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Abstract: Deep learning models are based on a combination of neural network architectures, op-
timization parameters and activation functions. All of them provide exponential combinations
whose computational fitness is difficult to pinpoint. The intricate resemblance of the microscopic
features that are found in bone surface modifications make their differentiation challenging, and
determining a baseline combination of optimizers and activation functions for modeling seems
necessary for computational economy. Here, we experiment with combinations of the most resolutive
activation functions (relu, swish, and mish) and the most efficient optimizers (stochastic gradient
descent (SGD) and Adam) for bone surface modification analysis. We show that despite a wide
variability of outcomes, a baseline of relu–SGD is advised for raw bone surface modification data.
For imbalanced samples, augmented datasets generated through generative adversarial networks
are implemented, resulting in balanced accuracy and an inherent bias regarding mark replication. In
summary, although baseline procedures are advised, these do not prevent to overcome Wolpert’s “no
free lunch” theorem and extend it beyond model architectures.

Keywords: generative adversarial networks; optimizer; activation function; neural networks; com-
puter vision; taphonomy

1. Introduction

The use of computer vision (CV) through deep learning (DL) methods has substantially
modified the resolution of taphonomic studies. It initially showed that, on small samples
(n ≤ 100), CV yielded an accuracy of classification > 90% when human experts were system-
atically producing < 60% correct identifications of tested bone surface modifications (BSM).
In larger samples, the difference between CV and experts becomes exponential. Preliminary
models have been produced, using deep convolutional neural networks (DCNN), that
correctly identify images of tooth, cut, and trampling marks [1]. DCNN models go as far as
to differentiate cut marks imparted on bones when carcasses were fleshed or defleshed [2].
These methods are even capable of detecting BSM morphing through dynamic impact
of biostratinomic abrasion processes [3]. Traditional taphonomic studies do not have the
power to identify carnivore agency when carnivorous mammals affect bone assemblages.
DL models have successfully and variably differentiated among several diverse carnivore
types [4]. Some DL models have even successfully classified tooth marks from different
felid types [5,6]. All this shows the promising path ahead in the use of these techniques for
taphonomic research.

However, optimal DL model construction is not easy, since it involves combinations
of multiple variables, namely the architecture of the model, the choice of transfer and
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ensemble learning procedures, the selection of activation functions and the choice of
optimizers, among others. There currently is no protocol for which of these combinations
is most adequate in the use of BSM images for taphonomic analyses. Most of the models
mentioned above are based on imbalanced samples and their balanced accuracy is variable.
In the present work, our objectives are two-fold: we intend to provide a baseline protocol
based on combinations of different architectures, activation functions and optimizers,
and we will show the convenience of including, in these protocols, data augmentation
procedures for coping with unbalanced samples.

Image augmentation has frequently been done using morphing of the currently exist-
ing datasets by modifying spatial properties, such as rotation, zoom, flipping, cropping,
translation, kernel filters, noise introduction, and others [7–10]. DCNNs need large datasets
for training in order to efficiently learn, and small samples hinder the process by either bias-
ing it or by overfitting the training and underperforming on the testing. Data augmentation
has been essential to avoid these issues. One major improvement over traditional image
augmentation techniques has been the development of generative adversarial networks
(GAN) [11,12]. GANs are capable of, not just modifying existing images, but creating new
images that could diversify within sample variability. This has boosted the efficiency of
medical imaging, where samples for specific pathologies are always limited [13–16]. Here,
we will use GAN data augmentation with the goal of improving existing models and
making accuracy more balanced. However, we will present some problems associated with
GAN methods that require some caution in how these methods are implemented in BSM
studies.

