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Abstract: With the development of distribution networks, large amounts of distribution terminal units
(DTU) are gradually integrated into the power system. However, limited numbers of maintenance
engineers can hardly cope with the pressure brought about by the substantial increase of DTU
devices. As DTU fault would pose a threat to the stable and safe operation of power systems; thus, it
is rather significant to reduce the fault incidence of DTU devices and improve the efficiency of fault
elimination. In this paper, a DTU fault analysis method using an association rule mining algorithm
was proposed. Key factors of DTU fault were analyzed at first. Then, the main concept of the Eclat
algorithm was illustrated, and its performance was compared with FP-growth and Apriori algorithms
using DTU fault databases of different sizes. Afterwards, a DTU fault analysis method based on the
Eclat algorithm was proposed. The practicality of this method was proven by experiment using a
realistic DTU fault database. Finally, the application of this method was presented to demonstrate
its effectiveness.

Keywords: association rule mining; distribution terminal unit; Eclat algorithm; fault analysis

1. Introduction

The distribution terminal unit (DTU) collects real-time operation data of distribution
networks and uploads them to the distribution automation system (DAS) or the supervisory
control and data acquisition (SCADA) system. With DTU devices, DAS/SCADA can
monitor the operating state of distribution networks and control secondary-side devices
remotely, which shortens fault elimination time and reduces the maintenance cost to
some extent. Nevertheless, with the development of distribution networks, large-scale
integration of DTU also imposes pressure on maintenance work. DTU faults happen
frequently while the number of maintenance workers is limited [1–5]. Moreover, DTU
faults may lead to device failure, which would have severe impacts on the distribution
network. Therefore, lowering fault incidence and the enhancing fault elimination ability
are vital for guaranteeing the safe and stable operation of distribution networks and power
systems. During DTU operation, significant fault data is generated and recorded which,
however, is not fully utilized.

Data mining techniques are effective approaches for analyzing the fault of devices
in power systems. The studied methods are mainly based on expert systems [6–8], state
estimation (e.g., the hierarchical clustering method [9], state evaluation [10,11], and an-
alytical hierarchy process [12–15]), machine learning (e.g., neural networks [16–19] and
SVM [20–23]), and association rule mining algorithms [24–30]. Methods based on expert
systems and state estimation involve evaluating devices based on human experience, which
is relatively subjective. Machine learning methods and association rule mining algorithms
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analyze faults based on realistic operation data of devices. Therefore, they are more objec-
tive compared to the former two methods. Machine learning methods are innovative and
effective in detecting and identifying faults. However, they usually require large amounts
of high-quality data to achieve good performance. Compared with machine learning, meth-
ods based on association rule mining algorithms are not strictly restricted to the amount
of data. Many methods based on association rule mining algorithms are designed for
power transformers [24–26,29,30]. They are used to find relationships between transformer
faults and operation data such as the gas component, voltage, and current. However, these
methods are not feasible for DTU because it possesses a specific configuration that is com-
pletely different from the transformer. Studies have also utilized association rule mining
algorithms to find possible factors that lead to faults of the distribution system [27] and
secondary-side devices [28]. These approaches are relatively general rather than specific.
Very few studies have analyzed the fault of DTU devices in a comprehensive and objective
way. However, large-scale integration of DTU devices makes the investigation of DTU
fault analysis necessary and urgent.

In order to improve the maintenance efficiency and facilitate the integration of DTU
devices, a DTU fault analysis method based on an association rule mining algorithm was
proposed. Firstly, the physical configuration of DTU was constructed, and factors leading
to DTU fault and fault types were analyzed. Then, three different association rule mining
algorithms were evaluated using DTU fault data; the Eclat algorithm, which has the best
performance, was selected for this purpose. Afterwards, the DTU fault analysis method
was put forward and applied to realistic DTU fault databases. Finally, application examples
of this method were illustrated and recommendations for future work were suggested. The
unique contributions of this paper are as follows:

1. This paper studied different aspects of DTU faults (i.e., factors which lead to faults,
different fault types, and fault modules of devices); the proposed method can realize
fault cause analysis and fault diagnosis, which analyzes DTU faults in a comprehen-
sive way.

2. The proposed data-driven fault analysis method only relied on operation data of DTU
devices instead of human experience. Thus, it was objective rather than subjective.

3. The fault analysis method was oriented towards DTU devices, which is more specific
than other general methods for the whole system. To the best of our knowledge, this
was the first method that investigated the fault of DTU devices.

