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Abstract: Athletic performance, technique assessment, and injury prevention are all important 
aspects in sports for both professional and amateur athletes. Wearable technology is attracting the 
research community’s interest because of its capability to provide real-time biofeedback to coaches 
and athletes when on the field and outside of more restrictive laboratory conditions. In this paper, 
a novel wearable motion sensor-based system has been designed and developed for athletic 
performance assessment during running and jumping tasks. The system consists of a number of 
components involving embedded systems (hardware and software), back-end analytics, 
information and communications technology (ICT) platforms, and a graphical user interface for 
data visualization by the coach. The system is able to provide automatic activity recognition, 
estimation of running and jumping metrics, as well as vertical ground reaction force (GRF) 
predictions, with sufficient accuracy to provide valuable information as regards training outcomes. 
The developed system is low-power, sufficiently small for real-world scenarios, easy to use, and 
achieves the specified communication range. The system’s high sampling rate, levels of accuracy 
and performance enables it as a performance evaluation tool able to support coaches and athletes 
in their real-world practice. 

Keywords: accelerometer; ground reaction force; GRF; inertial measurement unit; IMU; jumping; 
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1. Introduction 
Athletic performance, technique assessment, and injury prevention are all aspects of 

great importance in sports at present, for coaches and athletes alike, and are experiencing 
a growth in interest from the research community. As a consequence, the development of 
automated, objective, and reliable performance monitoring and evaluation systems, 
through quantitative analyses of performance variables, is now seen as an essential tool 
for the improvement of athletic performance and the minimization of injury risk [1,2]. 

Wearable sensors represent an alternative to gold-standard lab-based assessments 
because of their potential to monitor performance without hindering it while providing 
real-time feedback with no space limitation or infrastructure set-up procedures, as well 
as their advantages in the areas of portability, low-cost, and ease-of-use [3–5]. For 
instance, wearable technology may be used to estimate temporal (e.g., stride time), 
kinematic (e.g., joint range of motion), and dynamic parameters (e.g., joint forces and 
moments), as well as motor capacity, workload, and technique, in a number of sport tasks 
(e.g., swimming, running, team sports, jumping, and strength assessment) [6]. 
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However, few studies have investigated the possibility of combining those 
disciplines to support coaches in predicting and minimizing injuries [7]. For example, 
running-related injuries have a complex and multifactorial etiology that is also dependent 
on aberrant biomechanics and training load errors [8]. Wearables, therefore, can provide 
important insights into the kinetics potentially responsible for injurious tissue loads, as 
well as indicate the effectiveness of an intervention [8]. Thus, coaches’ decision-making 
can be greatly enhanced by the use of wearable sensors to ensure that a biomechanical 
intervention is truly helping the athletes by minimizing the risk of running-related injuries 
[8]. 

In coaching practice, sport-specific activities (such as change-of-direction), jumping, 
running, and sprinting tasks are largely adopted for athletic performance evaluation [9,10] 
in a number of sports, e.g., soccer, rugby, etc. For example, it is common to examine jumps 
before and after training to assess the effectiveness of a specific intervention [11]. 
Nevertheless, only a limited number of solutions, both in literature and on the market (for 
example, Xybermind [12]), have been developed to tackle most of the scenarios sport 
coaches deal with, with the majority of them merely targeting an automatic classification 
of different sport activities [13] and their intensity [14]. 

Running and running-related injuries have been widely investigated through the use 
of wearable sensors [15–17], typically considering spatio-temporal variables such as 
cadence, contact and swing time, stride length, symmetry, and so on. Nevertheless, 
loading and related metrics, with particular reference to the vertical ground reaction force 
(GRF), are also gaining the researchers’ attention [18] because of their high correlation 
with tibial shock and stress injuries in runners [8]. A number of papers have shown that 
GRF waveforms could be estimated effectively via neural networks [19–24] with superior 
results compared to biomechanical modeling, as demonstrated in a recent comparative 
study [25]. 

On the other hand, jumping tasks have also been extensively studied using wearable 
technology [26–28]. However, many of those investigations generally focused on correctly 
estimating temporal events (e.g., take-off, landing), jump height, and flight time. 

Given that the application of wearable sensors will revolutionize exercise science 
research because of their portability and capability of collecting a multitude of movement 
data, research in the area will be facilitated by the development of a meaningful solution 
able to identify and provide insights based on the analysis of a substantial amount of data 
collected [29]. The aim of the present work is, therefore, to develop a complete integrated 
solution that could be used by coaches while athletes are performing running and 
jumping tasks for monitoring performance and evaluate possible injury risks. The 
objectives of the investigation are, therefore, many-fold: 
• To develop a wearable solution based on inertial measurement units (IMUs) which 

could be worn on different body locations and are suitable for different physical 
tasks; 

• To automatically detect every individual jump performed, as well as segment the 
running bouts and, as a consequence, each running stride from both legs; 

• To provide running performance metrics from the data recorded by the IMUs, such 
as contact time, step time, mean force, stability, cadence, etc.; 

• To provide vertical GRF waveforms for each segmented running stride for both legs 
and extrapolate the associated metrics; 

• To provide jumping metrics from the kinematics recorded by IMU, including flight 
time, jump height, peak force, mean force, etc., and for the different phases of the 
jump (eccentric and concentric); 

• To provide an easy-to-use graphical interface for an effective visualization of the 
estimated variables. 
The achievement of all these objectives will allow the development of a complete 

wearable solution that coaches and athletes could use in their real-world practice, which 
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represent the ultimate goal of this work. The manuscript is organized as follows. The 
proposed system architecture is discussed in Section 2, while the hardware and the 
software components of the system are illustrated in Sections 3 and 4, respectively. The 
graphical interface is shown in Section 5. Testing and results are discussed in Section 6. A 
state-of-the-art comparison with products on the market is illustrated in Section 7. Final 
discussion and conclusions are illustrated in Sections 8 and 9, respectively. 

