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Abstract: With the development of industrial robots and other mechanical equipment to a higher
degree of automation, mechanical systems have become increasingly complex. This represents a huge
challenge for condition monitoring. The separation of vibration source signals plays an important
role in condition monitoring and fault diagnosis. The key to the separation method of the vibration
source signal is prior knowledge, such as of the statistical features of the vibration source signal,
the number of vibration sources, and so forth. However, effective prior knowledge is difficult to
obtain in engineering applications. This study found that low rank is a common feature of rotating
machinery vibration source signals. To address the problem of the difficulty obtaining the signal
feature of a vibration source, the multi-low-rank constrained vibration source signal separation
method was proposed. Its advantages and effectiveness have been verified through simulations and
experimental tests. Compared with the blind source separation method of independent component
analysis (BSS-ICA) and the ensemble empirical mode decomposition (EEMD) methods, it obtained
better clustering results and higher signal-to-signal ratio (SSR) values.

Keywords: fault diagnosis; low rank; vibration source signal; separation; robotic bearings

1. Introduction

When mechanical equipment is utilized for long periods of time (more than 12 months),
the parts in the system (such as the joint bearings) become more likely to sustain damage [1].
Condition monitoring and fault diagnosis can effectively reduce the fault rate of mechanical
equipment. Vibration analysis is one of the main methods by which to obtain condition
information on key parts of machinery equipment.

The separation of vibration source signals is an interesting and difficult problem in
condition monitoring which is based on vibration analysis. The signal collected from the
rotating machinery system is a multicomponent signal [2], which contains the environmen-
tal noise, the vibration component excited by the internal excitation source of the machine,
and the noise of the acquisition system itself. Only the vibration component excited by
the internal excitation source of the machine can reflect its condition. In this paper, the
vibration component excited by the internal excitation source of the machine is called the
vibration source signal. When the vibration signal contains noise, it is difficult to obtain
the condition information on key parts of the mechanical equipment. If this information is
directly used for condition monitoring and fault diagnosis, an incorrect diagnosis result
will be obtained [3,4]. Therefore, separating the vibration source signal of the mechanical
equipment can significantly improve the accuracy of condition monitoring.

The existing vibration source signal separation methods for rotating machinery include
the denoising method and blind source separation (BSS).
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The denoising separation method is widely applied in condition monitoring. The
signal features and filters (e.g., time domain, frequency domain, or time-frequency domain
filters) are used to separate signals of interest from multiple component signals. First, the
mixed vibration signal is decomposed into multiple components. Second, some compo-
nents are discarded or retained, according to the prior features of the signal. Finally, the
retained components are reconstructed as the vibration source signal. For example, Wang
et al. [5] used the complex wavelet transform to separate the fault vibration source signal.
Wang et al. [6] proposed an enhanced adaptive noise denoising algorithm. In this, the
noise feature is used to separate the gear noise component and retain the bearing fault
component. M.G.A. et al. [7] proposed a framework using the sailfish optimization (SO)
algorithm and Gini index (GI) as a criterion to adaptively select the optimum variational
mode decomposition (VMD) parameters for each fault signal. For this method, the bearing
fault signal is automatically separated based on maximum GI values. Cui et al. [8] pro-
posed a novel compound fault separation algorithm based on parallel dual-Qfactors and
improved maximum correlation kurtosis deconvolution (IMCKD), and separated the inner
ring and outer ring bearing fault signals. However, the separation effect of this method is
determined by the accuracy of dual-Qfactors. The above studies in the literature reflect that
accurate signal prior features are the key to separating the source signal in the denoising
separation method.