2. Methods and Samples
2.1. Phase 1: Parameter Selection and Model Protocol

In order to test the best architecture and parameters for BSM DL analysis, we selected
some of the most powerful existing DCNN models, some of them successfully used for
BSM classification [1]: VGG16, ResNet50, Densenet, and Jason2. All these models, but
the latter, were used through transfer learning. Transfer learning consists of using models
that were trained for a different problem and use their feature-learning weights, which
are already pre-trained [17], for retraining on new image datasets. Here, some of the
most high-performing models trained on more than 1,000,000 images for the 1000-image
category ILSVRC competition were used. These pre-trained models were used as stan-
dalone feature extractors and classifiers. The layers of each pre-trained model with their
weights were integrated within the new models used here containing an output dense layer
containing 128 neurons. This was implemented through the Keras API. For a summary of
the description of these architectures see [1,5]. In previous modeling, BSM images were
high resolution (80 × 400 pixels) [1]. Here, we adopted a lower resolution approach, since
experimentation showed that model accuracy was not affected. For this reason, we re-
shaped the original rectangular BSM images into 64 × 64-pixel images. The original images
were captured using a binocular microscope (Optika) at 30×. The resulting BSM image
data bank was composed of 488 cut marks, 106 tooth marks, plus 63 marks from trampling
experiments. Cut marks were made with simple flakes. Tooth marks were obtained in
experiments of bones modified by lions and wolves. Trampling marks were obtained from
experiments using different times of bone exposure to diverse sand-grain sizes. For a
detailed description of the BSM samples refer to [1]. For a more in-depth description of the
experiments, see [2,5,18]. All images were transformed into black and white during image
processing in the Keras platform (with a Tensorflow backend), by using bidimensional
matrices for standardization and centering. The architectures were designed to address
a multiple classification problem. For this reason, the “softmax” activation was used on
the last dense layer. This function is specific for multinomial classification. It provides the
probabilities of each input element of pertaining to a specific label. During compilation,
categorical cross-entropy was used as the loss function. We used Tensorflow 2.4.1 and
Keras 2.4.2.
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The architectures were trained on 70% of the original BSM image set (n = 459). The
resulting models were subsequently tested against the 30% remaining sample, which
constituted the testing set (n = 197). Training and testing were performed through mini-
batch kernels (size = 32) because it is the minimum recommended. Models were run using
a backpropagation process for 50 epochs.

The two parameters selected for intra- and inter- model performance comparison were
the activation functions and the optimizers. Following experimentally-based recommenda-
tions, we selected the “relu” activation as the baseline function [7,17,19,20]. Relu (rectified
linear activation) has become the default activation function for DL models because it deals
efficiently with vanishing gradient problems (decreased error through backpropagation),
the saturation on the ends and the sensitivity focused in the mid-points of other activation
functions like sigmoid or tanh [20]. The “relu” function returns a value equivalent to the
input if activated or zero if inactivated. The formula is rather simple: f (x) = max(0,x).

Recently, a purported improvement over “relu” has been suggested by the Google
Brain team under a new activation function named “swish”, whose formula is f (x) = x
· sigmoid(x) [21,22]. Swish is a monotonic smooth function that implements a sigmoid
curvature at the base of the ramp and it is more flexible for activation/deactivation. It
is supposed to work better in deep architectures (>40 layers) because of the problems in
correctly activating deep layers. Here, we will compare the performance of both functions
for BSM image analysis.

“Mish” is another recent function innovation. The formula is a little more complex:
f (x) = x · tanh(ς(x)) where, ς(x) = ln(1 + eˆx). This latter is the softplus activation

function [23]. “Mish” is not limited in its upper slope values, which avoids saturation
and deals efficiently with zero-gradient problems. In contrast, the slope is bounded at the
bottom, which enables better performance at avoiding overfitting during training. It has
been argued that this function outperforms “relu” and “swish” [23]. We tried alternative
functions, such as “tanh” and “LeakyReLU” and the results were not as good as with
“relu”, “swish” and “mish”.

The second parameter that we will analyze and compare is the optimizer type. Opti-
mizers try to minimize the loss function by tweaking weight parameters. In the case of the
optimizers, the responsibility of the analyst is bigger than in the selection of the activation
functions, because optimizers need to be tuned. For example, convergence to an optimum
depends on how fast or slow gradients operate. This is why selection of the learning rate is
important. Regularization can also be implemented to avoid overfitting. Other parameters
may also be selected. Gradients (which are partial derivatives connecting the loss function
to the weights) show any minor or major impact that any modification of parameters does
to the weights. The goal is to reduce the loss function through gradient descent. One of the
most widely used optimizers is stochastic gradient descent (SGD). This optimizer uses only
batches or random selection of cases in the original training sample, instead of all the cases
contained therein. It is used in combination with another technique called “momentum”,
which consists of accumulating the gradient values of past steps along the descent trajectory
in order to determine directionality. It is initiated at 0.5 and it increasingly must reach 0.9
over subsequent iterations. Here, we will use SGD as the baseline optimizer. The default
parameters were: Learning rate = 1 × 10−3; momentum = 0.9.

