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Abstract: Capillary barrier (CB) systems consisting of a fine-grained soil layer placed over a coarse-
grained soil layer can generally provide a water-shielding effect, increasing the slope stability of
soil structures during rainfall. In order to improve the water-shielding performance of CB systems,
laboratory model tests have been previously conducted under various conditions; notably, large-scale
model tests are especially required. The inefficiency in increasing the production time of CB models
until now explains their high cost. In this paper, we propose a laboratory small-scale CB (SSCB)
model test for a quick and efficient evaluation of the function of a CB system. In this model test,
differently from previous studies, a side drainage flow in the direction of the inclined sand layer
was set as the no-flow condition; moreover, the laboratory SSCB model tests were performed by
considering three rainfall intensities (i.e., 20, 50, and 100 mm/h) under the lateral no-flow condition.
The results showed that the larger the rainfall intensity, the shorter the diversion length was of
the CB system. To evaluate the effectiveness of the SSCB model test proposed in this study, the
diversion length was estimated by an empirical equation under the lateral flow condition based on
hydraulic conductivity functions and the soil water characteristic curves of sand and gravel and then
compared to the results of the SSCB model tests. It was hence demonstrated that the water-shielding
performance of the CB system can be efficiently evaluated through SSCB model tests under the lateral
no-flow condition, rather than through large-scale model tests.

Keywords: small-scale capillary barrier; lateral no-flow condition; diversion length; water-shielding;
water retention characteristics

1. Introduction

Capillary barrier (CB) systems, consisting of a layer of fine-grained material (e.g.,
silty or sandy soil) over one of coarse soil (e.g., gravel), provides a water-shielding effect,
minimizing rainfall infiltration into the soil structure [1]. One of the advantages of the CB
system is that it is eco-friendly because it generally consists exclusively of natural materials
(e.g., silt, sand, and gravel). This system has been applied as a landfill cover system for
waste disposal sites or as an oxygen barrier to limit the production of acid mine drainage:
it allows a safe discharge of rainwater infiltrated from the surface to the outside [2–8].
Moreover, the CB system has been used as a final capping system after the closure of
nuclear waste facilities [9]. Some researchers have also considered the application of the
CB system for the maintenance of slope stability in soil structures since it can prevent
rainwater infiltration into engineered slopes [10–19]. Meanwhile, many laboratory CB
model tests have been performed to examine and improve the water-shielding performance
of the CB system under the influence of several factors (e.g., material properties and layer
thickness) [15,20–24]. Numerical simulations associated with the design of a physical CB
model have been also carried out under diverse conditions [16,25–27].

For example, Bussière et al. [26] performed laboratory CB model tests using a rect-
angular box (3.0 m long, 1.5 m high, and 1.0 m wide) to evaluate the slope effects on the
hydraulic behavior of a CB. They reported that the slope influenced water distribution in
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the layers. Based on the results of numerical modeling, they also showed that the geometry
of the CB model is one of the key issues to be considered to properly analyze the behavior
of CBs used for controlling water infiltration [9]. Ng et al. [21] proposed a three-layer CB
landfill cover system for minimizing rainfall infiltration in humid climates. To evaluate
the effectiveness of the new system, they used a flume model (3.0 m long, 1.5 m high, and
1.0 m wide). Their experimental and back-analysis results indicated that no water seeped
through the tested three-layer barrier. Zhan et al. [22] performed laboratory CB model
tests to observe the response of a three-layer CB system under a continuous heavy rainfall
of 70 mm/h. Their inclined model box was 2.0 m long, 1.0 m high, and 1.2 m wide. The
authors reported that the three-layer CB system did not allow deep percolation under heavy
rainfall; moreover, the correlation between the physical and numerical modeling results
indicated an anisotropic behavior of the system with respect to hydraulic conductivity in
the unsaturated sand layer. Matsumoto et al. [23] considered the use of a three-layer barrier
for improving the water-shielding performance of the CB system. They hence performed a
series of laboratory CB model tests using a large-scale model box (3.0 m long, 1.5 m high,
and 1.0 m wide). The effect of each layer’s thickness change on the system function was
investigated. It was hence found that the measured results and those estimated through
the empirical equation of Steenhuis et al. [28] (for upper (silica sand No. 6) and middle
(silica sand No. 8) layers with thicknesses of ≥ 50 cm and ≥ 30–50 cm, respectively) were
similar.

In the laboratory CB model tests of those mentioned above, a large-scale model with a
lateral length ≥ 2.0 m was used: in this case, the water infiltration from the upper sand
layer to the lower gravel layer occurred randomly. This large-scale model test requires a lot
of time for its functioning; moreover, its fabrication is expensive, and the corresponding
testing time is high, making it difficult to perform many CB model tests under different con-
ditions. Additional methodologies such as the BoSG (Boolean Stochastic Generation) and
the Monte Carlo technique to characterize the infiltration and geomechanical parameters
by means of random approaches in the numerical modeling for the slope stability may be
needed [29–31]. Thus, in this paper, we propose a laboratory small-scale CB (SSCB) model
test that can quickly and efficiently evaluate the water-shielding performance of a CB sys-
tem. Differently from previous studies, here the SSCB system was characterized by setting
the drainage condition in the flow direction of the inclined sand layer as the lateral no-flow
(i.e., undrained) condition. This testing condition induced a quick infiltration of the water
contained in the sand layer into the gravel layer in the flow direction, while the infiltrated
water was drained from the gravel layer to the outside. Thus, the drainage condition of the
SSCB model test reproduced an extreme condition for the CB system, which would result
from the infiltration of rainfall from the surface layer. It is hence expected that the size of
the CB model tests can be reduced and that their manufacturing time and corresponding
testing time can be shortened. To examine the effectiveness of the proposed SSCB model
test under the lateral no-flow condition of the inclined sand layer, we performed multiple
tests by considering three different rainfall intensities (i.e., 20, 50, and 100 mm/h). Water
retention tests were also carried out to obtain the soil-water characteristic curves of the
sand and gravel used in this study. The diversion lengths that represent the water-shielding
performance of the CB were estimated by the empirical equation of Steenhuis et al. [28]
under the lateral flow (i.e., drained) condition, based on the physical and water retention
characteristics of the sand and gravel. Comparing the results of the SSCB model test with
the values estimated by the empirical equation, we finally discussed the significance and
validity of the laboratory SSCB model test under the lateral no-flow condition.

