deep CORAL minimizes the difference in the covariance between the source and
target domain with the aid of a DNN. We defined the CORAL loss (Equation (2)) as a part
of the total loss function (Equation (3)). Figure 1 shows the architecture of Deep CORAL.

lCORAL =
1

4d2 ‖CS − CT‖2
F (2)

lTOTAL = lCLASS + lCORAL = lCLASS +
n

∑
i=1

λi
1

4d2 ‖CS − CT‖2
F (3)

where lCLASS indicates the classification loss function, e.g., cross-entropy, square-loss, etc.
Cross-Entropy was adopted in our experiments.

Source Domain Target Domain

∅ ∅

256*6*6

Class
Loss

[•••]256*6*6

Total
Loss

[•••]

Shared

Figure 1. The architecture of Deep CORAL. φ denotes any deep neural network (e.g., AlexNet). The
256 * 6 * 6 denotes the size of the features maps extracted by AlexNet; the 256 stands for the number
of channels, and 6 * 6 is the weight * height of a single feature map.

3.3. Our Method

Deep CORAL model was built using AlexNet in which convolutional layers are
inefficient for modeling global dependencies in images due to its local view. We adapted the
attention mechanism to overcome the shortcoming of AlexNet, enabling the image features
extracted by convolutional layers to be able to provide more representative information.
We call the proposed method P-norm Attention Deep CORAL (P-ADC) because of the
added attention mechanism (see Figure 2).
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256*6*6

512*6*6 [•••]
Loss

Loss

Source Domain Target Domain

fc

Attention

Conv

fc

Attention

Conv

Shared

[•••]

∑p-norm

Figure 2. The architecture of P-ADC. ⊕ denotes the stack operation. For example, if the size of a and
b is 256× 6× 6, respectively, then the size of a⊕ b should be 512× 6× 6. ⊗ is the addition operation,
i.e., classification loss + p-norm loss.

Suppose image features X = {x1, x2, · · · , xN} are provided from the previous layer
where xi ∈ RC×W×H are the image features of each sample. Note that C denotes the
number of channels, and W, H is the width and height of the image features x. Then, the
energy of xi is expressed as follows:

si
j,k =

C

∑
l=1

vi
j,lt

i
l,k, vi = (WV xi)

′
, ti = tanh

(
(WKxi) +

(
WQxi

))
(4)

where WV ∈ RC×C,WK ∈ RC×C,WQ ∈ RC×C are the learned weight matrices, which belong
to the convolutional layer with kernel_size = 1, stride = 1, and padding = 0. C is the
number of channels. Here, we can reduce the channel number C to C

k [11], where k = 8
was chosen in our experiment to reduce the number of parameters while not decreasing
the performance significantly. vi and ti are two different feature spaces calculated with
the image feature map xi of the previous hidden layer. si means the energy of xi. j and k
indicate the position coordinates of the energy si of the ith image sample.

Attention mechanisms [12,13] have been employed successfully in sequence modeling
and transduction problems such as speech recognition, neural captioning, etc., to tackle
capturing long-range interactions for convolutions. Recently, attention mechanisms have
also been applied in computer vision models to provide contextual information. The
essence of the attention mechanism is actually an addressing process: Given a query vector
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q related to the task and a key vector k, the distribution values will be calculated by q and
k, and then, attach it to the value vector v. The main attention models are as follows.

Additive model s(q) = vTtanh(Wk + Uq) (5)

Dot-product model s(q) = kTq (6)

Scaled dot-product model s(q) =
kTq√

d
(7)

Bilinear model s(q) = kTWq (8)

Equation (4) belongs to a kind of additive model.
The attention matrices of xi are given by:

αi
j,k =

e
(

si
j,k

)

∑M
k=1 e

(
si

j,k

) (9)

where M = W × H and αi denote the attention matrices of xi.
Then, the output of the attention layer is:

oi
j,k =

M

∑
l=1

vi
j,lα

i
k,l (10)

where oi ∈ RC×W×H is the output of the attention layer. According to [13], additive
attention and dot-product attention are the most popular attention functions. Here, we also
defined dot-product attention for the convenience of application. si

j,k = ∑C
l=1 vi

j,lt
i
l,k, vi =

(WV xi)
′
, ti = WKxi.