2. System Architecture 
The system has been built to provide performance-related metrics based on the 

scenario where jumping tests are performed before and after training, and running is the 
main activity performed during training, as it generally occurs in sports such as soccer or 
rugby. While running, the system relies on two wirelessly synchronized boards located 
on the left and right shanks; on the other hand, only one device worn on the pelvis is 
required for jumping (Figure 1). The pelvis was preferred over the shank for the prediction 
of jumping forces since the sensor would be mounted closer to the subjects’ center of mass, 
while the estimation of the total impact force would be unaffected by asymmetrical 
landings between the left and right foot. Adjustable Velcro straps are used in both cases 
for attachment to the athlete under test. The athlete can, therefore, use the same boards 
between activities by simply placing the boards on different body locations. This approach 
minimizes the number of devices simultaneously worn, which is never more than two 
units. The boards can perform in a number of modes (i.e., “USB”, “running”, or 
“jumping”) depending on the number of times a touch button is pressed by the user. This 
control feature is also used for starting and stopping the collection of data which is stored 
internally on an SD memory card for post-processing. Whenever a device operates in 
“USB” mode, it can also be plugged in any computer able to read USB mass storage drives. 

Complex back-end analytics, including activity recognition algorithms to 
automatically separate the time segment of interest for the analysis, are used separately 
on a computer to provide the various metrics requested for the different activities based 
on the data stored on the plugged-in device. A graphical user interface (GUI) has been 
developed and integrated in the system to visualize, export and save the results of the 
analysis and to allow coaches and athletes to interact with the system. A graphical 
depiction of the system adoption is shown in Figure 2. 

 
Figure 1. Devices placement on shanks and pelvis during running and jumping tasks. 
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Figure 2. Graphical depiction of the system adoption. After data collection for a specific task, the 
device(s) are plugged-into a computer via USB, where a GUI will use back-end algorithms to process 
the data gathered in the device(s) and visualize the results to the end-users. 

3. Hardware Design 
The following section deals with the design and development of the hardware 

components of the proposed wearable system for performance assessment in sport tasks. 

3.1. Hardware Platform 
The requirements of the developed wearable solution involved the ideation of a 

system easy to use and to wear, requiring no physical connection between the two devices 
placed on the legs, while the units must exchange information wirelessly and allow easy 
access to the data from a computer. For this purpose, two identical boards were developed 
and designed to be autonomous from each other in terms of power supply and 
computational perspectives. When the units are located on the shanks while running, they 
store inertial data, which are wirelessly synchronized to each other by keeping the two 
devices connected with a constant wireless Bluetooth connection. 

In addition, both units can work in a stand-alone asynchronous mode in order to 
analyze jumping tasks. In this case, the user can choose either of the two devices and use 
it to record and analyze the jumping activity. 

Each board consists of a number of building blocks. Overall, the microcontroller is 
the main component of the system as it deals with the motion sensors, the wireless 
communication, the power management, the memory for data storage, and the computer 
interface to guarantee access to the files stored in the memory card for post processing. 
The microcontroller selected is the STM32F417IG from STMicroelectronics [30] as it offers 
low-power operations and high-performance by relying on an ARM®® Cortex®®-M4-based 
32 bit architecture, with a single precision floating point unit, and an operating frequency 
of up to 168 MHz, and up to 1MB of Flash and 196 Kbytes of RAM. The board also includes 
a 9 DoF IMU (MPU-9250 from InvenSense [31]) connected to the microcontroller via I2C 
interface, with ranges of 16 g and 2000 dps for the accelerometer and the gyroscope, 
respectively. However, a magnetometer was not adopted due to the impact that magnetic 
interferences may have on the measurements. As recommended by the manufacturer, the 
IMU calibration process relied on the IMU’s on-chip factory-trimmed scale factors to 
eliminate the need of an end-user calibration. The wireless communication is based on the 
BLE 5.0 protocol implemented on the “NRF52840” BLE 5.0 module from Nordic [32] and 
the associated ceramic chip antenna ACAG0801-2450-T from Abracon®® [33]. A microSD 
card reader is included for storing data on-board and is directly connected to the 
microcontroller with the SDIO (secure digital input output) card interface. A 604040 Li-
ion battery (1100 mAh) is also included, which can be recharged through a type-C USB 
connection. Finally, a touch button is used to interact with each device, along with four 
LEDs for user feedback. Figure 3 shows the block diagram of the system, while Figure 4 
illustrates the designed PCB board and the 3D printed plastic enclosure used to fit the 
electronics. 
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The devices are worn with the touch button on the top side (Figure 4, right). When 
running, the devices are worn on the external side of the shanks, at approximately two 
thirds of the lower leg height. For jumping, a unit must be worn as close as possible to the 
center-of-mass on the lower back. 

The developed hardware platform measures 50 mm × 90 mm × 10 mm and weighs 40 
g (battery included). The sampling rate is set at 238 Hz and the achieved throughput is 1 
Mbps with a communication range greater than 10 m in a NLOS (non-line-of-sight) 
scenario. The high sampling rate was required to accurately estimate GRF data in highly 
dynamic movements, as indicated in [34], which highlighted the need to adopt sampling 
rates higher than 200 Hz for these tasks. The power consumption is less than 100 mA (250 
mW) and the system can operate continuously for more than 4 h. The full-battery charging 
time is 2–3 h. 