4. A series of simulations and applications demonstrated that the proposed method can
effectively reduce DTU fault incidence and shorten fault elimination time.

The rest of this paper is organized as follows. Section 2 discusses the fault analysis
of DTU devices. Section 3 illustrates the Eclat algorithm and evaluates three different
association rule mining algorithms. Section 4 proposes a DTU fault analysis method based
on Eclat algorithm. Section 5 describes the implementation of this method on realistic DTU
fault databases and analyzes the outcome. Section 6 is the application of this proposed
fault analysis method. Section 7 is the conclusion.

2. DTU Fault Analysis

DTU is an indispensable device in power systems that monitors the operating state of
distribution networks [31,32], transmits telemetry data to DAS or SCADA systems, and con-
trols connected objects in the distribution network by utilizing signals from DAS/SCADA
(Figure 1).

2.1. Configuration of DTU

A picture and simplified configuration of a DTU are shown in Figure 2. It comprises
5 modules which are, respectively, the CPU module, the communication module, the
sampling module, the control circuit module, and the power supply module. Among these,
the CPU functions as the centralized controller, the communication module controls infor-
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mation interaction between the DTU and the main station, the control circuit module sends
signals to breakers, and the power supply module provides electricity to other modules.
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2.2. DTU Fault Types

The DTU has several types of faults as summarized in Table 1. Functional faults can be
divided into telemetering faults, remote signaling faults, and remote control faults [33]. A
telemetering fault means the DTU is unable to measure the analog signals of the distribution
network (e.g., voltage, current, and power). A remote signaling fault means that the DTU
fails to measure signals of breakers and protection devices. A remote control fault means
the DTU cannot send signals to control breakers and switches [34]. Faults that cause the
DTU to stop working are called device faults. Among them, DTU offline means that the
DTU is disconnected from the main station, and frequent online-offline means that the
DTU is not working in a stable state.

Table 1. DTU fault types.

DTU Fault Types

Functional Faults

Telemetering Fault

Device Faults

DTU Offline

Remote Signaling Fault Frequent Online-Offline

Remote Control Fault Other Faults
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2.3. Factors Leading to DTU Fault

Many factors may give rise to DTU faults, which are summarized in Table 2.

Table 2. Factors leading to DTU fault.

Factors Leading to DTU Fault

External Factors

Humidity

Internal Factors

Operating State

DTU Upgradation

Wireless Signal Quality Hardware Operating State

Power Failure Software Operating State

Effects of Primary-Side Equipment
Historical State

Long Service Time

Mis-operation Family Defect

There are mainly 10 factors that can lead to DTU fault. Among external factors, hu-
midity means that the moist environment causes fault of devices, effects of primary-side
equipment refer to the malfunction of primary-side devices (e.g., breakers and transform-
ers) [35], and mis-operation refers to engineers’ failed operation of control devices. In terms
of internal factors, operating state refers to the hardware and software operating state as
well as the upgrading state of DTU devices, long service time means that device reaches or
exceeds its lifespan, and family defect means that products of certain manufacturers may
have certain types of faults.

2.4. Data Analysis of DTU Fault

DTU fault data usually have the same format as Table 3.

Table 3. DTU fault data format.

Time Device ID Brand Fault Type Fault Elimination Approach

2020/XX/XX XXXX B T F/M

Each data item contains the time, device ID, device brand B, fault type T, and fault
elimination measure F/M. In which, fault type T refers to six types as shown in Table 1.
Fault elimination approach contains information pertaining to the DTU fault module M
(Figure 2) or factors F (Table 2). For instance, fault elimination approaches can be ‘wireless
signal issues and solved by restarting the communication module’; in this case, factor F is
‘wireless signal quality’ and the fault module is ‘communication module’.

According to DTU fault data, brand B, fault type T, factors F, and fault module M are
key elements. Therefore, item set FA containing these four elements was constructed as (1)
to facilitate fault analysis:

FA ={B, T, F, M} (1)

in which, there are p brand B, q types of fault T, i factors F, and j fault modules as shown in
Equations (2)–(5).

B =
{

B1, B2 . . . , Bp
}

(2)

T =
{

T1, T2 . . . , Tq
}

(3)

F ={F1, F2 . . . , Fi} (4)

M =
{

M1, M2 . . . , Mj
}

(5)

3. Association Rule Mining Algorithm

Association rule mining was proposed to find the regularity of products bought by
customers [36]. As for DTU fault analysis, we studied three frequently used association
rule mining algorithms, which were Eclat [37], FP-growth [38], and Apriori [39]. The basic
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concept of the association rule, the main idea of Eclat algorithm, and the comparison of
these three algorithms are illustrated in this section.