Since the 21st century [9,10], the BSS method has been applied to mechanical fault
diagnosis. Cédric et al. [11] proposed a novel perspective on blind filtering of vibration
signals with the purpose of fault detection in rotating machinery, and successfully sepa-
rated the vibration source signals of the bearing outer ring fault. Zhang et al. [12] proposed
an adaptive blind source separation method to solve the non-stationary problem, and
applied it to separate wheel fault vibration source signals. W et al. [13] proposed a sparse
component analysis (SCA) method based on linear clustering for the purpose of underde-
termined blind source separation of vibration signals, and separating rolling bearing fault
signals. In order to solve the underdetermined BSS problem, Li et al. proposed a method to
separate compound signals in the hyperplane space with variational modal decomposition
(VMD), and used it for extracting single-channel fault characteristics of compound signals
for rolling bearings [14]. The BSS method plays an important role in the separation of the
vibration source signal, but the amplitude and phase of the separated vibration source sig-
nal are uncertain. This uncertainty is detrimental to the long-term tracking and monitoring
of mechanical conditions. The above studies in the literature reflect that the separation
effect of BSS is limited by the accuracy of the number of independent sources.

However, the vibration excitation source is complicated in actual engineering, the prior
features of the vibration source signal (or noise) are difficult to know, and the number of
independent sources is difficult to determine. The requirements of the denoising separation
method are difficult to meet, and the separation effect of the BSS cannot be guaranteed. The
difficult-to-obtain prior knowledge is one of the key issues in the separation of vibration
source signals.

In order to solve this problem, a low-rank constrained vibration source signal separa-
tion method is proposed for rotating machinery (e.g., robot bearings, etc.). Low rank is a
common feature of rotating machinery vibration source signals. The low-rank feature is
used as the target constraint of the source signal separation in this method. The low-rank
noise model and the multi-low-rank noise model are described in this study. This method
does not need to obtain prior knowledge of the vibration source signal. The effectiveness
and superiority of this method are verified by simulations and experimental tests.

2. Theory and Model
2.1. Low Rank of Vibration Source Signals

Because the working process of rotating machinery is periodic, the vibration signal
excited by the internal excitation source has repetitiveness. For example, the vibration
signal generated by a bearing outer ring crack fault is a series of repeated impact waveforms.
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The vibration signal generated by a rotor eccentric fault is a series of repetitive harmonic
waveforms. The recurring waveform is called the characteristic waveform in this study.
The matrix composed of related data is low rank [15]. Because the repeated characteristic
waveforms are correlated, the matrix composed of the characteristic waveforms in the
vibration signal from a fault is a low-rank matrix in an ideal state.

In the case of engineering applications, the rank of the matrix obtained from the
vibration signal containing noise is higher, or full rank. Low-rank restoration is carried out
to eliminate the noise in the vibration signal, making the rank of the matrix lower.

2.2. The Separation Model Based on Low-Rank Constraints

Robust principal component analysis (RPCA) [16,17] is one of the low-rank restoration
methods, which, early on, was applied in the field of image processing. It decomposes
a matrix D into two matrices: D = L + E, where L is a low-rank matrix, and E is a sparse
matrix which represents noise.

However, the noise from the vibration signal of mechanical equipment is not sparse.
The noise in the vibration signal is mostly Gaussian colored noise and white noise. In order
to explore the nature of the noise term in the vibration signal, the Lilliefors method [18] is
used for the Gaussian detection of the vibration signal in Section 5. Assume the Gaussian
distribution value is 0. If the confidence level is >0.05, the assumption is true. The test
result shows that confidence level is 0.27 > 0.05. The detection result is that the noise of
the mechanical vibration signal has a Gaussian distribution. Therefore, sparsity cannot be
used to describe noise in mechanical vibration signals.

Therefore, according to the composition of the mechanical vibration signal, a low-rank
constrained vibration source signal separation model is proposed:

argmin
L,A

rank(L) + β× kur(A)

s.t. D = L + A
(1)

where β is a compromise factor, which can be understood as the weight between the
vibration source signal and the noise, and kur( ) is the kurtosis function. The kurtosis
is used to describe the approximate Gaussian degree of the data; the closer the kurtosis
of the data is to 0, the higher the Gaussian degree. Because the rank function is non-
convex, it is a non-deterministic polynomial problem (NPP). The nuclear norm is a convex
approximation of the rank function [19]. Therefore, through convex relaxation, the model
can be transformed into:

argmin
L,A

‖L‖∗ + β× kur(A)

s.t. D = L + A
(2)

where ‖L‖∗ is the nuclear norm of the L.