 
Figure 3. System block diagram. 
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Figure 4. System block diagram. PCB board (left). The 3D printed enclosure with a Velcro strap 
(right). 

3.2. Hardware Operations 
The touch button on the board is used to switch the device ON, which after some 

preliminary checks (e.g., SD card successfully mounted) enters into “USB” mode. The 
“USB” mode is a standby mode allowing communication between a computer and the 
devices over a wired connection. In order to avoid errors in the stored data files, only 
when the device is in “USB” mode is the user allowed to switch the device OFF, to connect 
to a computer, or to switch to “running” or “jumping” modes. 

If two units are required for the analysis of running tasks (e.g., “running” mode), 
then a double tap on the touch button of both devices (while the devices are in “USB” 
mode) will switch the units ON and start wirelessly scanning for other nearby devices. 
During the scanning time (90 s), both devices apply the synchronization protocol 
described in Section 3.3. If 90 s elapse with no other device found, the unit will 
automatically switch OFF. The synchronization protocol allows the boards to start the 
recording of the inertial data simultaneously, with the time-synchronized data being 
stored on the SD cards. During data recording, the user can tap the touch button of either 
board twice and automatically stop the data capture for both units at the same time, 
forcing the units to switch back to “USB” mode. 

Alternatively, when a single unit is required for the monitoring of jumping tasks (e.g., 
“jumping” mode), then a double tap on the touch button of the device, currently in “USB” 
mode, followed a few seconds later by the user tapping the touch button twice, will start 
recording data on a single unit. Again, while the device is recording, the user can stop the 
data collection at any moment by tapping the touch button three times which forces the 
unit to switch back to “USB” mode. Pressing the touch button for six seconds will switch 
the device OFF at any moment. 

3.3. Wireless Synchronization Protocol 
Before recording a running task, it is required that the two units be within the BLE 

communication range and in-synch with each other. A flowchart of the synchronization 
protocol is shown in Figure 5. 
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Figure 5. “Running” mode flowchart. 

The first device (“Device1”) starts searching for a pairing device (“Device2”), which 
is in turn waiting for a time synchronization request. Three stages of command (CMD) 
exchange, as shown in the graphical description in Figure 6, are required before the 
devices are ready for data recording: 
1. Set-up: Device1 sends a time_synchronization_request and waits for the Device2 set-

up. 
2. Device2 time synchronization: this phase starts when Device1 sends the CMD_Step1 

command (at time t1d1) to Device2 which is received at time t1d2 = t1d1 + δt (δt is the time 
required for the command to be transmitted between the two devices). 

3. Device1 time synchronization: after that CDM_Step1 is processed by Device2 (which 
requires a time slot x), this phase starts when Device2 sends the CMD_Step2 
command (at time t2d2 = t1d2 + x) to Device1. Device1 then receives CMD_Step2 at time 
t2d1 = t2d2 + δt. 

4. Data recording: after that CDM_Step2 is processed by Device1 (which requires 
another time slot x), this phase starts when Device1 sends the CMD_Step3 command 
(at time t3d1 = t2d1 + x) to Device2, and then starts immediately the data recording. 
Device2 receives CMD_Step3 at time t3d2 = t3d1 + δt and after processing the received 
packet starts the data recording. 
Following this process, the post-processing analysis embedded in the back-end 

analytics estimates the time difference between t3d1 and t3d2 to re-align the two data streams. 
If for some reason (i.e., packet loss) the synchronization process is not successful during 
the command exchange (e.g., one device does not receive a reply by 60 s) both boards 
automatically switch OFF. 

Finally, when the user taps the touch button of one device twice to complete the data 
collection, the device sends a stop command to the pairing device and the recording is 
terminated in both units. 
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In summary, the time synchronization procedure is required to temporally align the 
timestamps in the two boards, while considering that the clock of the boards may be 
slightly shifted. This process is essential in order to calculate running metrics which are 
dependent from an accurate estimation of the temporally synchronised gait events in both 
left and right legs. As indicated in [35], the efficient time-synchronization of a multi-unit, 
multi-sensor acquisition system for kinematic and static analysis is still considered a 
challenge in research, given the requirement to ensure a strict time synchronization 
between all the units to guarantee correct parameter estimation, and with off-the-shelf 
solutions requiring extra non-portable and complex hardware or without specifying 
details on the achieved accuracy. 

It is worth underlining that in the developed protocol both units can act as “Device1” 
or “Device2” and those labels are not hard-wired: the label “Device1” is automatically 
assigned to the unit starting the synchronization communication, while the second unit is 
thus labeled “Device2”. As a result, the labels “Device1” or “Device2” could be swapped 
between the two units during different running data collections. 

 
Figure 6. Time synchronization process. 

4. Data Processing and Algorithms 
The following sections deal with the description of the offline data post-processing 

and the implemented algorithms in the proposed wearable system. As the magnetometer 
is not considered in this system, no orientation has been calculated from the IMU and, 
thus, only raw accelerometer and gyroscope data in the local reference frame are used in 
all analyses. 

4.1. Running Activity Recognition 
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Even after the devices’ synchronization, it is essential to separate the collected inertial 
data into windows corresponding to the tasks of interest. This is particularly vital since 
each recording during a training trial may contain data from activities other than running, 
such as standing or walking. Therefore, a method able to detect the required activities and 
separate the corresponding windows of data was implemented based on the works by 
Olivares et al. [36]. 