3.1. Indices of Association Rule

Taking item set FAα =
{

Bb, Tt, Ff , Mm

}
as an example (in which Bb ⊆ B, Tt ⊆ T,

Ff ⊆ F, Mm ⊆ M), the association rule can be expressed as Ff ⇒ Tt. This means if factor
Ff happened, there is a possibility that fault Tt would also happen. Two indices used to
evaluate the association rule are as follows:

3.1.1. Support

Support is a probability index for items. Taking item Ff as an example, support of one
item can be expressed as Equation (6):

support(Ff ) =
count(Ff )

count(itemset)
(6)

where count(Ff) is the time that Ff happens in the database, count(itemset) is the number of
item sets.

Support of two or more items can be calculated through Equation (7):

support(Tt, Ff , Mm) =
count(Tt ∩ Ff ∩Mm)

count(itemset)
(7)

where count(Tt ∩ Ff ∩Mm) is the time that Tt, Ff, and Mm happen in the same item set.

3.1.2. Confidence

Confidence is an index of reliability for the association rule. Taking the association rule
Ff ⇒ Tt as an example, the confidence of this rule can be calculated through Equation (8):

con f idence(Ff ⇒ Tt) =
count(Ff ∩ Tt)

count(Ff )
(8)

where count(Ff ∩ Tt) is the number of Ff and Tt happen in the same item set.
When analyzing the relationship between different item sets, the minimum support

threshold and minimum confidence threshold are often set in advance. Item sets satisfying
the minimum support threshold are called frequent item sets. Rules satisfying the minimum
confidence threshold are called strong rules.

3.2. Eclat Algorithm

Eclat algorithm [37] works in a vertical manner as shown in Figure 3.
In the first step, the database was scanned and all single items were listed, as well as

their belonging item sets. The support value of each item equaled to the number of their
belonging item sets. Next, the support value of each item was compared with the threshold,
and those items meeting requirement constituted frequent 1-item sets. Then, every two
items paired together, the intersection of their belonging item sets was listed. Afterwards,
2-item sets sharing one item combined with each other to form 3-item sets. This recursive
process was continued until no item sets could be combined. The Eclat algorithm only
scanned the whole database once, in the first step.

3.3. Generation of Strong Rules

After obtaining frequent item sets by association rule mining algorithms, the next
step was to find strong rules. Taking the maximal frequent item set {B1, T2, F3, M4} as an
example, all candidate association rules X⇒ Y were listed, in which X ⊆ {B1, T2, F3, M4},
Y ⊆ {B1, T2, F3, M4} − X. For instance, X = {B1, T2} and Y = {M4} or X = {B1, T2, F3} and
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Y = {M4}. Then, the confidence of each rule was compared with the minimum confidence
threshold, and those rules meeting the requirement were considered as strong rules.
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3.4. Comparison of Three Algorithms

Theoretically, Eclat is the best among all three algorithms as it only scans the whole
database once. FP-growth is the second best since it scans database twice [38], while Apriori
takes the longest time since it scans the database when generating frequent item sets [39].
To evaluate the performance of the three algorithms, five DTU fault databases of different
sizes (100, 500, 1000, 5000, 10,000) were constructed, and simulation was conducted in
Python 3.7 on a PC with an Intel Core i5-9400F CPU running at 2.90 GHZ and with 8.0 GB
of RAM, the figure was plotted in MATLAB, version R2020b (The MathWorks, Inc., Natick,
MA, USA). Time usage of three algorithms is shown in Figure 4.
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As can be seen from Figure 4, Eclat had better performance than FP-growth and
Apriori. When the number of data is lower than 1000, the time usage difference of the
three algorithms was nearly negligible. However, as the data size increased, the difference
became much more obvious. When the number of data reached 10,000, the time usage of
FP-growth was 15 times longer than Eclat, while Apriori was 103 times longer than Eclat.
This outcome conformed to the theoretical analysis of three algorithms: Eclat takes the least
time as it only scans the database once, while FP-growth and Apriori take longer due to
additional scanning.