2.3. The Separate Model of Multiple Low-Rank Constraints

The vibration signal obtained by the test generally contains multiple vibration source
signals. The separation model of Equation (2) can only be used to separate one vibration
source signal. Therefore, the separation requirement cannot be satisfied.

In order to separate multiple vibration source signals at the same time, a multi-low-
rank constrained vibration source signal separation model is proposed, as follows:

argmin
L,A

n
∑

i=1
λi‖Li‖∗ + β× kur(N)

s.t. x =
n
∑

i=1
li + N

(3)

where n is the number of vibration source signals, which need to be separated, λi is
the weight of the i-th low-rank matrix, and N is the noise term. If the length of a
one-dimensional vibration signal x(t) is m, the low-rank matrix Li can be obtained by
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Li = w(x, oi, pi):Rm → Roi×pi . w is a block operator, and the calculation method is shown
in Figure 1. The block operator w can realize the transformation from one-dimensional
vector x(t) to two-dimensional matrix Li. The vibration source signal is divided into blocks
according to the characteristic frequency of the characteristic waveform, where o is the
length of a low-rank matrix column, p is the number of low-rank matrix rows, o and p can
be calculated by Equations (4) and (5), and li is an inverse operation of Li by block operator.

oi =
fs

fsource i
(4)

pi =
m
oi

(5)

where fs is the sampling frequency, and fsource i is the characteristic frequency of the vibration
source signal.
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Figure 1. The calculation method of the block operator w.

The model is a can convex optimization problem, and it can be solved by the aug-
mented Lagrange multiplier method. First, we constructed the augmented Lagrange
function La:

La(li, N, Y,µk) =
n
∑

i=1
λi‖Li‖∗ + β× kur(S) +

〈
Y, x−

k
∑

i=1
li − N

〉
+ µk

2

∥∥∥∥x−
k
∑

i=1
li − N

∥∥∥∥2

F

(6)

In Equation (6), La is the augmented Lagrange function, Y is the Lagrange multiplier, µ
is the iteration step size, and 〈〉 is the point product computation. The constrained objective
optimization problem is transformed into the minimum value problem of the augmented
Lagrange function La, and the expression of the optimal solution is as follows:

(l∗i , N∗) = argmin
li ,N

(La(li, N, Y,µk)) , i= 1, 2, · · · , n (7)

where
(
l∗i , N∗

)
is the optimal solution of

(
li, N

)
.

The optimization problem is solved by the alternating direction multiplier method.
Each step of the iterative process can be decomposed into the optimization problem for



Appl. Sci. 2021, 11, 5250 5 of 14

finding the minimum nuclear norm of each low-rank matrix Li and the minimum kurtosis
of the noise term. The iteration process is as follows:

l∗i,k+1 = arg
li


λi
µk
‖Li‖∗ +

1
2

∥∥∥∥∥∥∥∥∥
x−

i−1
∑

j=1
lj,k − li−

n
∑

j=i+1
lj,k − Nk +

1
µk

Yk

∥∥∥∥∥∥∥∥∥
2

F

 = arg
li

{
λi
µk
‖Li‖∗ +

1
2
‖li − Ti,k‖2

F

}
(8)

N∗k+1 = arg
n

 β

µk
kur(N) +

1
2

∥∥∥∥∥x−
q

∑
j=1

lj,k − N +
1
µk

Yk

∥∥∥∥∥
2

F

 (9)

The suboptimization problem of Equation (8) can be solved by singular value decom-
position (SVD) and soft threshold operations:

[Ui, Si, Vi] = SVD(w(Ti,k, oi, pi)) (10)

li,k+1 = reshape
(

UiSλi/µk
[Si]VT

i , 1, oi × pi

)
(11)

where SVD() is the singular value decomposition operator, and Sλi/µk
[] is the soft threshold

shrinkage operator for the positive parameter λi/µk.
For the suboptimization problem in Equation (9), the penalty term∥∥∥∥∥x−

q
∑

j=1
lj,k − N + 1

µk
Yk

∥∥∥∥∥
2

F

can be transformed into x + 1
µk

Yk =
n
∑

j=1
lj,k + N to obtain the

equivalent optimization subproblem, as follows:

min
n

kur(N), s.t. x +
1
µk

Yk =
n

∑
j=1

lj,k + N (12)

The problem of Equation (12) can also be solved by singular value decomposition and
soft threshold operations, as follows:

[UN , SN , VN ] = SVD
(

w
(

x +
1
µk

Yk, o1, p1

))
(13)

Nk+1 = Nk − reshape
(

UNSβ[SN ]VN
T , 1, oi × pi

)
(14)

where Sβ[] is the soft threshold shrinkage operator of the positive parameter β.
Equations (10), (11), (13), and (14) can be used to solve Equations (8) and (9) by

updating li,k+1. The Lagrange operator Yk+1 and threshold αk+1 need to be updated by:

Yk+1 = Yk + αk

(
x−

q

∑
i=1

li,k+1 − nk+1

)
(15)

αk+1 = ραk, ρ = 1.5 (16)

3. The Separation Method Based on Multi-Low-Rank Constrained

According to the multi-low-rank model and its solving method in Section 2.3, the
multi-low-rank constrained vibration source signal separation method is proposed. The
separation method is mainly composed of two parts: determining the vibration source and
separating the vibration source signal. The schematic diagram of the separation method is
shown in Figure 2.
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Figure 2. The process of the vibration source signal separation method with multiple-low-rank constraints.

The purpose of the determination vibration source part is to find the vibration source
signal in the collected vibration signal. To determine the vibration source, firstly, the Matrix
Profile algorithm [20] is used to find some similar fragments in the vibration signal. The
Matrix Profile algorithm is an algorithm for finding similar fragments in a time series,
which can quickly find the most similar subsequence pair (motif) in the time series. Then,
the frequency of similar fragments that have been found and the frequency of possible
vibration source signals are checked. If the frequencies are equal, it means that the vibration
source signal exists in the mixed signal.

In the separating vibration source signal part, the vibration source signal can be
separated from the collected vibration signal by the multi-low-rank model. When this
method is used to separate the vibration source signals, λi is the regularization parameter
for balancing, and is fixed to 1/

√
max(oi, pi). β is usually set to 1.

4. Simulation Analysis

In order to explore the separation effect of the multi-low-rank constrained vibration
source separation method, the simulation signals of the bearing inner ring and outer ring
crack faults were constructed. The impact caused by a bearing crack fault can be modeled
by the single-degree-of-freedom mass-spring-damper impact response [21,22].

s(t) = Ae−αt sin ωr(t)u(t) (17)

The fault-bearing vibration signal model can be expressed as [23,24]:

xb(t) =
M

∑
m=1

Ame
−α(t−mTp)

sin
(
2πωr

(
t−mTp

))
u
(
t−mTp

)
(18)
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where Am is the amplitude of the m-th fault impulse, and u(t) is the unit step function. Tp
is the spacing of adjacent impulses caused by bearing fault, α is the structural damping
factor, ωr is the resonance frequency induced by the bearing fault.

The simulation signals of the bearing inner ring and outer ring crack faults can be
defined as:

x(t) = xbo(t) + xbi(t) + ns(t) (19)

where ns(t) is white noise, and fs is the sampling frequency.
The parameters of the simulation signal are listed in Table 1. The characteristic

frequency of the crack fault of the bearing outer ring fo is 79.2 Hz, and the characteristic
frequency of the crack fault of the bearing outer ring fi is 138.9Hz from Table 1.

Table 1. Simulation parameters.