The definition of the p-norm is as below:

‖x‖p =

(
n

∑
i=1
|xi|p

) 1
p

=
(
|x1|p + |x2|p + · · ·+ |xn|p

) 1
p , 1 ≤ p < ∞ (11)

We defined the p-norm loss between two domains for a single feature layer.

lp−norm =

(
‖CS − CT‖p

2d

)p

, 1 ≤ p < ∞ (12)

where CS and CT denote the feature covariance matrices. d was set to the number of
categories, i.e., the dimension or the output of the last fully connected layer. Therefore,
according to the definition of CORAL loss, we have lCORAL = l2−norm. The total loss
function is as follows:

lTOTAL = lCLASS + ∑
p

∑
i

λilp−norm, 1 ≤ p < ∞ (13)

where λ trades off the adaptation and classification accuracy on the source domain.

4. Experiment Results

To evaluate our method, we performed experiments on a famous domain adapta-
tion benchmark dataset, the Office-31 dataset [14]. This dataset contains three image
domains: DSLR, Amazon, and Webcam, and each of them has 31 classes with correspond-
ing class names.

In Figure 3, we compare the information quantity of feature maps for training with vs.
without attention in Amazon. We can clearly see that adding attention helped the classifier
acquire much more information, which means we can obtain higher test accuracy after
adding attention.
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Figure 3. Comparison of feature maps with vs. without attention in Amazon. The 1st column is the
original image (sum of 3 channels); the 2nd column is with attention (0 channels); the 3rd column is
with attention (sum of 256 channels); the 4th column is without attention (sum of 256 channels); the
5th column is an attention matrix. We can see the amount of information of the 4th column is very
small, just as the single channel (i.e., 0 channels) with attention in the 2nd column.

In this experiment, we took one domain as the source domain and another as the target
domain. We defaulted to the labels of all source domain data being given, and the labels of
all target data were unknown. Because there are three domains in the Office-31 dataset,
we can conduct our experiment on six experiment settings, namely: A→W: (A)mazonas
the source domain and (W)ebcam as the target domain; A→ D: (A)mazon as the source
domain and (D)SLRas the target domain; W → A: (W)ebcam as the source domain and
(A)mazon as the target domain; W → D: (W)ebcam as the source domain and (D)SLR
as the target domain; D → A: (D)SLR as the source domain and (A)mazon as the target
domain; and D →W: (D)SLR as the source domain and (W)ebcam as the target domain.

For comparative analysis of our method (P-ADC), in addition to Deep CORAL, we
tested other well-known algorithms (deep domain confusion and conditional domain
adversarial networks) on the Office-31 benchmark dataset. Deep Domain Confusion
(DDC) [15] adds an adaptation layer and domain confusion loss in AlexNet. Conditional
Domain Adversarial Networks (CDANs) [16] introduce multilinear conditioning and
entropy conditioning to improve the discriminability and guarantee the transferability.

Following [8], we initialized the weight of the last fully connected layer (fc8) with
N (0.0, 0.005) and set the dimension to 31, the number of categories. The other layers of
AlexNet were initialized with the pre-trained model parameters of ImageNet [17], keeping
the layerwise parameter settings. We also set batch size = 128, learning rate = 10−3, weight
decay = 5× 10−4, and momentum = 0.9 for all of the experiments below (Table 1) for a fair
comparison.

From Table 1, we can see that P-ADC achieved higher average performance than Deep
CORAL and the other baseline methods. In three out of six shifts, P-ADC(2−3) achieved the
highest accuracy (lTOTAL = LC + ∑3

p=2 ∑t
i=1 λilp−norm, where t is the number of p-norm

loss layers in a deep network and P-ADC(2−3) means that p ranges from two to three). For
the other three shifts, P-ADC(2−4) (lTOTAL = LC + ∑4

p=2 ∑t
i=1 λilp−norm, where P-ADC(2−4)

indicates that p ranges from two to four) obtained the best scores. In this experiment,
we only tried P-ADC(2−3) and P-ADC(2−4) because the p-norm loss would take up many
computing resources with the increase of p, resulting in the computing speed declining
dramatically. In addition, as we can see from Table 1, the test accuracy could not achieve
the result of the official algorithm for all due to the fine-tuned AlexNet model from PyTorch,
as well as the software and hardware environment.
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Table 1. Target accuracies for all six domain shifts in the Office-31 dataset (training epoch=100). Note that L(a−b) =

∑b
p=a ∑t

i=1 λilp−norm, LC = lCLASS, and P-ADC(a−b) = P-ADC
(

lTOTAL = LC + L(a−b)

)
, where lCLASS is the classification

loss function, L(a−b) denotes the p-norm loss function where p ranges from a to b, and a and b are natural numbers greater
than 1. Bold denotes the highest accuracy.