The Apriori algorithm is the easiest and most direct approach to mining frequent item
sets, but it needs to generate a large number of candidate item sets and repeatedly scan
the database, so it is rather costly. FP-growth deals with this problem by introducing a
frequent pattern tree; by this means, it only scans the database twice. However, it also has
disadvantages such as complexity and large memory occupation. Compared with Apriori
and FP-growth, Eclat requires less time and is thus more efficient. However, as Eclat needs
to repeatedly save item sets, it needs more memory space.

Strengths and weaknesses of three different algorithms are summarized in Table 4.

Table 4. Strengths and weaknesses of three algorithms.

Algorithm Apriori FP-Growth Eclat

Time Usage Most Medium Least

Scalability Small and
medium database

Large
database

Large
database

Complexity Easy Complex Easy

Memory
occupation Small Large Medium

4. DTU Fault Analysis Method

DTU fault databases contain significant amounts of data; moreover, they are updated
in real time. Therefore, the Eclat algorithm was utilized due to its best performance among
the three algorithms.

The proposed DTU fault analysis method is shown in Figure 5.
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Firstly, DTU fault data was sampled and recorded. By scanning the database, item
sets FA were constructed. Then, Based on the Eclat algorithm, two types of strong rules
were obtained:

Ra : Ff (Bb)⇒ Tt (9)

Rb : Tt ⇒ Mm (10)
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Ra represents the relationship between factor F and fault type T. It indicates that certain
factor Ff may result in certain type of fault Tt, which reveals the rule of the fault. Brand Bb
is one kind of factor F (family defect), but it is separated as an individual item in order to
show if products of certain manufacturers Bb have a certain type of fault Tt. Rb includes
fault type T and fault module M. It indicates when a certain type of fault Tt happens; there
is a high probability that fault exists in corresponding module Mm. When fault Tt happens,
diagnosing module Mm, before other modules, can shorten fault elimination time. Based on
strong rules Ra and Rb, fault rule bases and diagnosis rule bases can be constructed. These
two rule bases can be utilized to arrange planned maintenance and facilitate fault repair.

4.1. Fault Rule Base

Fault rule bases can be used to find the factors that lead to specific faults. Therefore,
when one type of fault happens frequently and regularly, engineers can take measures to
avoid corresponding factors in planned maintenance so as to lower DTU fault incidence. On
the occasion when brand information is also included in the obtained strong rule Bb ⇒ Tt,
manufacturer Bb can be informed that their products may have defects that can lead to a
certain type of fault Tt. They should improve their products according to this information.

4.2. Diagnosis Rule Base

Diagnosis rule base reveals the relationship between fault types and fault modules.
Higher confidence means that the rule is more reliable and is more likely to happen.
Under circumstances wherein several rules exist, the rule with higher confidence should be
considered before others, which means the corresponding fault module in that rule should
be investigated at the first step. Other modules should be checked according to the rank of
rule confidence. By these means, fault repair time can be shortened and efficiency of fault
elimination can be improved.

5. Experiment and Results

The proposed fault analysis method for DTU was implemented on a realistic DTU
fault database released by the State Grid Corporation of China.

5.1. Data Information

DTU fault data from Mar 2020 to Jun 2020 in one district of Nanjing, China was
collected. After data preprocessing, a DTU fault database containing 12,320 item sets
was obtained. By scanning the database, FA was constructed. Fault types T had five
elements, which were the remote control fault, remote signaling fault, DTU offline, frequent
online-offline, and other faults. Factors F have 10 kinds, including mis-operation, humid-
ity, wireless signal quality, power failure, effects of primary-side equipment, hardware
operating state, software operating state, DTU upgradation, family defects, and long-time
service. Fault modules M had five elements, which were the CPU module, communication
module, sampling module, power supply module, and control circuit module. Brands B
had 15 elements.

5.2. Strong Rules of DTU Fault Data

Setting a reasonable support threshold and confidence threshold are of great impor-
tance. A higher support threshold may lead to fewer association rules obtained, and a
lower confidence threshold may give rise to more strong rules obtained, which, however,
are less reliable. Therefore, the support threshold and confidence threshold of the Eclat
algorithm were set to be 0.03 and 0.8 respectively.

After applying the Eclat algorithm, 19 frequent 1-item sets, 40 frequent 2-item sets,
22 frequent 3-item sets, and 3 frequent 4-item sets were obtained. In total, 17 strong rules
were mined from the database. Strong rules obtained from the DTU database are shown in
Table 5.
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Table 5. Strong rules obtained from DTU fault database.