Adam (adaptive moment estimation) has been proposed as another of the most
efficient optimizers [24]. It takes another optimizer (Adagrad, adaptive gradient algorithm)
as a baseline and modifies it by scaling the learning rate instead of averaging it. It maintains
an exponentially decreasing average of previous gradients. The algorithm implements
an exponential modification of the average of the moving gradients and squares the
gradient. We selected the VGG16 and Jason 2 models and tested them with alternative
optimizers: SGD, Adam, Adagrad, Adadelta, and RMSProp. Given that the best results
were obtained with SGD and Adam, we decided to use these two optimizers as competitors
in combination with different activation functions. This created a network of combinations
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including: four different DL architectures, three activations functions and two optimizer
types. This resulted in 24 different combinations or models.

Model evaluation was based on the joint consideration of accuracy, loss and F1-scores
(Table 1). The latter was determinant given that it provides a good indication on how good
balanced accuracy is. We considered the two best combinations for each model. The first
one was labeled “best” and the second one as “good”, with the remainder being labeled
as “normal”. This was applied to the six function-optimizer combinations of each model.
To properly assess the importance of each function and optimizer, a Bayesian network
was used. This was based on score-searching structure learning algorithms, namely a
hill-climbing algorithm with different scores [25]: the Bayesian information criterion (BIC)
score, which is equivalent to the minimum description length (MDL), the multinomial
log-likelihood (loglik), the Bayesian Dirichlet equivalent (BDE) score, the Bayesian Dirichlet
sparse score (BDS), and the locally averaged Bayesian Dirichlet (BDLA) score [26]. The final
network selected was the one showing the lowest score (i.e., Akaike–BIC). The “bnlearn” R
library was used for this analysis (www.r-project.org, accessed on 2 February 2021).

Table 1. Accuracy and loss of the four selected sequential and parallel models, according to combina-
tion of activation function and optimizer.

Model Function Optimizer Accuracy Loss F1-Score

VGG16
relu SGD 95.83 0.214 0.73

swish SGD 95.83 0.286 0.67
mish SGD 95.31 0.245 0.67
relu Adam 96.35 0.247 0.65

swish Adam 95.31 0.246 0.77
mish Adam 96.35 0.258 0.69

Densenet 201
relu SGD 94.27 0.2 0.67

swish SGD 93.75 0.206 0.63
mish SGD 95.31 0.185 0.67
relu Adam 95.31 0.162 0.71

swish Adam 93.75 0.224 0.64
mish Adam 89.06 0.395 0.65

Jason2
relu SGD 96.35 0.133 0.69

swish SGD 95.38 0.16 0.7
mish SGD 96.35 0.126 0.68
relu Adam 94.79 0.194 0.76

swish Adam 93.75 0.224 0.69
mish Adam 95.83 0.212 0.71

Resnet 50
relu SGD 97.92 0.112 0.8

swish SGD 98.44 0.058 0.77
mish SGD 97.92 0.104 0.69
relu Adam 95.83 0.124 0.76

swish Adam 97.4 0.074 0.71
mish Adam 97.92 0.147 0.67

2.2. Phase 2: GAN-Augmented Sampling and Model Testing

Subsequently to the parameter and model testing, the most successful combinations of
model-function-optimizer were selected and used as the protocol for the complete model
analysis with image augmentation. For this last stage, the original highly unbalanced
sample was augmented with GAN. Given that, originally, they were between five and eight
times smaller than the cut mark subsample, we artificially augmented only the tooth mark
and trampling mark datasets by adding 500 images for each category.

www.r-project.org
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In order to generate images for each class, two main requirements were to be fulfilled.
First, the generated images should be large enough to be fed to the discriminator. On the
other hand, in order to train the algorithm, few images were made available. Despite that
modern image generation models complying with these two requisites do exist, as the
recently published F2GAN [27], technical constraints made this and other approaches, such
as DAGAN [28] non-viable.