Method A → W A → D W → A W → D D → A D → W
No Adaptation 45.3 ± 0.7 23.4 ± 1.6 38.0 ± 0.2 47.4 ± 1.6 23.0 ± 0.4 59.1 ± 0.9

DDC 44.3 ± 0.7 24.0 ± 1.5 38.6 ± 0.5 44.6 ± 1.0 24.0 ± 0.7 62.5 ± 0.5
CDAN 42.9 ± 0.9 35.2 ± 1.8 34.8 ± 2.4 73.3 ± 0.7 37.1 ± 0.4 83.3 ± 1.3

CDAN+E 43.9 ± 0.9 36.4 ± 2.4 36.2 ± 0.7 71.6 ± 1.3 34.4 ± 0.5 78.1 ± 1.9
Deep CORAL 54.77 ± 0.68 44.14 ± 1.97 40.19 ± 0.11 74.74 ± 0.44 40.9 ± 0.12 87.62 ± 0.58

Deep CORAL (l = LC + L4) 51.74 ± 0.55 41.26 ± 1.90 41.03 ± 0.06 75.22 ± 0.52 39.25 ± 0.2 90.69 ± 0.25
Deep CORAL+Att 55.13 ± 0.29 48.16 ± 1.29 41.72 ± 0.21 74.88 ± 0.58 40.43 ± 0.11 89.26 ± 0.20

P-ADC(2−3) 55.45 ± 0.24 49.32 ± 1.34 41.89 ± 0.24 75.70 ± 0.40 41.82 ± 0.07 91.38 ± 0.20
P-ADC(2−4) 56.88 ± 0.67 49.02 ± 1.05 41.01 ± 0.21 74.62 ± 0.52 41.93 ± 0.30 91.45 ± 0.28

Figure 4 shows us three plots generated for shift D → W to assist us in analyzing
P-ADC. In Figure 4a, we visualize the process of training and testing on Deep CORAL
and P-ADC. We can see our method outperformed Deep CORAL on the test accuracies.
Figure 4b shows the average loss in the training and test stage. It can be seen that our
method was more stable in the test stage. Comparing Figure 4b,c, we can conclude that the
p-norm loss was not always decreasing during training as the CORAL loss, but nevertheless,
the two losses were about the same after training for hundreds of iterations. Furthermore,
our p-norm loss could converge finally, constraining the distance between the source and
target domain and maintaining an equilibrium in the target domain even more effectively
than the CORAL loss.
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Figure 4. Comparative analysis of Deep CORAL and P-ADC(2−4) in shift D → W. (a) Training
and test accuracies on Deep CORAL and P-ADC(2−4). P-ADC(2−4) significantly outperforms Deep
CORAL on the target domain under the same environmental setting. (b) Average loss value of Deep
CORAL and P-ADC(2−4) in the training and test stage. (c) Classification loss value, p-norm loss
value, and total loss value of P-ADC(2−4), respectively.

5. Conclusions

In this paper, we extended Deep CORAL, a simple, yet effective end-to-end adaptation
in deep neural networks, with an attention mechanism to provide more information for
deep neural networks. Meanwhile, we used the p-norm loss function to replace CORAL
loss to balance the offset. Experiments on standard benchmark datasets (Office-31) showed
state-of-the-art performance.

We tested our method on the classic benchmark dataset Office-31, and the experimental
results showed us its effectiveness. One of the future research directions is the application
of our method to a more diverse range of real-world applications and datasets. In addition,
we are performing research on image recognition of vegetable diseases and insect pests
under a greenhouse environment, which is very complicated. Different diseases and
insect pests overlap, and light changes in real time. We hope to improve the accuracy
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of vegetable disease and insect pest identification with a domain adaptation method,
including this method.
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