2. Characteristic of the CB System

In the stratified grounds, where a sand layer can naturally occur over a gravel layer,
infiltrated water tends to be retained and to accumulate in the sand above the contact
interface, due to the different water retention characteristics of the two types of layers
(Figure 1) [1]. The interface between the sand and gravel layers, which acts as a wall
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(preventing the infiltration of water from the sand layer into the gravel layer), can be
identified as a CB. Since the CB is capable of protecting certain areas of the interface below
the sand layer from water infiltration, this type of barrier has been widely used in soil
structures, such as burial mounds and reservoirs. The functioning of CBs is based on a
continuous capillary mechanism, which involves soil layers with different thicknesses.
In Figure 1b, the relatively thin capillary tube at the top (with diameter r) represents
the void formed in the upper layer (made of fine-grained soil), while the relatively thick
capillary tube at the bottom (with diameter 2R) represents the void formed in the lower
layer (made of coarse-grained soil). The water droplets that flow in the unsaturated state
are maintained by the capillary force just above the junction of the thin and thick capillary
tubes [32]. The height (hc) of the water column, which is maintained in an equilibrium
state, can be expressed by the following equation:

hc =
2T
ρwg

(
1
r
− 1

R
) (1)

where r and R are the radiuses of the upper thin and lower thick capillary tubes, respectively,
T (0.074 N/m in water at 15 ◦C) is the surface tension of water, ρw is the density of water,
and g is the acceleration of gravity. Since r is always smaller than R, the larger the difference
in size between the particle diameters of the fine and coarse soils, the more moisture will
be maintained by the fine-grained soil layer containing the upper fine capillary tube.

Appl. Sci. 2021, 11, 5231 3 of 20 
 

interface, due to the different water retention characteristics of the two types of layers 
(Figure 1) [1]. The interface between the sand and gravel layers, which acts as a wall (pre-
venting the infiltration of water from the sand layer into the gravel layer), can be identified 
as a CB. Since the CB is capable of protecting certain areas of the interface below the sand 
layer from water infiltration, this type of barrier has been widely used in soil structures, 
such as burial mounds and reservoirs. The functioning of CBs is based on a continuous 
capillary mechanism, which involves soil layers with different thicknesses. In Figure 1b, 
the relatively thin capillary tube at the top (with diameter r) represents the void formed 
in the upper layer (made of fine-grained soil), while the relatively thick capillary tube at 
the bottom (with diameter 2R) represents the void formed in the lower layer (made of 
coarse-grained soil). The water droplets that flow in the unsaturated state are maintained 
by the capillary force just above the junction of the thin and thick capillary tubes [32]. The 
height (hc) of the water column, which is maintained in an equilibrium state, can be ex-
pressed by the following equation: 

2 1 1( )c
w

Th
g r Rρ

= −  (1) 

where r and R are the radiuses of the upper thin and lower thick capillary tubes, respec-
tively, T (0.074 N/m in water at 15 °C) is the surface tension of water, ρw is the density of 
water, and g is the acceleration of gravity. Since r is always smaller than R, the larger the 
difference in size between the particle diameters of the fine and coarse soils, the more 
moisture will be maintained by the fine-grained soil layer containing the upper fine capil-
lary tube. 

 

 

 

(a) (b) 

Figure 1. Concept of the CB system and capillary tube model: (a) concept of the CB system; (b) 
capillary tube model. 

CB systems systematically used in geotechnical engineering can also be composed of 
a fine soil (i.e., sand) layer over a coarse soil (i.e., gravel) layer, as shown in Figure 1. Since 
natural soils can be used for the creation of CB systems, such systems are eco-friendly. 
The water-shielding performance of a CB system is usually determined by the difference 
in hydraulic conductivity functions and soil-water characteristic curves between the sand 
and the gravel used for its creation [33]. In particular, the difference in the relative water 
retention of soil in the unsaturated condition can be understood by studying the soil-water 
characteristic curve (SWCC) [34]. As explained above, because the water-retaining capac-
ity of sand is relatively larger than that of gravel, water retained in the upper sand layer 
tends to flow along the interface between the sand and gravel layers and to accumulate in 
the bottom part of the sand layer. This generates a funneled flow in an inclined direction 
(Figure 1). However, as the degree of saturation of the sand layer increases due to contin-
uous water infiltration at the top of the interface, the difference in water retention between 

Figure 1. Concept of the CB system and capillary tube model: (a) concept of the CB system; (b) capil-
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CB systems systematically used in geotechnical engineering can also be composed
of a fine soil (i.e., sand) layer over a coarse soil (i.e., gravel) layer, as shown in Figure 1.
Since natural soils can be used for the creation of CB systems, such systems are eco-
friendly. The water-shielding performance of a CB system is usually determined by the
difference in hydraulic conductivity functions and soil-water characteristic curves between
the sand and the gravel used for its creation [33]. In particular, the difference in the
relative water retention of soil in the unsaturated condition can be understood by studying
the soil-water characteristic curve (SWCC) [34]. As explained above, because the water-
retaining capacity of sand is relatively larger than that of gravel, water retained in the
upper sand layer tends to flow along the interface between the sand and gravel layers
and to accumulate in the bottom part of the sand layer. This generates a funneled flow in
an inclined direction (Figure 1). However, as the degree of saturation of the sand layer
increases due to continuous water infiltration at the top of the interface, the difference in
water retention between sand and gravel gradually decreases. Specifically, as the suction of
the sand layer decreases, the unsaturated hydraulic conductivities (kw) of the two samples
become the same [12,35–38]. At this point, water begins to infiltrate the lower gravel
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layer (i.e., the “breakthrough” phase), and the CB system finally loses its water-shielding
performance.