As a result, in order to tackle the problem, a divide and conquer strategy was adopted:
a simple GAN for creating high-fidelity low-resolution images and a super resolution GAN
(SRGAN) that would upscale the generated images into a resolution optimum to train the
model. Regarding the GAN, a simple approach was taken, using a simple GAN [11], but
with small modifications. In the case of the generator, the initialization of the input vector
followed a standard normal distribution. This vector was convolved into a squared array
with 128 channels and width 64. After a LeakyReLU activation, the data were convolved
and upsampled using a Conv2DTranspose layer, normalized using batch normalization,
and then activated with a LeaykyReLU. This process was done twice, using a momentum
of 0.8 in batch normalization and an alpha of 0.2 in LeakyReLU in both cases. As a result,
the generation returned 64 × 64 grayscale images (Figure 1).
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Figure 1. Graphic representation of the created GAN.

In order to train the discriminator, both real and fake images were used, applying a
sequence of convolution, LeakyReLU, and a dropout at a rate of 0.5. This process was done
four times. Including the dropout layer is a small change from the original implementation,
which avoided the discriminator to learn the images and create overfitting or chances of
collapse mode, improving the model’s performance. For the generation of trampling and
tooth marks, the GAN was run through 7000 epochs of training. After this, the model
ended up generating realistic images (Figure 2).
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Regarding the execution of the super resolution GAN, a literal implementation of
the defined super-resolution GAN [29] was made. As a result, the generated images
significantly increased their resolution, going from 64 × 64-pixel images to 256 × 256 pixel
and, eventually, to 1024 × 1024-pixel images (Figure 3). Finally, it was decided that the
256 × 256 images were the ones to be added to the model. The code structure is added to
this paper.

After completing the GAN-augmented dataset, the two most successful classification
models obtained from the combination of activation function/optimizer were used to test
their efficiency on the augmented data.
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3. Results
3.1. Phase 1: Parameter Selection and Model Protocol

There was a major improvement over previous modeling of the same dataset [1], with
most models providing an accuracy close to 95% (Table 1). In this case, the differences
among models were rather minor. Sequential models like VGG16 and Jason 2 performed
very well and at least one of the parallel architectures (ResNet50) also performed very
efficiently. As a matter of fact, the latter model provided the highest accuracy, the lowest loss
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and the best-balanced accuracy, as reported by the F1-scores. Within these architectures, the
choice of function had a minor impact in model performance (Table 1). The optimizer was
more relevant to the final results. In most models, if considering the best two combinations
for each model, SGD produced better performance of the network resulting in higher
accuracy and lower loss (Table 1). SGD displayed the best performance of the “relu”
(37.5%), the “swish” (12.5%) and the “mish” (12.5%) functions (adding results qualified
as “best” and “good”). In contrast, Adam only managed to get a lower performance of
the “relu” (25%) and the “swish” (12.5%) functions (Table 2). In total, 62.5% of the best
performing combinations were achieved by SGD and only 37.5% was obtained with Adam.
This, despite that three of the four best single combinations were obtained with Adam:
Adam–relu (2), Adam–swish (1) and SGD–relu (1) (Table 2).

Table 2. Proportion distribution of each activation function according to the two optimizers in the
three categories: best (first best model), good (second best model) and normal.

Result = BEST
optimizer function

mish relu swish
Adam 0 0.25 0.125
SGD 0 0.125 0

Result = GOOD
optimizer function

mish relu swish
Adam 0 0 0
SGD 0.125 0.25 0.125

Result = NORMAL
optimizer function

mish relu swish
Adam 0.5 0.25 0.375
SGD 0.375 0.125 0.375

The Bayesian networks supported this interpretation and expanded it. The “BIC”
(score = −71.52577), the “loglik” (score = −56.68172), the “bde” (score = −72.85762), the
“bda” (score = −72.85762), and the “bdla” (score = −72.71031) hill-climbing score factors
indicated by a majority of four to one, that the differences among the activation functions
were not that relevant (Figure 4). It was the optimizer that made the difference.
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(B), voted by the “loglik” function.

This analysis of parameter combinations suggests that, although several combinations
must be tried for every dataset, the most parsimonious baseline model should be a combi-
nation of “relu” and SGD. Tuning is mandatory, since the best model obtained in this study
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was the combination of “relu–SGD” (accuracy = 97.9; F1-score = 0.8) and “swish-SGD”
(accuracy = 98.4; F1-score = 0.77) under the ResNet50 architecture.