Parameter Value Parameter Value

Amo 1.5 V Ami 1 V
αo 1200 αi 800

TPo 1/79.2 s TPi 1/138.9 s
ωr 2800 Hz fs 24 kHz
fo 79.2 Hz fi 138.9 Hz

The simulation signal is shown in Figure 3. The impulse waveform caused by the
inner ring and outer ring faults was not observed in the mixed signal from Figure 3.
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Figure 3. Time domain waveforms of the simulated signal.

The vibration source signal separation method with low-rank constraint was used to
separate the bearing fault vibration source signal in the simulation signal. The separation
result is shown in Figure 4. The crack fault signals of the inner ring and outer ring are
separated, and the pulse waveform can be clearly observed from Figure 4.
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In order to observe the components of the separated inner and outer ring crack
fault signals, their envelope spectrum was calculated separately, as shown in Figure 5.
There were peaks at the first harmonic and the second harmonic of the fault characteristic
frequency in the envelope spectrum, as can be seen in Figure 5. This verified that this
method can effectively separate the inner ring and outer ring crack fault signals.
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Figure 5. The envelope spectrum of inner and outer ring faults.

5. Experimental Analysis
5.1. Experimental Verification

The measured signal was collected by the ST5000A rolling bearing vibration test
bench, as shown in Figure 6. The rolling bearing vibration test bench was installed with
SKF-6000 deep groove ball bearings. The KSWL-3806-20 encoder and the tachometer were
installed at the end of the rotating shaft in the test bench. The TDGC2-0.5k VA contact
voltage regulator was used to control the speed of the AC motor. Finally, the CA-YD-1181
acceleration sensor, YE6231 data acquisition card, and matching acquisition software were
used to collect the signals synchronously.
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Figure 6. The bearing experimental bench ST500A.

The measured vibration signals mainly included outer ring faults and eccentric fault.
The environmental noise and noise from the acquisition system itself are mixed into the
vibration signal during the acquisition process. The outer ring crack of the bearing was
artificially faulted by electrical discharge machining (EDM). The load was an eccentric
flywheel. The sampling frequency is 24 kHz, and the rotation speed of the bearing fr
is 3600 rpm, and the geometric parameters of the bearing are shown in Table 2. The
characteristic frequency of the outer ring fault fo was 152.9 Hz, and the characteristic
frequency of outer ring fault fe was 60 Hz.

Table 2. The bearing structure parameters.

Parameter Name Value

Type 6000
Number of Rolling Elements 7

Contact Angle 0◦

Pitch Diameter D/mm 17.65
Ball Diameter d/mm 4.8

Characteristic Frequency of Outer Ring Fault fo/Hz 2.548fr
Characteristic Frequency of eccentric Fault fe/Hz 1fr

The time-domain waveform of the collected vibration signal is shown in Figure 7. The
characteristic waveforms of the outer ring fault (impact-waveform) and the eccentric fault
(sine-waveform) cannot be distinguished from Figure 7.
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Figure 7. The time domain waveform of the collected vibration signal.

The test signal was separated by the method proposed in this article, and the sepa-
ration result is shown (Figure 8). The waveform of the signal corresponding to the outer
ring fault is a series of impact-waveforms, and the waveform of the eccentric fault signal
is a continuous sine-waveform from Figure 8. The waveforms of these two signals are
consistent with the actual situation.
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Figure 8. The separation results.

In order to analyze the components of the separated two fault vibration sources,
their envelope spectrums were calculated, as shown in Figure 9. fo is the characteristic
frequency of the outer ring fault, and fe is the characteristic frequency of the eccentric
fault. From Figure 9, there are peaks at the first harmonic and the second harmonic of fault
characteristic frequency in the envelope spectrums. The method presented in this article
proved to be effective in separating the eccentric and outer ring crack fault signals.
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Figure 9. The envelope spectrum of the outer ring fault and eccentric fault.