The above processes can be understood as a water retention function of the CB, or
as a water-shielding performance that results in the retention of water in the upper layer
and suppresses water infiltration to the lower layer. For improving the CB’s function, it is
necessary to determine the contrast between coarse particles and fine grains, make sure to
always maintain the soil around the CB in an unsaturated state, and reduce the amount of
water infiltrating from the surface layer [32,39,40]. The horizontal distance from the top
of the slope to the breakthrough point is defined as the diversion length (LD) of the CB
system (i.e., an indicator of its water-shielding performance) (see Figure 1) [41].

When applying the CB system to water-shielding or to the control of infiltrated water,
LD is an important design parameter, which determines the size and structure of the CB
system. The size of LD is related to the slope angle of the interface (as a structural factor),
to the water retention characteristics of sand and gravel (as a material factor), and to the
infiltration rate (as an external factor). Empirical equations for estimating the diversion
length under the lateral flow (i.e., drained) condition and considering these influencing
factors have been proposed by Ross [4], Kung [42], and Steenhuis et al. [28]. Among these,
the equation of Steenhuis et al. [28], based on Kung’s equation, is considered to have a
particularly good accuracy [43,44]. In this study, we compared the relationship between
the estimated and measured LD values. First, the estimated values explained later were
derived using Equation (2) proposed by Steenhuis et al. [28], based on modified Kung’s
equation. It should be noted that in this equation, the layer thickness does not affect the
diversion length:

LD = tan Φ ·
{

1
b
(

1
κ
− 1) +

1
κ
(hae − hex)

}
(2)

where b was derived from the equation of unsaturated hydraulic conductivity and from
the relationship k = ksat·exp(bψm) (with ksat being the saturated hydraulic conductivity and
ψm the suction (h, cmH2O)). Moreover, Φ is the slope of the interface, κ was derived from
the relationship κ = qv/ksat, (with qv being the flux of water entering the soil), hae is the air
entry value (AEV) of sand, and hex is the air expulsion value of gravel.

3. Soil Samples and Water Retention Characteristics
3.1. Soil Samples

The soil samples used for the CB model tests were represented by Toyoura sand (a
standard sand in Japan) and silica sand No. 1 (as gravel material): Figure 2 shows their
respective grain size distribution curves. The two soil samples had particle densities (ρs) of
2.64 and 2.65 g/cm3, mean particle sizes (D50) of 1.69 and 4.65 cm, maximum dry densities
(ρd max) of 1.64 and 1.67 g/cm3, minimum dry densities (ρd min) of 1.37 and 1.45 g/cm3,
uniformity coefficients (Cu) of 1.63 and 2.24, and curvature coefficients (Cc) of 0.97 and
0.84, respectively. In the CB model tests described in Section 4, the relative density (Dr)
of Toyoura sand (used for the sand layer) (ρd = 1.50 g/cm3) was 53.8%, while the relative
density of silica sand No. 1 (used for the gravel layer) (ρd = 1.64 g/cm3) was 53.8%. Under
the same conditions as the dry densities of Toyoura sand and silica sand No. 1, the saturated
hydraulic conductivities (ksat) of the two soil samples based on ASTM D2434-68 [45] were
obtained as 1.45 × 10−4 m/s and 2.44 × 10−3 m/s, respectively. The physical properties
and hydraulic conductivities of two soil samples are listed in Table 1.
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Table 1. Physical properties and hydraulic conductivities of the soil samples.

Sample Toyoura Sand Silica Sand No. 1

Soil particle density, ρs (g/cm3) 2.64 2.65
Mean particle size, D50 (cm) 1.69 4.65

Maximum dry density, ρd max (g/cm3) 1.64 1.67
Minimum dry density, ρd min (g/cm3) 1.37 1.45

Uniformity coefficient, Cu 1.63 2.24
Curvature coefficient, Cc 0.97 0.84

Relative density, Dr (%) in the CB model test 53.8 87.9
Saturated hydraulic conductivity, ksat (m/s) 1.45 × 10−4 2.44 × 10−3

3.2. Water Retention Characteristics

The water retention characteristics of soils can be understood based on their respective
SWCCs, representing the relationship between soil water and matric suction. In order to
obtain the SWCCs of Toyoura sand and silica sand No. 1, we performed water retention
tests through the continuous pressurization method [46]. Cylindrical specimens of 50 mm
in diameter and 50 mm in height, with dry densities of 1.50 g/cm3 and 1.64 g/cm3, were
used for these tests. The correspondent results were fitted by Equation (3) [34]. Figure 3a
shows the fitted SWCCs resulting from the drying path of Toyoura sand and the wetting
path of silica sand No. 1, related to the CB system. Specifically, in the CB system, since water
infiltrates from the sand layer to the gravel layer below, the water retention characteristics
of the sand and gravel layers correspond to the drying path where water is drained and the
wetting path where water permeates, respectively. The fitting parameters of the SWCCs
are summarized in Table 2. An AEV of 2.30 kPa and an air expulsion value of 0.05 kPa
were derived for Toyoura sand and silica sand No. 1, respectively. By comparing the
SWCCs of the two soils, it was observed that there is a difference in the suction value for
the volumetric water content between Toyoura sand and silica sand No. 1. As previously
mentioned for the CB system, these different suction values indicate that the soils have
distinct water retention capacities (of the water that infiltrates the sand layer) [12,16,41,47].