In detail, the implemented algorithm uses the sagittal angular rate collected during 
a data capture and splits that signal in small windows of 0.5 s of length. Then, the variance 
of the signal in each of these windows is computed and if the obtained value is above or 
below a predefined threshold then the window is accordingly marked as active or 
inactive. 

Finally, the process finds all the sequences of consecutive windows marked as active, 
and if the total duration of each active sequence is longer than a specific time threshold 
(for running the threshold was set to 20 s), then that sequence is recognized as a running 
trial; otherwise, the algorithm skips that sequence and checks the following one. Figure 7 
demonstrates an example of the employed algorithm. 

 
Figure 7. The running activity recognition algorithm. The figure in the middle depicts the input 
signal; the top figure shows the calculated variance in each of the 0.5 s windows in which the signal 
is split; the bottom figure displays the part of the signal that is detected as running. It is worth 
underlining that the first bout of activity shown in the figure is not detected as running since its 
duration is lower than the 20 s threshold. 

4.2. Running-Related Metrics and Vertical GRF 
Following running activity detection, the recorded accelerometry data associated 

with the running sequences are filtered with a low-pass, second order, zero-phase shift 
Butterworth filter with cut-off frequencies of 15 Hz, as performed in [24]. The angular 
velocity was used for the detection of the gait events (heel-strike and toe-off), as presented 
in [37]. Accelerations were scaled to 100 samples from heel-strike to toe-off (100% of stance 
phase). 

The prediction of the vertical GRFs is performed with the development of an artificial 
neural network (ANN). The developed regression model is fed with the vertical local 
component of the IMUs’ acceleration signal (e.g., shank’s longitudinal acceleration) and 
is trained to estimate the vertical GRF component in the global frame. The developed 
regression ANN (Figure 8) consisted of three layers, with the input layer composed of 100 
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neurons, a hidden layer of 10 neurons (with tanh as activation function, and dropout 
regularization), and an output layer of 100 linear neurons. Further details on the ANN 
model developed are available in [23,24]. 

Finally, based on the recorded acceleration signals and the GRF predictions, a series 
of running metrics is calculated for each recorded trial. All reported metrics are the 
average of all stances that are included on each recording, apart from the total force metric. 
Additionally, every metric is calculated for each leg separately, apart from cadence and 
asymmetry. The considered metrics are as follows: 
• Num. Contacts: number of stances in each trial as determined by the event detection 

algorithm 
• Contact time: average stance time of all recorded steps in milliseconds 
• Swing time: average time between toe-off and heel-strike for each leg in milliseconds 
• Step time: average time between heel-strikes for each leg in milliseconds 
• Cadence: number of steps per minute (steps/min) 
• Peak time: average time of the maximum force, expressed as percentage of the stance 

phase 
• Peak force: average maximum force during stance, expressed in body weight (BW) 
• Mean force: average force during stance, expressed in BW 
• RMS force: average root mean square of the force during stance, expressed in BW 
• Total force: sum of the peak forces of all stances, expressed in BW 
• Asymmetry: average absolute error between the force peaks of both legs in all stances 

as a percentage [38]. Values closer to 0 indicate stronger symmetry in movements 
• Stability: absolute error between the GRF of two consecutive stances expressed as a 

percentage, and averaged over all the steps [39]. Again, values closer to 0 indicate 
better stability 

• Fatigue: a dimensionless coefficient which is calculated as the slope of the linear 
regression line that fits the angular rate at the mid-swing events over all gait cycles 
[40]. 

 
Figure 8. ANN regression model [23,24]. 
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4.3. Jumping Activity Recognition and Event Detection 
Similar to the running trials detection, a targeted algorithm was developed for the 

activity recognition of the jumping tasks. Jumping events and performance parameters 
were calculated solely using the acceleration and angular rates of a single IMU placed on 
the subject’s pelvis. Countermovement and squat jumps were considered in this work. 
When a jump is detected, the acceleration signal is double integrated with respect to time, 
resulting in the computation of the body’s center-of-mass velocity and position in three 
dimensions with respect to the local reference system. 

Specifically, for event detection, the proposed approach utilized both the vertical 
accelerations and sagittal angular rates recorded by the IMUs during data capture. The 
algorithm initially searches for the peaks of the linear acceleration signal which 
correspond to the landing of each separate jump. Subsequently, changes in variance in the 
angular rates are used to detect the initiation of the eccentric and concentric phases. In 
more detail, the start of the eccentric phase is identified as the time at which the variance 
of the sagittal angular rate is higher than a predefined threshold. The start of the 
concentric phase is, alternatively, identified as the time at which the velocity changed sign 
from negative to positive, which also corresponds with the instant when the change in the 
displacement becomes positive. 

Additionally, take-off is identified as the first local minimum of the acceleration after 
the absolute maximum of the velocity signal, corresponding to the time just before take-
off. Landing is identified as the previous local minimum in acceleration with respect to 
the absolute maximum in the force, corresponding to the time just after landing. The 
phases and event detection definitions are taken from Cormie et al. [41]. 

Finally, the type of jump is also recognized: if the time between the initiation of the 
movement and landing is shorter than three seconds, then the task is identified as a 
countermovement jump, otherwise it is identified as a squat jump. The threshold was set 
at three seconds since, generally, when performing a squat jump, athletes are required to 
maintain the squat position for at least 1–2 s. 