5.2. Comparative Analysis

In order to verify the advantages of this method, the blind source separation method
of independent component analysis (BSS-ICA) [25] and ensemble empirical mode de-
composition (EEMD) [26] were used for comparison experiments. The separation effect
was compared by considering four aspects: time-domain waveforms, envelope spectrum,
signal-to-signal ratio (SSR), and fault classification.

(1) The time-domain waveforms

The experimental results of the BBS-ICA and the EEMD are shown in Figure 10. From
Figure 10, the waveform of the signal corresponding to the outer ring fault is a series of
impact-waveforms, but the waveform of the eccentric fault signal is a consecutive sine-
waveform according to the EEMD. The waveform of the signal corresponding to the outer
ring fault is a series of impact-waveforms, but the waveform of the eccentric fault signal is
not a continuous sine-waveform according to the BSS-ICA. However, this assumption is
not consistent with reality.

The amplitude of the separated signal is 400 mV, which is much larger than the original
signal. From Figure 10, the amplitude of the separated signal according to the BSS-ICA
is 5 mV, which is much smaller than the original signal. The separated time-domain
waveform has distortion problems by the EEMD and BSS-ICA.
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(2) Envelope spectrum

The corresponding envelope spectrums are shown in Figure 11. fo can be obtained in
the envelope spectrum of the outer ring fault, and fe can be obtained in the envelope spec-
trum of the eccentric fault by EEMD. This shows that EEMD can separate the two vibration
source signals corresponding to two faults. At the same time, fo and fe can be obtained
in the envelope spectrum of the outer ring fault and the eccentric fault by BSS-ICA. This
shows that BSS-ICA cannot separate the two vibration source signals corresponding to
two faults.
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Figure 11. The envelope spectrums by EEMD and BBS-ICA.

(3) The signal-to-signal ratio (SSR)

In order to quantitatively describe the separation results, the signal-to-signal ratio (SSR)
method [27] was used to evaluate the quality of the separated signal. The mathematical
expression of the SSR is as follows:

SSRi = min
1≤j≤q,j 6=n·i

(
10log

PSDi
PSDj

)
(20)
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where PSDi and PSDj are the power spectral densities of signals i and j in the “home”
spectrum of signal i, respectively [27].

The SSR values of the two separated vibration source signals obtained by the method
of this paper were 5.6 and 3.2. The SSR values by EEMD were 3.2 and 2.2. The SSR values
by BBS-ICA were 1.1 and 0.1. Therefore, the SSR value obtained by the separation method
in this study is higher than that obtained by the EEMD method. The SSR value obtained by
the EEMD was higher than that obtained by the BSS-ICA method.

(4) The fault classification

In order to compare the effects of the two methods on the fault diagnosis results,
a self-organizing map (SOM) was used to cluster the separated vibration source signals.
The clustering results are shown in Figure 12. Type 1 represents the vibration source signal
of the outer ring fault, and type 2 represents the vibration source signal of the eccentric
fault. From Figure 12, the two types of fault vibration source signals could be grouped into
two types by the method in this paper. There is a certain amount of aliasing between the
two types of faults by EEMD, which has a negative effect on fault diagnosis. However,
the two types of faults could not be distinguished by BBS-ICA. Therefore, the method in
this paper achieved a better clustering result, and is more advantageous than EEMD and
BSS-ICA for fault diagnosis.
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6. Conclusions

As it is difficult to obtain the signal characteristics of the vibration source, the multi-
low-rank constrained vibration source signal separation method was proposed and studied
in this paper. The low-rank nature can be used as a common feature for the separation of
vibration source signals. In this method, only the characteristic frequency of the vibration
source signal needs to be given. The characteristic frequency can be calculated from the
geometrical dimensions of the mechanical parts. There is no need to obtain the prior
knowledge of the vibration source signal in advance. This method provides a reference for
fault diagnosis and condition monitoring of rotating machinery and robot bearings.

The advantages and effectiveness of this method were verified through simulation
and experimental tests. Compared with the EEMD and BSS-ICA methods, the method of
this study obtained better clustering results, higher fidelity, and higher SSR values.
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