θ = C(ψ)
{

θs

ln[e + (ψ/a)n]

}m
(3)

where ψ is the total soil suction, e is the natural logarithmic constant (2.71828), a is a soil
parameter related to the AEV of the soil (kPa), n a soil parameter that controls the slope
at the inflection point along the soil–water retention curve, m a soil parameter related to
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the residual water content of the soil, and C(ψ) is the correction function that forces the
soil–water retention curve through a suction of 1,000,000 kPa and zero water content. The
correction function is given as follows:

C(ψ ) =

[
1− ln(1 + ψ/ψr)

ln(1 + 106/ψr)

]
(4)

where ψr is the suction value corresponding to the residual water content.
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Table 2. Fitting parameters for the SWCCs.

Soil Sample θs AEV EX a n m

Toyoura sand 0.432 2.45 - 2.80 10.02 0.75
Silica sand No. 1 0.389 - 0.05 0.39 0.015 0.07

Note: AEV is the air entry value (kPa), EX is the air expulsion value, and θs is the saturated volumetric water
content.

Since the water-shielding performance of the CB system is affected by the difference
in hydraulic conductivity functions and soil-water characteristic curves between sand and
gravel, it is very important to grasp the hydraulic conductivities (kw) of the two samples.
The relative hydraulic conductivities (kr) of the Toyoura sand and silica sand No. 1 under
the unsaturated condition in this study were estimated based on Equation (5) proposed by
Fredlund et al. [48]. Here, Equation (5) for the relative hydraulic conductivity function was
proposed by the combining Equation (3) with the statistical pore size distribution model of
Childs and Collis-George [49]. Thus, the unsaturated hydraulic conductivities (kw) of two
samples were derived from the relationship between the saturated hydraulic conductivity
(ksat) and the relative hydraulic conductivity function (kr). Figure 3b shows the results
of the hydraulic conductivities of Toyoura sand and silica No. 1. It was found that the
hydraulic conductivity of Toyoura sand is larger for the suction value of about 0.07 kPa or
more, which is the intersection of the two results. This difference can also be understood in
relation to the CB system’s capability of retaining infiltrated water.

kr = Θq(ψ)

∫ b
ln(ψ)

θ(ey)−θ(ψ)
ey θ′(ey)dy∫ b

ln(ψaev)
θ(ey)−θs

ey θ′(ey)dy
(5)

kw = kr · ksat (6)
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where kr is the relative hydraulic conductivity, ksat is the saturated hydraulic conductivity,
Θq(ψ) is a correction factor (1.0), b is a constant of ln(106), θ′ is the derivative of Equation (4),
y is a dummy variable of integration representing suction, ψaev is the AEV of the soil, and
θs is the saturated volumetric water content.

4. Laboratory SSCB Model Test under the Lateral No-Flow Condition

In this section, we describe a series of laboratory SSCB model tests, in which Toyoura
sand and silica sand No. 1 were subjected to multiple rainfall intensities. In previous studies,
large-scale CB model tests were carried out under the lateral no-flow condition. However,
to efficiently evaluate the fluid diversion capacity of the CB system while reducing the test
time and the cost of the SSCB model test, we investigated the infiltration behavior and
the diversion length through an SSCB model test under the lateral no-flow condition. The
diversion lengths obtained in this study were then compared with those estimated by an
empirical equation under the lateral flow condition.

4.1. Apparatus and Conditions of the SSCB Model Test

The apparatus used for the CB model test included a water supply tank, a rainfall
apparatus, and a soil tank (Figure 4a). The inside of the soil tank was 45.5 cm long,
47.0 cm high, and 15.0 cm wide; moreover, the thickness of the acrylic material was 20 mm.
Figure 4b shows the rainfall apparatus, which was 500 mm long, 45 mm high, and 200 mm
wide; furthermore, the thickness of the acrylic material was 5 mm. To properly reproduce
the rainfall phenomenon, 161 needles were installed at 20 mm intervals (7 needles per row,
over a total of 24 rows) in the lower part of the rainfall device. The sand and gravel layers
were 20.0 cm and 17.5 cm high, respectively (Figure 4c); moreover, their initial dry densities
(ρdi) were 1.50 g/cm3 and 1.64 g/cm3, respectively. Differently from past studies conducted
under the lateral flow condition, we installed some material (i.e., tarpaulin) to prevent
drainage on the right side of the flow direction in the sand layer (Figure 4c). To ensure the
drainage of water that infiltrated from the sand layer to the gravel layer, the right side of the
gravel layer was set as a drainage condition. Thus, the experimental condition in the SSCB
model test reproduces the extreme condition under which breakthrough forcibly occurs in
the CB system as shown in Figure 1a, and which derives from the infiltration of rainfall
from the sand layer. In other words, through the proposed SSCB model test, we expected
to be able to quickly examine the performance of the CB system based on differences in
water retention between the sand and gravel layers under certain experimental conditions.
The diversion length measured in the SSCB model test is limited to the length of the soil
tank, and the diversion length considered for the real CB system based on the results of the
SSCB model test is discussed in detail in a later chapter.

Four holes were created in the apparatus of the SSCB model test for installing the soil
moisture sensor, allowing the measurement of the volumetric water content 50 mm above
and below the interface between the sand and gravel layers. Moreover, the water level
in the water supply tank was kept constant, and the water used to reproduce different
rainfall intensity (I) conditions was supplied by controlling a valve located between the
rainfall apparatus and the water tank. The rainfall intensity conditions were the following:
20 mm/h (Case 1), 50 mm/h (Case 2), and 100 mm/h (Case 3). Notably, the slope angle
of the soil tank was 10◦. Four soil moisture sensors (EC-5, Decagon Devices Co.) were
installed inside the soil tank to measure the variations in volumetric water content due to
water infiltration. These sensors were able to measure soil moisture (i.e., volumetric water
content) levels between 0 and 100%, and their precision was ±3.0% in the case of sandy
soil. The performance of the CB system was hence evaluated by setting the duration of
rainfall to 6 h under extreme conditions. Although the rainfall for 6 h in this study was
applied as an extreme condition for evaluating the water-shielding performance of the
CB system, further studies on the CB system applying rainfall patterns in specific regions
would also be needed. After 6 h of rainfall with intensity I = 20 mm/h, the amount of
drainage water was expected to reach a sufficiently steady condition, which was confirmed
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through a preliminary model test. The conditions of the laboratory SSCB model test under
the lateral no-flow condition are summarized in Table 3.
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Table 3. Conditions of the SSCB model test.