Figure 9 shows an example of the implemented algorithm for the jumping task 
recognition. Following the jump task recognition, the algorithm proceeds in the detection 
of the temporal events (take-off, landing, etc.) for each separate jump. Figure 10 shows an 
example of the result of the event detection as performed by the algorithm. 
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Figure 9. The jumping activity recognition algorithm. On top, the vertical acceleration signal of a 
recording including three consecutive jumps; the bottom figure (in red) depicts the part of the signal 
that the algorithm has classified as separate jumps. 

 
Figure 10. Example of event detection from the accelerometer in a countermovement jump. Force 
(blue), velocity (red), and displacement (green) curves are plotted and manually scaled to be shown 
in the same graph. 

4.4. Jumping-Related Metrics 
Following the activity and event detection, jumping metrics can be calculated for 

each jump. In particular, the force curve is obtained as the product of the vertical 
acceleration of the pelvis and the mass of the subject. The velocity curve is calculated as 
the time integral of the vertical acceleration of the pelvis, while the displacement curve is 
estimated as the time integral of the velocity signal. The power curve, finally, results as 
the product of the estimated force and velocity. 

The peak force and peak power at the concentric and eccentric phases are defined as 
the corresponding maximum metrics between the initiation and the end of the two phases. 
The peak force at landing corresponds to the overall maximum estimated force. Velocities 
at take-off and landing correspond to the estimated velocities at the two events, whereas 
flight time is the time between the landing and take-off events. Finally, jump height is 
obtained from the flight time using the formula discussed in [42] (Equation (1), where 
tFLIGHT is the time flight and g the gravitational acceleration). Figure 11 shows an example 
of the comparison between the actual and the modeled force curves during a jump. 

height = g × tFLIGHT2/8 (1)
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Figure 11. Example of the comparison between the actual and the modeled force curves during a 
jump. 

5. Graphical User Interface (GUI) 
A GUI was developed with the two-fold objectives of allowing the end-users to 

interact with the hardware platform and the back-end analytics, as well as a tool for the 
visualization of the results. Based on the end-user requirements, the GUI specifically 
allows the user to: 
• Load the data collected and stored on-board the SD cards of the hardware platforms 

(when the boards are connected via USB to the computer). This step will 
automatically start the activity recognition process with the goal of detecting every 
data collection carried out and, for each of them, the number of running trials/jumps 
performed. 

• Annotate the demographic/anthropometric information for the athlete under test. 
• Analyze a specific running trial and compute the vertical GRFs and the running 

metrics from that trial showing the results graphically (Figure 12). The average GRF 
curves are also visible when clicking on the “Change View” Table. 

• Analyze a specific jump and compute the related metrics separately for eccentric and 
concentric phases, as well as visualizing the vertical acceleration, along with the jump 
events (start of the eccentric phase, start of the concentric phase, take-off, landing, 
and maximum compression). An example is depicted in Figure 13. 

• Export the computed results, subject information, and raw inertial data of a specific 
running/jumping analysis on an Excel file. 

• Load the results of an analysis previously saved on an Excel file. 
• Format the SD cards of the hardware platforms, without the need to remove the SD 

cards from the boards. 
The GUI and all the required algorithms were written in Python and then converted in a 
single user-friendly executable file of approximately 15 Mb working on computers with 
Windows 7/8/10 as the operating system. As a result, the end-user does not require to 
install specific libraries or license when using the executable file. 
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Figure 12. View of a processed running trial showing GRF curves for each stride and running 
metrics for both legs. 
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Figure 13. View of a processed jump showing the jumping metrics and the accelerometer graph. 

6. System Test and Analysis of Results 
For the test and validation of the developed system, fourteen healthy volunteers were 

recruited (14 subjects; 10 males; mass 70 ± 8 kg; age 29 ± 3.4 years). Participants were 
excluded if they reported any previous musculoskeletal disorder. Recruits were aged 
between 20 to 40 years of age and were able to comfortably perform physical activity. 

The gold-standard systems used for validation purposes included the Loadsol 
pressure in-soles (Novel, Germany) [43] for running tasks and the Podium’s force plates 
(BTS Bioengineering, Italy) [44] for jumping tasks. The Loadsol system measures vertical 
GRFs on the plantar surface of the foot in static and dynamic movements and has been 
recently validated in running scenarios [45,46]. Those studies [45,46] showed that the 
mean bias of ground contact time, impulse, peak force, and time to peak ranged between 
0.6% and 3.4%, demonstrating high accuracy, while for these same parameters, the limits 
of agreement analysis showed that 95% of all measurement differences between insole 
and force plate measurements were less than 12%, demonstrating high precision. 
Moreover, the Loadsol system showed excellent between-day reliability (>0.76). 

Participants were asked to attend a single session and run on a treadmill at different 
speeds (8, 10, and 12 km/h) for approximately 30 s per recording, as shown in [23,24]. Each 
participant was fitted with two IMUs attached on the lateral side of the shanks with elastic 
bands and with a pair of shoes (same model) equipped with the pressure in-soles (Figure 
14 left). IMU data were stored on the developed devices, while kinetics were stored on the 
tablet used to interact with the pressure in-soles. The IMUs were automatically 
synchronized with each other as described in Section 3.3. The data sets from the developed 
IMUs and the gold standard pressure in-soles used for validation were synchronized 
manually during the post-processing process through the use of a recognizable event (a 
vertical jump generating a spike in both foot pressure and acceleration signals) as a 
reference for alignment. A threshold of 20 N in the vertical component of the GRFs was 
also employed for the identification of the strides. Overall, 42 running trials of 30 s with 
60–70 stances each were used for the analysis. 