No. Strong Rule Type Strong Rule Support (%) Confidence (%) Lift

1 Ra DTU Upgradation+Brand 4⇒ Remote Signaling Fault 8.26 100 5.01

2 Ra Humidity⇒ Remote Signaling Fault 3.60 98.1 3.97

3 Ra Brand 10⇒ Remote Signaling Fault 6.71 97.9 1.97

4 Ra Mis-operation⇒ Remote Control Fault 4.78 96.9 3.70

5 Ra Brand 2 + DTU Upgradation⇒ Remote Signaling Fault 4.31 96.8 1.95

6 Ra DTU Upgradation⇒ Remote Signaling Fault 16.81 96.4 1.94

7 Ra Brand2 + Wireless Signal Quality⇒ DTU Offline 7.24 95.2 4.41

8 Ra Wireless Signal Quality⇒DTU Offline 8.94 93.6 4.34

9 Ra Brand2 + Software Operating State⇒ DTU Offline 4.17 92.2 2.24

10 Rb Communication Module⇒DTU Offline 10.38 81.7 3.79

11 Ra + Rb
Hardware Operating State⇒

Remote Signaling Fault⇒ Control Circuit 5.65 98.8 5.90

12 Ra + Rb
Hardware Operating State+Brand 2⇒

Remote Signaling Fault⇒ Control Circuit 3.81 98.1 5.86

13 Ra + Rb
Wireless Signal Quality⇒

Remote Signaling Fault⇒ Communication Module 5.67 95.6 2.16

14 Ra + Rb
Wireless Signal Quality+Brand 2⇒

DTU Offline⇒ Communication Module 4.56 95.2 4.42

15 Ra + Rb Brand 2⇒ DTU Offline⇒ CPU 6.79 93.1 2.36

16 Ra + Rb
Software Operating State+Brand 2⇒

DTU Offline⇒ Control Circuit 7.16 90.4 2.29

17 Ra + Rb Brand 2⇒ DTU Offline⇒ Communication Module 8.96 82.6 3.83

Ra strong rule can be used to form the fault rule base. Rb strong rule can be utilized
to form the diagnosis rule base. Ra + Rb strong rule includes the relationship between
fault type T, F(B), and M, and it can be used to form both the fault rule base and diagnosis
rule base.

The formed two rule bases are shown in Figure 6. The fault rule base comprised factors
F, fault type T, and the confidence values of rules Ra (between F and T). The diagnosis rule
base included fault type T, fault module M, and the confidence values of rules Rb.
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The fault rule base and diagnosis rule base in Figure 6 can be used to support planned
maintenance and fault repairing, respectively.

5.2.1. Planned Maintenance

In some cases, wireless signal quality, software operating states, and family defects
cause DTU offline. Family defects, humidity, hardware operating states, and DTU upgra-
dation may lead to remote signaling faults. Mis-operation is likely to cause remote control
faults. These eight rules form the initial fault rule base. In planned maintenance, when
a certain type of fault happens, corresponding factors in the fault rule base should be of
great concern. Taking measures to avoid those factors can lower DTU fault incidence in
the future.

5.2.2. Fault Repairing

When DTU offline happens, a fault usually exists in the CPU module, communication
module, or control circuit module. Based on the rank of rule confidence, the CPU module
is investigated at first; then, the communication module and control circuit module are
checked. When a remote signaling fault happens, a fault usually exists in the control circuit
or communication module. These five rules form the initial diagnosis rule base. During
fault repairing, modules in the diagnosis rule base should be inspected first. By these
means, fault elimination time can be shortened.

Strong rules involving brand information were not included in the above two rule
bases, but they could be used to inform manufacturers about family defects of their
products. These rules and their confidence values are shown in Figure 7.
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For instance, brand 2 should pay attention to the CPU and communication modules of
its products as well as the DTU offline issue. Brand 4 and brand 10 should improve control
circuit modules of their products and deal with remote signaling faults.

6. Application Example

A fault analysis model was constructed and inserted into a DTU device. This model
was based on the proposed method. It contained rule bases obtained from a historical
DTU fault database. Rule bases were updated regularly according to the newly generated
DTU fault data. When a fault happened, information of the fault type was sent into this
model. The outputs were the analysis results of possible factors and corresponding fault
modules in the rule bases. Information of factors was used to guide planned maintenance
and information of fault modules was used for fault repairing.