Case No. Case 1 Case 2 Case 3

Sand layer
Initial dry density, ρdi (g/cm3) 1.50 1.50 1.50
Initial water content, wi (%) 0.64 1.11 0.33
Initial volumetric water content, θi 0.01 0.02 0.01

Gravel layer
Initial dry density, ρdi (g/cm3) 1.64 1.64 1.64
Initial water content, wi (%) 0.87 1.19 1.30
Initial volumetric water content, θi 0.01 0.02 0.02

Drainage material:
nonwoven fabric

Material (Fiber cross-section:
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4.2. Production of the SSCB Model

The production process of the laboratory SSCB model is described below.
(1) The gravel layer composed of silica sand No. 1 was prepared in three steps. The

first gravel layer, at the bottom of the soil tank, was prepared by maintaining a dry density
of ρd = 1.64 g/cm3. Based on the baselines dividing it into 3 equal parts on the acrylic
surface of the soil tank, the first gravel layer was prepared by the compaction method.
(Figure 5a). (2) After the second gravel layer was prepared, the EC-5 sensors No. 3 and
No. 4 were installed on its upper surface (Figure 5b). (3) After the third gravel layer was
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prepared, a drainage material with high water permeability was installed on its upper
surface. Since the sand is smaller than the gravel, this drainage material prevents the sand
(under dry conditions) from entering the gravel layer below (Figure 5c). The study by
Kobayashi et al. [50] was reported that the diversion lengths obtained from the CB model
tests were the same as each other regardless of the installation of drainage material (i.e.,
nonwoven fabric). The same drainage material was used in this study, and its specification
is shown in Table 3. Thus, it can be said that the drainage material does not affect the
water-shielding performance of the CB system in the SSCB model test. (4) The sand layer
composed of Toyoura sand was prepared in three steps, similarly to the gravel layer, by
maintaining a dry density of ρd = 1.64 g/cm3; then, the EC-5 sensors No. 1 and No. 2 were
installed on the upper surface of the first sand layer (Figure 5d). (5) The drainage material
was installed on the upper surface of the sand layer to prevent its erosion by rainfall
during the SSCB model test. This drainage material was the same as the one installed at
the interface between the gravel and sand layers (Figure 5f). It should be noted that the
installation of the drainage material on the surface of the gravel layer is only a temporary
measure to prevent the erosion by rainfall during the CB model test, and the drainage
material is not installed on the surface of the real CB slope.
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No. 2; (e) installation of the second sand layer; (f) after the sand layer was completed, the drainage material was laid on it.

4.3. Preparation for the SSCB Model Test

First, the water tank was filled with water to a certain level; subsequently, as the
water level lowered, new water was automatically supplied by the water level maintenance
system. Regarding the rainfall apparatus, it was filled with water to ensure constant rainfall
production and the constant filling of the tube connecting it to the water tank. Water fell
from the rainfall system due to its own pressure, which derived from the height difference
between the water tank and the rainfall apparatus. The rainfall intensity was adjusted
by using a valve installed between the tubes. Before the experiment, we determined
the conditions of the valve suitable for rainfall intensities of 20, 50, and 100 mm/h. As
explained in Figure 4b, since the rainfall was reproduced by needles installed at intervals
of 2.0 cm, it was applied to uniformly permeate rainfall over an average area of 4.0 cm2. To
consider only the effect of the rainfall infiltration on the ground surface in the SSCB model
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test, since the kinetic energy by water droplets from the rainfall apparatus to the surface of
a sandy layer was neglected because it was very small. Then, the soil tank containing the
sand and gravel layers was inclined to an angle of 10◦ to ensure the falling of rainfall on the
sand layer. The variations in soil moisture were measured every 5 min for 6 h (the duration
of the model test); furthermore, during the model test, the amount of water expelled from
the soil tank was measured every hour and adjusted to keep each tested rainfall intensity
constant over the experimental period.

4.4. Infiltration Behavior in the SSCB Model Test
4.4.1. Result for Case 1

Figure 6 shows the results of the volumetric water contents (θ) measured by the EC-5
sensors for each case. It was observed that the measured values of sensors No. 3 and No.
4 after the breakthrough commonly increased up to 6 h. This tendency corresponds to a
change according to the contact area with the sensor in the water infiltration paths. Thus,
the infiltration path after 6 h in this study was also investigated, and the occurrence of an
additional water infiltration path was not confirmed. After 6 h, since the amount of water
drained from the soil tank was in a steady state compared to the precipitation, we decided
to conclude the model test. It should be also noted that there was no surface runoff or
predominant lateral runoff for each case in this study.
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Figure 6. Measured volumetric water contents (θ) for each case: (a) Case 1 (I = 20 mm/h); (b) Case 2 (I = 50 mm/h); (c) Case
3 (I = 100 mm/h).

The model test for Case 1 was performed under a rainfall intensity of 20 mm/h over
6 h (Table 3). Figure 6a shows the volumetric water contents (θ) measured by the EC-5
sensors for the model test of Case 1: the response times of the four EC-5 sensors were
visibly different. In fact, at t = 75 min, sensor No. 1 (installed in the sand layer) showed the
fastest response, indicating a rapid increase in the volumetric water content. Meanwhile,
sensor No. 2 reported a rapid increase in the volumetric water content 10 min later than
sensor No. 1; after which the volumetric water content appeared to quickly reach the
saturated condition (as in the case of sensor No. 1). These results indicate that, in Case 1,
the sand layer became saturated after 180 min. Notably, sensor No. 3 (installed in the gravel
layer) did not show any response during the test. Finally, sensor No. 4 showed a gradual
increase in the volumetric water content after 210 min, demonstrating the occurrence of a
breakthrough at that time.