Following the running session, four subjects were asked to perform a series of 
countermovement and squat jumps on the Podium’s force plates. A single IMU sensor 
was placed with an elastic band on the pelvis of each person approximately at the 
midpoint of the posterior superior iliac spine (Figure 14, right). Acceleration signals from 
the IMU along with the kinetic data from the Podium were recorded for each jump and 
synchronized manually in post-processing. Overall, twenty jumps were considered for 
validation. The study was conducted according to the criteria set by the declaration of 
Helsinki and approved by the Clinical Research Ethics Committee (CREC) of the Cork 
Teaching Hospitals at the University College Cork (Reference Number: ECM 4 (u) 
22/10/2019 and ECM 3 (ppp) 14/01/2020). 
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Figure 14. Data collection during running (left) and jumping (right). 

6.1. Running Activity Results 
Predicted and measured GRF waveforms were averaged and plotted for all the 

stances of the test set (Figure 15). The root mean square error (RMSE) was used as a metric 
of comparison between predicted and measured GRF as already performed in literature 
[19,20,23,24]. As confirmed from the RMSE in Table 1, predictions of the vertical GRFs 
(dashed orange line) were highly precise for all running speeds. Additionally, it appears 
that estimates made by the ANNs were generally independent of running speed since 
RMSE were very low for all conditions and returned an average error of approximately 
0.148 BW. Predictions were very precise when compared to similar estimates from other 
studies in the literature. For example, Wouda et al. [19] used inertial sensors at the lower 
legs and pelvis along with an ANN to estimate vertical GRFs with an RMSE less than 0.27 
BW. Moreover, also GRF-related metrics, such as the peak force, were reliably estimated 
(relative error approx. 5%), as shown in Table 2. Finally, the activity recognition algorithm 
detected 100% of the running trials carried out for validation purposes. 

 
Figure 15. Predicted GRFs (orange) vs. actual GRFs (blue). Left (8 km/h), center (10 km/h), and right 
(12 km/h). 
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Table 1. RMSE (±SD) between measured and predicted GRFs. 

Speed (km/h) RMSE 
8 0.13 (±0.026) 

10 0.136 (±0.017) 
12 0.17 (±0.03) 
All 0.148 (±0.024) 

RMSE: root mean square error, GRF: ground reaction force, SD: standard deviation. 

Table 2. GRF peak force metric evaluation: measured and predicted. 

Proposed System (All Speeds) Actual Results (All Speeds) 
2.28 (±0.09) 2.41 (±0.15) 

GRF: Ground reaction force. 

6.2. Jumping Activity Results 
Jumping metrics results are summarized in Table 3. The table presents the relative 

error between the estimations obtained with the implemented algorithm and the force 
platform metrics. A positive sign of the error indicates an underestimation by the 
proposed system, whereas a negative sign indicates the opposite. 

Some variables were estimated within an acceptable error range (±10%), while 
others presented only tolerable (±20%) errors. Those error thresholds were defined based 
on the suggestions in [47–50]. Some metrics presented larger errors as this is due to the 
fact that accelerometers are good at measuring acceleration but poor at estimating 
position, because of problems when integrating data, therefore inevitably introducing 
errors when estimating the velocity and position curves from an acceleration signal [51]. 
As a result, metrics calculated from the acceleration signal tend to be more accurate than 
metrics which, on the other hand, are estimated from the signal obtained following double 
integration over time. Therefore, it can be concluded that, even though the precision 
achieved may not be sufficient for some metrics, overall, the developed wearable system 
may satisfactorily predict some of the considered jumping metrics and provide an 
acceptable monitoring system for athletes’ performance. Again, the recognition algorithm 
detected 100% of the jumps carried out during testing. 

A limitation of the system arises from the global force curve being calculated as the 
product of the vertical local acceleration of the IMU and the mass of the subject; this may 
cause errors in specific jumping phases (e.g., while the subject is in air, the predicted force 
should be instead close to zero, Figure 10) since the local IMU and global vertical axes are 
not always aligned. 

Table 3. Jumping-related metric errors. 

Metric Error (%) 
Peak force at concentric −16.07 

Peak force at landing −7.08 
Velocity at landing 4.5 

Flight time 8.66 
Jump height 15.99 
Peak power 13.05 

Start to peak power −5.58 
Peak force at concentric: maximum force during the concentric phase in N; peak force at landing: 
maximum value of the force produced during landing in N; velocity at landing: velocity when the 
subject touches down the ground (landing) in m/s; flight time: amount of time the subject is in the 
air in s; jump height: maximum height reached by the subject during the jump in m; peak power: 
maximum power developed by the subject during the concentric phase in W; start to peak power: 
time between the start of the movement and the peak power in s. 
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7. State-of-the-Art Comparison 
Wearable technology has been used by athletes and sport teams for a number of years 

with the goal to provide actionable insights to increase productivity and performance. It 
is expected that the wearable devices in sports market will register a growth of 9.82% 
between 2018 and 2023 [52] driven by increasing demand, technology progression, 
healthcare awareness, and increasing application of Big Data. The competitive landscape 
for IMU-based consumer-level wearables in sport includes a number of products whose 
characteristics are summarized in Table 4. 