Regarding the average performance of each architecture using all combinations, the
ranking (based on accuracy) is as follows: ResNet50 (97.4%), VGG16 (95.8%), Jason2 (95.3%),
and Densenet 201 (93.5%) (Figure 5).
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3.2. Phase 2: GAN-Augmented Sampling and Model Testing

The GAN-augmented data yielded slightly lower accuracy rates for the testing sets
than the raw data (Table 3). It produced similar estimates to previous testing using high-
resolution images [1]. In contrast, it also yielded higher balanced accuracy estimates
(Table 3). The greater increase in F1-scores is the most modified outcome. In this case,
the results are highly variable depending on the combination and not a clear strategy is
visible. With “SGD”, “swish” produced better results with some models but not others,
and the same is observed for “Adam” and “relu”. Overall, VGG16 and ResNet50 were the
best models. In contrast, the Jason2 model was less successful and its accuracy stagnated
several points below, ranging from 57.1 to 88.9 (Table 3). It also yielded lower estimates
of balanced accuracy; however, it still outperforms its efficiency when using the non-
augmented dataset, by having improved the balanced accuracy by almost ten points in
some of the combinations [1]. Within each model, the activation function plays a minor
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role in the outcome, and the optimizer seems more relevant, but less so than with the raw
dataset. It is the model architecture that makes a difference.

Table 3. Accuracy loss and F1-score of the models using the augmented dataset, according to
combination of activation function and optimizer.

Activation Function Optimizer Accuracy Loss F1-Score

VGG16 relu SGD 87.02 0.49 0.84
swish SGD 90.82 0.37 0.84
mish SGD 84.6 0.56 0.84
relu Adam 89.18 0.40 0.80

swish Adam 83.41 0.77 0.74
mish Adam 88.2 0.64 0.81

Densenet201 relu SGD 81.73 0.57 0.81
swish SGD 83.04 0.53 0.81
mish SGD 82.37 0.47 0.80
relu Adam 83.26 0.52 0.81

swish Adam 81.03 0.66 0.81
mish Adam 82.37 0.48 0.81

Jason 2 relu SGD 88.99 0.49 0.83
swish SGD 80.29 1.07 0.71
mish SGD 80.5 0.54 0.72
relu Adam 86.5 0.36 0.84

swish Adam 69.1 1.16 0.64
mish Adam 57.1 2.26 0.55

ResNet50 relu SGD 88.17 0.42 0.84
swish SGD 89.96 0.29 0.84
mish SGD 89.06 0.32 0.84
relu Adam 91.18 0.24 0.83

swish Adam 91.29 0.29 0.87
mish Adam 87.28 0.50 0.84

The Bayesian networks supported these interpretations. Several algorithms provide
different insights into the variable relationship network. The “BIC” (score = −217.1542), the
“loglik” (score = −76.27329), the “bde” (score = −202.0743), and the “bdla”
(score = −203.2623) hill-climbing score factors indicated different options. The “loglik”
factor suggests that the model architecture has the major impact on all the other elements
(Figure 6); however, this model has the largest AIC (Akaike information criterion) score.
The “bde” score factor suggests a more complex picture, in which the parameters affect
the model performance. This is more specifically nuanced by the “bdla” factor, which
indicates that although the model architecture has a major impact on the performance of
the activation function and the resulting balanced accuracy, it is the optimizer that has a
major role in model performance (Figure 6). If we select the optimal network, resulting
from the BIC score factor, it can be concluded that all these relationships are of interest, but
in general, the only meaningful relationship is that between the accuracy and its impact
on loss and the F1-score, underscoring that with the GAN-augmented dataset, the activa-
tion function and the optimizer do not create significant differences within each model
architecture performance.