Figure 7 shows the occurrence of rainfall infiltration in Case 1 as a function of time. The
infiltration of rainfall to the midpoint of the sand layer was observed after 60 min from the
beginning of the test (dry state) (Figure 7a,b). After 200 min, the entire sand layer became
saturated (Figure 7c). This trend was observed in terms of variations in the volumetric
water content by sensors No. 1 and No. 2 (Figure 6a). Meanwhile, a breakthrough was
clearly observed in Case 1 after 210 min (Figure 7d). After 360 min (6 h), sensor No. 4
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indicated an increase in the volumetric water content due to rainfall infiltration; however,
sensor No. 3 did not measure any increase, since it was located at a distance from the
location of the breakthrough event (Figure 7e). Notably, after t = 360 min, the observations
of all sensors agreed well with each other (Figure 6a).
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4.4.2. Result for Case 2

The model test for Case 2 was performed under a rainfall intensity of 50 mm/h over
6 h (Table 3). As in Case 1, the amount of water that drained from the soil tank after 6 h
was found in a steady state; hence, we concluded the model test at that time. Figure 6b
shows the volumetric water contents (θ) measured by the EC-5 sensors for the model test
of Case 2. Notably, the response times of sensors No. 1 and No. 2 in the sand layer under
I = 20 mm/h were different from those measured in Case 1 (Figure 6b). In particular, sensor
No. 1 started to respond 50 min after the start of the test and indicated a rapid increase in
the volumetric water content within a short time after that. Meanwhile, sensor No. 2 started
to respond 20 min earlier than sensor No. 1 (30 min after the start of the test), indicating a
rapid increase in the volumetric water content until 60 min, when the saturation state was
reached. The reason why sensor No. 1 reacted before sensor No. 2 in Case 1 could be that
lower rainfall intensity (I) causes a predominantly vertical infiltration, and thus the increase
in the volumetric water content was first detected by sensor No. 1. However, in Case 2
with higher rainfall intensity (I) at the upper boundary, it can be understood that the lateral
no-flow boundary condition could cause the accumulation of water in the right corner of
the model, and thus the increase in the volumetric water content was first detected at sensor
No. 2 location. Since the results of both of these sensors showed high volumetric water
contents at 85 min, we infer that the saturation of the sand layer in Case 2 was completed
after that time. Moreover, sensors No. 3 and No. 4 in the gravel layer showed an increase in
the volumetric water content at 85 min: a breakthrough should have occurred in Case 2 at
that time. In Case 2, under a rainfall intensity of 20 mm/h, the saturation of the sand layer
and the breakthrough occurred 95 min and 125 min, respectively, before those in Case 3.
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4.4.3. Result for Case 3

The model test for Case 3 was performed under a rainfall intensity of 100 mm over 6 h
(Table 3). As in Case 1 and Case 2, the amount of water that drained from the soil tank was
found to be in a steady state after 6 h; hence, we decided to conclude the model test at that
time. Figure 6c shows the volumetric water contents (θ) measured by the EC-5 sensors for
the model test of Case 3: notably, the response times of sensors No. 1 and No. 2 in the sand
layer were shorter in Case 3 than in Case 1 and Case 2 (Figure 6c). In fact, sensor No. 1
(installed in the sand layer) responded after 20 min, indicating a constant, high volumetric
water content after 45 min. Sensor No. 2 responded 10 min earlier than sensor No. 1; in
addition, in this case, a constant volumetric water content was measured after 45 min.
Thus, we infer that the saturation of the sand layer in Case 3 was completed after 45 min.
Meanwhile, sensors No. 3 and No. 4 in the gravel layer both showed an increase in the
volumetric water content at 45 min, suggesting the occurrence of breakthrough at that time.
The saturation and breakthrough of the sand layer in Case 3 occurred 160 and 165 min
prior to those Case 1, respectively. Moreover, compared to Case 2, the saturation of the
sand layer and the breakthrough in the same layer in Case 3 occurred both 40 min earlier
than in Case 2. Overall, the results of the SSCB model tests for Case 1, Case 2, and Case 3
under I = 20, 50, and 100 mm/h, suggest that the rainfall intensity was very closely related
to the time needed for reaching the saturation of the sand layer, as well as to the time of
breakthrough occurring in the CB system. As summarized in Table 4, the two series of time
data just mentioned are proportionally related to the rainfall intensity.

Table 4. Measurement results for each case.