It is evident from Table 4 that only a few devices (i.e., Xybermind, IMeasureU, 
MyVert) are able to provide both running and jumping metrics. However, in the case of 
Xybermind, magnetic barriers are also used to provide the required variables. It is also 
worth noting that most of the products in Table 4 show impact-related features which, 
however, are simply associated with or derived from the peak landing acceleration (i.e., 
“g-landing”, “impact-gs” or “cumulative bone stimulus”), often accompanied by 
ambiguous terminology and without proper validations. Only RunScribe and ViPerform 
provide metrics obtained from the actual GRF curve; that is the peak vertical GRF and the 
horizontal and vertical GRF rate for the former, and the average GRF for the latter. 
However, it is evident that no device currently on the market provides as a running 
parameter the estimation of the full GRF waveforms from which well-known and 
standardized loading rate variables could be accurately extrapolated, representing a 
viable solution to support athletes, coaches, and sport scientists in their daily practice. As 
a consequence, the developed device fills a gap in the current technology landscape in 
which a single platform can be used to automatically detect every individual jump 
performed and each running stride from both legs, and provide running performance 
metrics and the full vertical GRF waveforms (and related variables) for each stride for 
both legs, as well as jumping metrics. 

Table 4. Competitive landscape. 

Products Sport Parameters Calculated Number of Sensors/Body 
Position 

Sampling 
Frequency 

(Hz) 
Foot pod (Garmin) 

[53] 
Running Distance, cadence, speed 1 per shoe NA 

Stride sensor 
(Polar) [54] 

Running 
Duration, distance, cadence, speed, stride 

length 
1 per shoe NA 

Axiamo XRUN [55] Running Ground contact time  1 per shoe NA 

RunScribe [56] 
Running, walking, 

hiking 

12 basic metrics (efficiency, shock, motion), 33 
advanced metrics (derived, plus, research), 12 

sacral metrics (pelvis angles, vertical 
oscillation) 

1 per shoe (possibility to 
add 1 on the hip) 

500 

RunTeq [57] Running 6 body kinematics metrics, 6 workout metrics 1 per shoe and 1 on chest NA 
Achillex 

jump’n’run 
(Xybermind) [12] 

Jumping, sprinting 
Running parameters, and jumping metrics for 

three different jump forms 
1 on the belt (with magnetic 

barrier infrastructure) 
400 

GaitUp [58] 
Running, walking, 

physical activity, golf, 
swimming 

Running temporal (4 metrics), spatial (4 
metrics), and performance (6 metrics) 

1 per shoe 128 

SHFT [59] Running 
12 full-body metrics (e.g., cadence, ground 
contact time, step length, g-landing, etc.) 

1 on one shoe and 1 on chest NA 

Moov [60] Running Cadence, range of motion, tibial impact 1 on ankle NA 
TgForce [61] Running Peak acceleration (in g), cadence 1 on tibia NA 

Stryd [62] Running 
Ground contact time, vertical oscillation, 

running power, distance, leg stiffness, 
cadence 

1 on shoe 1 
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IMeasureU [63] 

Jumping, sprinting, 
counter rotation, 

swimming, power 
meter 

Steps, cumulative impact load, cumulative 
bone stimulus 

Up to 8 sensors on the body 
(possibility to sync with 

VICON MoCap) 
500 

ViPerform 
(DorsaVi) [64] 

Functional tests, 
hamstring tests, knee 

movement tests, 
running tests 

Symmetry, average ground reaction force, 
peak acceleration, ground contact time, 

cadence, distance, speed  

1 per tibia (with possibility 
to include video) 

100 

MyVert [65] Jumping, running 
Jump metrics, landing impact features, drills 

features, energy feature, run feature, 
power/intensity features, stress features 

1 on center-of-mass NA 

K-50 (K-Sport) [66] 
Soccer-related 

movements 
300 parameters including physical, technical, 

and tactical information 

1 on the chest (also 
including GPS, UWB, and 

physiologic sensing) 
50 

Proposed system Jumping, running 

13 running temporal, spatial, and 
performance metrics, full vertical GRF 

waveform, and jumping metrics for two 
different jump forms 

1 on each tibia (for 
running), 1 on center-of-

mass (for jumping) 

 
 

238 

8. Discussion 
Despite the various technologies currently adopted for injury prevention, the injury 

rate in sport is increasing [67]. This may be due to the current technology not yet providing 
key metrics to allow both the coach and athletes to make training and performance-related 
decisions (i.e., athlete wellness, musculoskeletal screening scores, training load, fitness, 
and fatigue) in real-time and on-the-field. Additionally, compared to specific orthopedic 
conditions for which clinical prediction rules exist, athletic training is lagging significantly 
behind in the area of clinical prediction modeling [68]. 

Wearables have been already used by athletes and sports teams for a number of 
years, in particular for tracking information associated with health and fitness. However, 
the development of tools for performance evaluation and prevention of running-related 
injuries is still in its infancy [68]. 

A number of works [69,70] have indeed considered the use of in-soles for pressure 
plantar monitoring and for the estimation of biomechanical loads associated with running 
injuries, and several companies have launched such products as shown in the review by 
Ramirez-Bautista et al. [71]. However, most of the products on the market focus only on 
the pressure heat map/distribution and they are still accompanied with practical long-
term issues related to reliability, short lifespan, rapid degradation, feebleness, and high 
cost. 

IMU-based wearable products (i.e., RunScribe [56], GaitUp [58], Stryd [62], 
IMeasureU [63], ViPerform [64]) are well-known already for providing biomechanical 
variables, such as contact time, swing time, cadence, stride time, stride length, speed, 
pronation angle, foot-strike type, distance covered, asymmetry, stiffness, and impact. 
However, current IMU-based wearable devices on the market provide loading parameters 
without specifying how they have been extrapolated or correlated to the GRF curve. 
Moreover, several devices fail to provide scientific evidence and validations on how 
accurate their outcomes are. Finally, those wearable devices often employ ambiguous 
terminology, such as “bone load”, “limb load”, “step intensity”, “impact score”, or 
“biomechanical load”, which could be confusing and misleading for end-users [72]. 