It could be argued, based on these results, that the augmented dataset contributed to
building a more reliable model, because even if the general accuracy did not improve or
became slightly lower, the balanced accuracy was significantly higher.
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4. Discussion

The augmented dataset contained 1657 images, in which the three classes appeared
balanced: 606 tooth marks, 488 cut marks and 563 trampling marks. The original imbal-
anced model, based on a smaller raw data sample, classified correctly 92% of the testing
set [1]; however, its F1-score (0.73) was substantially lower. Split by class, cut marks were
the best classified (F1 = 0.97), followed by tooth marks (F1 = 0.80), but trampling marks
were frequently misclassified (F1 = 0.42), most of the time as tooth marks. This creates
uncertainty as to the power of the classifications because of the imbalanced dataset. The
original number of cut marks in the sample was eight times bigger than the trampling
dataset. Likewise, it was almost five times bigger than the tooth mark subsample. Data
augmentation using the generation of new images is essential to balance each class dataset.
This usually results in higher accuracy in classification and more reliability in classification
probabilities. In the present work, the GAN-augmented sample and models have yielded a
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slightly lower global accuracy than when using just the raw data, but the balanced accuracy
was systematically higher. The swish-Adam combination in the ResNet50 model yielded
the most accurate (91.29%) architecture and the F1.score yielded the highest balanced
accuracy (87%) (Table 3); this latter was significantly higher than when using the raw
data. One biasing feature that we observed in our augmented sample is that the generator
created preferentially trampling images from the original sample which showed the least
resemblance to either cut marks or tooth marks. This created an artificial sample where
these originally minority marks became predominant in the augmented sample; hence the
higher balanced accuracy.

Previously, the VGG16 model was used to preliminarily classify some controversial
bone surface modifications from the archaeological record [1]. These marked bone speci-
mens are of extraordinary importance because they could potentially attest some of the
“first” traces of human butchery in the locations where they were found. These involved
specimens from Bluefish Caves (18,000 B.P., Yukon, Canada), purportedly belonging to the
earliest presence of humans in the American continent [30], Anjohibe (1400–2000 B.C.) [31],
Itampolo (1100–1800 B.P.) [32] and Christmas River (>10,000 B.P.) [33] (Madagascar)—
interpreted as some of the earliest evidence of human presence on the island-, Dikika
(3.2 Ma, Ethiopia)—potentially the first evidence of tone tool use- and Barranco León and
Fuentenueva 3 (1.4 Ma, Orce, Spain)—presented as the oldest cut marks in Europe [34].
In order to assess architecture-model variability, here we used the most successful model
(ResNet50) to tentatively classify some of these marks, bearing in mind that since these
BSM were taken from published photographs not following the protocol applied to the
experimental BSM, the conclusions are of limited value. Instead of using the swish–SGD
combination, which yielded the highest accuracy (98.44%), we used the relu–SGD combina-
tion because its balanced accuracy was higher (80%) and then, less prone to misclassify
classes. We only used a few of the archaeological marks that were interpreted by human
experts as cut marks and that with the VGG16 model had previously been classified as
non-anthropogenic [1]. The resulting classification did not vary from that obtained pre-
viously with the VGG16 model, using higher resolution images (Table 4). However, the
probabilities became smaller (and so did the variance) because we were dealing with lower
information images that also imparted some deformation over the original photographs.

Table 4. Probability of classification of a selection of archaeological BSM images for each BSM type
using the ResNet50 model.

Site Tooth Mark Cut Mark Trampling Mark Classification

Bluefish Caves 0.21 0.302 0.486 trampling
Dik 53-3-D 0.215 0.309 0.474 trampling
Dik 53-3-E 0.19 0.338 0.468 trampling
Dik 53-3-H 0.213 0.295 0.491 trampling
Dik 53-3-I 0.211 0.298 0.495 trampling

FuenteNueva 3 0.481 0.215 0.303 tooth mark
FuenteNueva 3 0.215 0.306 0.477 trampling

5. Conclusions

The present study shows that when using image data augmentation, even if the reso-
lution of the images is substantially reduced (which enhances computation), the accuracy
can be balanced. For BSM, the augmented samples can be biasing if expanding the least
common types of marks only because they are the ones that avoid confusion with the other
categories. The application of the protocols described in the comparison of combinations
of activation functions and optimizers to the artificially-augmented data also shows that
protocols should be taken only as a baseline procedure, since what worked best in the same
architectures with pre-augmented data, does not necessarily work best with augmented
datasets. Although the augmented data enabled that the function/optimizer combination
was virtually irrelevant in the final results, impacting them only in decimal modification, it
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also showed that the best hyper-parameter combination is contingent on the characteristics
of each dataset. This also expands Wolpert’s “no-free lunch” theorem [35] from model
selection to hyper-parameter selection.
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