No. I (mm/h) Time to Reach the Saturation
State of the Sand Layer

Time of Breakthrough
Occurrence

Case 1 20 180 min 210 min
Case 2 50 85 min 85 min
Case 3 100 45 min 45 min

4.4.4. Measurement Results of the Diversion Lengths in the SSCB Model Test

Figure 8a shows a sample situation in which a breakthrough occurred under the lateral
no-flow condition. Here, the area comprised between A and B corresponds to the size
of the model used for the laboratory model test. The breakthrough point was not easy
to identify, because water infiltration from the interface between the sand and the gravel
layers did not occur regularly over time. In addition, to determine the pattern of rainfall
infiltration according to the sensor responses, we defined two types of diversion lengths
in the SSCB model test (Figure 8a). One of them is the distance, LUD1 (i.e., the undrained
diversion length), which was measured at the position of breakthrough occurrence from
base-line 2 (at the interface between the sand and gravel layers). After the completion of
the model test (at t = 360 min) (Figure 7e), the LUD1 values for each case were determined
based on the infiltration of water from the front and back sides of the model under steady
conditions. The LUD1 for Case 1, Case 2, and Case 3 were 13.5 cm, 11.7 cm, and 0 cm,
respectively. Notably, the horizontal length of LUD1 was calculated by considering the
10◦ slope angle. The other type of diversion length considered here was the distance from
baseline 2 to the occurrence point of the finger flow (LUD2) at the height of the soil moisture
sensors (No. 3 and No. 4) installed in the gravel layer. After the completion of the model
test, the sand and gravel layers were carefully dismantled up to the location of sensors
installed in the gravel layer; then, the lengths of D1 and D2 were measured as shown in
Figure 8b. Here, the lengths of D1 and D2 correspond to the dry and wet areas, respectively.
The D1 values obtained for Case 1, Case 2, and Case 3 were 25.2 cm, 11.3 cm, and 0 cm,
respectively (Figure 9). Notably, although some dry areas were detected at 7.8 cm in Case 3
(Figure 9c), the correspondent D1 value was determined as 0, since the left side of the
soil tank was partially wet. The LUD2 values were calculated using the following formula:
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LUD2 = D1·cosΦ, where Φ is the slope angle and those for Case 1, Case 2, and Case 3 were
24.8 cm, 11.2 cm, and 0 cm, respectively. The LUD1 and LUD2 values are all shown in Table 5.
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Table 5. Measured and estimated values of diversion length, LD.

Case No. Case 1 Case 2 Case 3

Rainfall intensity, I (mm/h) 20 50 100

Lateral nonflow
condition

Measured LUD1 (cm) 13.5 11.7 0
Measured LUD2 (cm) 24.8 11.2 0

Lateral flow condition Estimated LD (cm) by
Equation (2) 145.5 56.8 27.7

∆L1 (cm) 31.3 33.1 44.8
∆L2 (cm) 20.0 33.6 44.8

Effective diversion length, LED1 (cm) 114.2 23.7 −17.1
Effective diversion length, LED2 (cm) 125.5 23.1 −17.1

By comparing these results, we found that the larger the rainfall intensity, the larger
the diversion length values were under the lateral no-flow condition. Notably, the highest
diversion length values were found for Case 1, under I = 20 mm/h. In Case 2, under
I = 50 mm/h, the LUD1 and LUD2 values were 13.3% and 54.8% lower than in Case 1. In
Case 3, under extremely high rainfall intensity (I = 100 mm/h), our CB system collapsed.
Since rainfall intensity has the greatest influence on the diversion lengths of the CB system,
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when designing such systems, it is fundamental to verify the maximum allowable value of
rainfall intensity.

4.5. Diversion Length on the SSCB Model Test

The existing diversion length (LD) under the lateral flow (drained) condition was
derived, like in past studies, by using Equation (2) of Steenhuis et al. [28]. Each parameter
related to Equation (2) was determined as follows. First, b was derived from the equation
of the unsaturated hydraulic conductivity: the unsaturated permeability coefficient (kw)
of sand was approximated by applying the exponential function of the negative pressure
head (h), as shown in Equations (7) and (8). In particular, since the seepage (i.e., the
breakthrough) into the gravel layer from the sandy layer in the CB system occurs when
the sand layer is close to saturation, the value of b for this condition in this study was
applied. Thus, the value of b in this study was determined from the relationship of the
instantaneous change in the permeability coefficient for increased suction from the AEV
point. Based on the exponential approximation of the relationship between the unsaturated
permeability coefficient and the negative pressure head for Toyoura sand (Figure 10), the
value of b was estimated as 0.13.

kw = ksat h < hae (7)

kw = ksat exp[−b(h− hae)] h > hae (8)
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Notably, the saturation permeability coefficient of Toyoura sand (ksat) was 1.45 ×
10−2 cm/s, its slope angle (Φ) 10◦, and its AEV (hae) 24.5 cm; moreover, the air expulsion
value of silica sand No. 1 (haex) was 0.5 cm. For each case, we applied the following the
κ values (= qv/ksat) and rainfall intensities: Case 1: qv = 20 mm/h → κ = 0.038, Case 2:
qv = 50 mm/h→ κ = 0.096, and Case 3: qv = 100 mm/h→ κ = 0.19. All the determined
parameters (shown in Table 6) were substituted into Equation (2) for each case, deriving
the following diversion lengths (LD) under the lateral flow (drained) condition: 145.5 cm
(Case 1), 56.8 cm (Case 2), and 27.7 cm (Case 3). As such, the diversion length estimated by
Equation (2) can be understood as the maximum theoretical water-shielding capability of
the CB system. As explained earlier, it can be seen that the length of the diversion length is
significantly affected by the rainfall intensity.
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Table 6. Input parameters and results of the diversion length estimation done by applying Equation (2).

qv (mm/h) ksat (cm/s) κ b Φ (◦) hae (cm) haex (cm) LD (cm)

20
1.45 × 10−2

0.038
0.13 10 24.5 0.5

145.5
50 0.096 56.8
100 0.192 27.7

Meanwhile, the lengths of ∆L1 and ∆L2 were used to identify the wet areas of the
gravel layer that formed due to breakthrough (Figure 8a). By considering ∆L1 = Lst −
LUD1 and ∆L2 = Lst − LUD2, the following values were derived for ∆L1 and ∆L2: 31.3 and
20.0 cm (Case 1), 33.1 and 33.6 cm (Case 2), and 44.8 and 44.8 cm (Case 3), respectively. We
indicated with Lst the horizontal length of the soil tank when considering the slope angle
(i.e., Lst = 45.5 × cosΦ, in cm). The effective diversion lengths (LED1 and LED2) became
smaller under the lateral no-flow condition: LED1 = LD − ∆L1 and LED2 = LD − ∆L2
(Figure 8a). LED1 represented the diversion length in the SSCB model test after it reached
the level of the interface between the sand and gravel layers, while LED2 represented the
diversion length in the CB model test after it reached the sensor installation level in the
gravel layer. We obtained the following values for LED1 and LED2: 114.2 and 125.5 cm
(Case 1), 23.7 and 23.1 cm (Case 2), and −17.1 and −17.1 cm (Case 1), respectively. Here,
negative values of LED1 and LED2 (e.g., −17.1 and −17.1 cm for Case 3) indicated that the
diversion length could not be formed under extreme rainfall (I = 100 mm/h), which means
there is no water-shielding performance of the CB system. The results described above are
summarized in Table 5.