As a result, biofeedback from existing wearable devices may be ambiguous, not 
validated and potentially harmful for users [72]. Yet, the estimation of the full GRF 
waveforms from which well-known and standardized loading rate variables (i.e., impact 
peak, active peak, loading rate, and impulse) could be accurately extrapolated, may 
represent a viable solution to aid in the decision-making of coaches and sport scientists. 
In this direction, the system and prototypes developed and described in this paper, 
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encompasses the design and integration of a performance-evaluation system able to 
reliably support coaches and athletes in their real-world practice in a number of sports, 
such as soccer, rugby, etc. The developed system meets the requirements set by the 
targeted task in terms of low-power, sampling rate (>200 Hz), wireless synchronization, 
activity detection, accuracy, number of metrics provided, and graphical visualization. 
Future work will investigate the possibility to adopt the developed system in agonistic 
settings, such as a real soccer match, and collect appropriate feedback on its usefulness 
from actual professional end-users. 

The developed system, however, presents some limitations. The implemented 
activity and event recognition algorithms are specific for the considered case study, and 
may not be suitable for recognizing running and jumping from other activities (e.g., 
walking, sprinting). The adoption of machine learning-based human activity recognition 
approaches [73–75] will be considered for future developments, as well as possible 
improvements (such as the use of machine learning models) related to the estimation of 
specific jumping-related metrics (e.g., depth). Moreover, this study did not consider the 
impact that different running surfaces or running shoes may have on the gait of the 
athletes [76] and, consequently, on the system performance. Further field-testing is 
required to investigate the effect of the running surface, as well as runners’ fatigue, on the 
developed system. Finally, the enhancement of the Device1–Device2 wireless link 
reliability via automatic adjustment of communication factors (i.e., packet size, sampling 
rate) [77] for a more robust synchronization will also be considered. Further investigations 
will be also carried out with regards to the industrial design of the system so as to ensure 
that sensor placement is always correct in terms of orientation and position, and to 
guarantee the absence of gradual changes which could affect the accuracy of the system. 

It is also worth noting that, at the current stage, the developed system does not 
provide a measure of “correctness” (e.g., if a test subject is running or jumping “safely”), 
but it provides all the considered metrics to the coaches involved in the training and leave 
the ultimate decision on the exercise “correctness” to the human user. However, a fully 
automated evolution of the system will be also taken into consideration in future work 
through the implementation of a traffic-light alarm system which would indicate how 
“safely” the exercise is performed (for example, green may be interpreted as things should 
continue as per normal, amber suggests caution that if left unattended could pose a risk, 
while red raises an alarm and indicates action is required). Indeed, the concept of traffic-
light systems is currently widespread in sport science thanks to its ease of use [78]. 
However, the implementation of these traffic-light alarms would require the acquisition 
of massive datasets with the final aim of providing personalized red/amber/green 
feedbacks to the end-users based on baselines/benchmarks obtained from each athlete 
under testing. 

Finally, it must be recognized that the literature lacks a consensus regarding the 
accuracy levels required by coaches to find the technology acceptable. While, for example, 
for consumer-level wearable activity trackers against gold-standards, some studies 
recommend that an acceptable measurement error for clinical or research purposes is 
within ±3%, and under free-living conditions is within ±10%, with other studies 
recommending that mean errors of less than 20% have acceptable validity for clinical 
purposes [47]. Moreover, according to new United States technological standards, a 
device may have up to 10% error during walking, jogging, and running [48]. However, a 
similar indication is not provided in the sport field for sport performance devices. 
Nevertheless, previous literature has suggested that test reliability standards should 
ultimately be judged by the individual researcher or practitioner based in accordance with 
their intended use, and that the most reliable variables may not necessarily be the most 
efficacious in athlete monitoring and performance testing regimens [49,50]. Therefore, 
based on the previous indications, this investigation considers the validity criteria of 20% 
error threshold as tolerable and 10% error as acceptable for consumer-level technology. 
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9. Conclusions 
In this paper, a novel wearable IMU-based system has been presented for athletic 

performance assessment during running and jumping tasks. The system consists of 
custom hardware platforms required to be developed so as to give the necessary system 
functionality, embedded firmware for allowing human–boards interaction, wireless 
synchronization between platforms, automatic recognition algorithms of running and 
jumping activities and specific event detection, biomechanical algorithms for the 
estimation of running- and jumping-related metrics, ANN-based vertical GRF waveform 
estimation, and a GUI for visualization purpose and for allowing the end-users to interact 
with the back-end analytics and the hardware platforms. 

This solution will facilitate the exercise science research by giving the possibility to 
collect a multitude of movement data and by identifying and providing useful insights 
based on the analysis of a substantial amount of data collected. 

The developed system is low-power, sufficiently small for real-world scenarios, easy 
to use, and achieves the required communication range, with a high sampling rate, and 
high performance to meet the needs of sport scientists in their analysis of human 
performance. The system was also tested in terms of the accuracy of the activity 
recognition algorithms, the estimated running- and jumping-metrics, and the vertical GRF 
predictions with satisfying outcomes (i.e., RMSE vertical GRF: 0.148 BW, error < 10% for 
most jumping metrics, and accurate trial detection). As a result, the developed system 
may be suitably adopted as a performance evaluation tool able to support coaches and 
athletes in their real-world practice. 
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