For comparison, this fault analysis model was incorporated into 1000 DTUs in a certain
area of Nanjing in China, while the other 4600 DTUs in the same area remained unchanged.
Initial rule bases were formed as depicted in Figure 6. Based on the newly generated fault
data, rule bases were updated every week. Additionally, planned maintenance was also
scheduled on a weekly basis.

DTU with a fault analysis model is represented as DTU1, the other type without the
model is marked as DTU2. From September 2020 to December 2020, fault times and fault
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rate are listed in Table 6. Noted that fault times FT (Equation (11)) are the average fault
times of all devices in each group for 3 months, while fault rate FR (Equation (12)) refers to
fault times per device per hour.

FT =
1
N

N

∑
n=1

FTn (11)

FR =
1

Nt

N

∑
n=1

FTn (12)

where N is the number of devices, FTn is the fault times of nth device throughout 3 months,
and t represents the total counted hours.

Table 6. Fault times and fault rate of two groups of DTUs.

DTU1 DTU2

Fault times Fault rate Fault times Fault rate

34.44 0.00159 79.45 0.03678

As can be seen from Table 6, the fault times and fault rate of DTU1 decreased to more
than half of DTU2. This was due to the prevention of risk factors in planned maintenance.

Mean fault elimination time in terms of different fault types is shown in Figure 8.
Fault elimination time is defined as the duration from the fault happening to the fault
being eliminated.
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As shown in Figure 8, the mean fault elimination time of DTU1 reduced to less than
half of DTU2 in terms of all fault types except the telemetering fault. Time reduction was
due to the model’s guidance for engineers during fault repairing. In some cases, faults
could be eliminated by restarting certain modules remotely; engineers no longer needed to
be on the scene. This kind of saved time was also reflected in the reduction of mean fault
elimination time.

As for the telemetering fault, the saved time of DTU1 was not as remarkable as other
fault types. After analyzing the DTU fault database, it was found that the telemetering
fault is not common in this area. The support value of the telemetering fault was 2.12%,
while the support values of other common faults were 26.20% (remote control fault), 49.79%
(remote signaling fault), and 21.54% (DTU offline). Therefore, the insufficient case of the
telemetering fault limited the improvement of this model.
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7. Discussion

The proposed method was intended for enhancing the efficiency of DTU maintenance
work. Constructing a fault rule base and diagnosis rule base can support planned mainte-
nance and fault repairing. This method showed a good performance in terms of lowering
fault incidence and shortening fault elimination time. These improvements were due to
the prevention of potential fault causes and guidance for fault repairing. Nonetheless, the
proposed method also had some limitations:

1. Its performance was affected by the amount of available data.

As shown in Figure 8, insufficient data limited the improvement of this method. It is
reasonable since this is a data-driven method which required a certain amount of data to
achieve satisfactory results.

2. Results were not always reliable.

Since fault data was updated according to the real-time operation of DTU devices,
newly generated rules were probably not in the initial rule bases and some of them might
have been unreliable. Therefore, these new rules must be verified before they are incor-
porated into rule bases. Additionally, strong rules founded by association rule mining
algorithms were sometimes redundant and repetitive; in this case, manual inspection is
indispensable.

8. Conclusions and Future Work

This paper proposed a fault analysis method based on an association rule mining
algorithm for DTU so as to improve the efficiency of fault elimination. The selection
of algorithm for this method was proven to be reasonable through simulation, and the
practicality of this method was proven by a realistic DTU fault database. This method can
form fault rule bases and diagnosis rule bases, which can be used for supporting planned
maintenance and fault repairing. In this way, DTU fault incidence can be reduced and fault
elimination ability can be enhanced. Comparative experiment in the application example
demonstrated the effectiveness of this method.

However, the performance of this method was not satisfying when not enough data
were available. Moreover, since this method only relied on objective data, the results were
not always reliable. A possible solution is to combine expertise to verify the generated
rules as well as remove the redundant and invalid rules.

It is recommended that, with the successful application of this fault analysis and
diagnosis method, more research that combines this objective data-driven method with
subjective expertise should be conducted to improve the reliability of fault analysis. Addi-
tionally, machine-learning techniques can be incorporated into this method to analyze fault
and estimate the state of devices so as to improve the accuracy of fault diagnosis. With
the integration of more DTU devices, lifecycle management of devices should be studied
to facilitate the application of this method and enhance its positive impacts. Moreover,
in order to reduce maintenance pressure, future work can be conducted on eliminating
manual processes and realizing intelligent maintenance.
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