Figure 11 compares the diversion lengths (LD) estimated by Equation (2) and the LED1
and LED2 values obtained from the SSCB model test under the lateral no-flow condition
in the sand layer. The resulting effective diversion lengths (i.e., LED1 and LED2) in the
CB system were 21.5% and 13.8% lower in Case 1 and 58.3% and 59.2% lower in Case 2,
respectively, than the LD values estimated by Equation (2). In Case 3, under I = 100 mm/h,
although the occurrence of a diversion length (LD = 27.7 cm) was predicted by the empirical
formula, no diversion length could be observed during the SSCB model test under the
lateral no-flow condition. Our results indicate that the water-shielding performance of
the CB system can be efficiently evaluated through the SSCB model test under the lateral
no-flow condition, rather than through large-scale model tests. The size of the SSCB model
can be appropriately adjusted based on the rainfall conditions or the soils used. It was
concluded that the application of the results of the SSCB model test in the slope design of
soil structures based on the CB system would be helpful for improving slope stability.
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5. Summaries and Conclusions

In this study, the laboratory SSCB model tests were performed to efficiently evaluate
the water-shielding performance of the CB system. Unlike in previous studies, our SSCB
system was characterized by setting the drainage condition in the flow direction of the
inclined sand layer as the lateral no-flow condition. Through the laboratory SSCB model
tests, we tested three different rainfall intensities (i.e., 20, 50, 100 mm/h). To evaluate
the effectiveness of the SSCB model test, the diversion lengths were estimated by the
empirical equation for the lateral flow condition based on the physical and water retention
characteristics of sand and gravel; then, these diversion lengths were compared to the
results of the SSCB model test. The conclusions derived from the results of this study are
summarized below.

• The inside of the SSCB model proposed in this study was 45.5 cm long, 47.0 cm high,
and 15.0 cm wide. Notably, the amount of drainage water under the lowest tested
rainfall intensity (I = 20 mm/h) reached a steady state within 6 h. We can hence infer
that the production work and the testing results of the SSCB model were better when
the testing time was relatively short. Moreover, since this model was smaller than the
large-scale models described in previous works, it was expected that its production
work and testing would have a lower cost.

• The following rainfall intensities were achieved during the SSCB model tests: 20 mm/h
(Case 1), 50 mm/h (Case 2), and 100 mm/h (Case 3). The time required by the sand
layer to reach the saturation state in each of the above cases was 180 min, 85 min,
and 45 min, respectively; moreover, breakthroughs occurred at 210 min, 85 min, and
45 min, respectively. Thus, the rainfall intensity was very closely related both to
the time required by the sand layer to reach the saturation state and to the time of
breakthrough occurrence in the CB system.

• The diversion lengths in the SSCB model test of this study were measured based on
two criteria (i.e., LUD1: at the interface between the sand and the gravel layers, and
LUD2: the occurrence point of the finger flow at the height of the soil moisture sensors
(No. 3 and No. 4) installed in the gravel layer), because water infiltration occurred
irregularly from the interface between the sand and the gravel layers. The LUD1 values
obtained for Case 1, Case 2, and Case 3 were 13.5 cm, 11.7 cm, and 0 cm, respectively;
meanwhile, the LUD2 values were 24.8 cm, 11.2 cm, and 0 cm, respectively. These
results indicate that LUD1 and LUD2 were 13.3% and 54.8% lower, respectively, in Case
2 (I = 50 mm/h) than those in Case 1 (I = 20 mm/h). Finally, in Case 3, under the
extreme rainfall intensity of 100 mm/h, our CB system collapsed.

• The diversion lengths (LD) under the lateral flow condition were estimated by the em-
pirical equation of Steenhuis et al. [28] based on the hydraulic conductivity functions
and soil-water characteristic curves of the sand and gravel. In Case 1, Case 2, and
Case 3, they were 145.5 cm, 56.8 cm, and 27.7 cm, respectively. However, considering
that the lengths of ∆L1 and ∆L2 would be reduced by the occurrence of breakthroughs
in the SSCB model test, the effective diversion lengths (i.e., LED1 and LED2) for the real
CB system were derived. The LED1 and LED2 values in Case 1, Case 2, and Case 3 were
114.2 and 125.5 cm, 23.7 and 23.1 cm, and −17.1 and −17.1 cm, respectively. Here,
negative LED1 and LED2 values (i.e., −17.1 cm and −17.1 cm in Case 3) indicated that
there is no water-shielding performance of the CB system under extreme rainfall (i.e.,
I = 100 mm/h).

• The diversion lengths in the CB system were compared: LD (estimated by the empirical
equation) and LED1 and LED2 (estimated based on the SSCB model test). The results
indicated that LED1 and LED2 were lower than the correspondent LD values, and that
their reduction reflected the differences in rainfall intensity between one case and
the other: the LED1 and LED2 values were 21.5% and 13.8% (Case 1), or 58.3% and
59.2% (Case 2) lower, respectively, than the correspondent LD values. Thus, when
the effective diversion lengths based on the SSCB model test are applied to the real
CB system design, it is expected that since the reduced water-shielding performance
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of the CB system is taken into account, and the stability of the CB slope will be
further improved. In addition, since the LED1 and LED2 values have a slight difference,
applying the average of the two values to the CB system design may be a reasonable
suggestion.

Based on the above results, we infer that the water-shielding performance of the CB
system can be efficiently evaluated by conducting the proposed SSCB model tests under
the lateral no-flow condition, rather than through large-scale model tests. Furthermore, the
application of the results of the SSCB model test to the slope design of soil structures based
on the CB system would be helpful for improving slope stability.
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