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Abstract: Thermal error caused by thermal deformation is one of the most significant factors influenc-
ing the accuracy of the machine tool. Compensation is a practical and efficient method to reduce the
thermal error. Among all the thermal error compensation processes, thermal error modeling is the
premise and basis because the effectiveness of the compensation is directly determined by the accu-
racy and robustness of modeling. In this paper, an overview of the thermal error modeling methods
that have been researched and applied in the past ten years is presented. First, the modeling principle
and compensation methods of machine tools are introduced. Then, the methods are classified and
summarized in detail. Finally, the future research trend of thermal error modeling is forecasted.

Keywords: precision machine tool; machine tool thermal error; thermal error compensation; thermal
error modeling method

1. Introduction

As a symbol of the level of modern machinery manufacturing, precision machine tools
are becoming more and more important. The requirements for the accuracy of machine
tools are also increasing with the continuous development of industrial technology. There
are many factors that affect the accuracy of machine tools such as geometric and kinematic
errors, thermal errors, cutting-force induced errors, and other errors such as the tool wear
and the errors induced by assembling and chattering [1–3]. According to Bryan’s research
published in 1990, the error caused by heat accounted for 40% to 70% of the total machining
error of the machine tool [4]. In Ramesh et al.’s [5] paper published in 2000, it was found
that thermal error had a very significant effect on the machining accuracy, which basically
reached 60~70% of the total error. Therefore, it is essential to investigate the method to
remove the effect of the thermal error [6].

Thermal error refers to the machining error caused by the thermal expansion of the
machine components that leads to the relative displacement between the work piece and
tool [7]. Generally, there are two ways to reduce the thermal error at present: error avoidance
and error compensation [8]. The error avoidance is an attempt to eliminate or reduce possible
sources of thermal errors by improving design and manufacturing methods [9]. For example,
changing traditional metal bearings to ceramic bearings to reduce the heat generated by
friction during bearing operation. In addition, using carbon fiber reinforced plastics (CFRP)
or other materials with a low thermal expansion coefficient to construct machine tool parts
helps to prevent thermal deformation when the temperature of the machine tool rises.
Moreover, the thermally symmetric design of machine structure, the separation of heat
sources, room temperature-controlled workshop [10], etc. are other methods to reduce the
thermal error [11,12]. However, the use of these methods will increase the cost so that it is
hard to be applied in practice. The error compensation is mainly to master the influence of
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the key heat source temperature of the machine tool on the thermal error through analysis,
statistics, and induction. By studying the functional relationship between the thermal error
and the key heat source temperature, the thermal error model is obtained. Based on this
model, the thermal error is predicted and then compensated [13]. Compared with the error
avoidance method, it is a more convenient and cost-efficient way to reduce the thermal
error by compensation [14,15]. The thermal error compensation principle diagram of a
CNC machine tool spindle is shown in Figure 1. By inserting the compensation signal
generated from the thermal error model into the feedback loop of the servo system, the
error compensation is achieved.
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In this paper, the existing thermal error modeling methods for machine tools that
have been researched and applied in the past ten years are introduced, classified, and
summarized. The classified modeling methods are cited in the article according to the
time of publication. The advantages and disadvantages of these modeling methods are
compared in Section 3, and the future research trend is forecasted in Section 4.

2. Thermal Error Modeling Method for Machine Tools

As early as the mid- to late-1980s, the research on thermal error modeling of machine
tools has emerged. In the research of Moriwaki [16] in Japan, a tool-work piece relative
displacement compensation control system was established to compensate the thermal de-
formation error of the spindle caused by the heat generated from the hydrostatic oil bearing
during the rotation process. In the 1990s, Indonesian scholars Chen and Hsu [17] proposed
a time-variant volumetric error model to comprehensively compensate the geometric and
thermal errors of the machining center. Based on this model, the accuracy of the machining
center was improved by an order of magnitude. Since the 21st century, a variety of math-
ematical modeling methods such as multiple regression, artificial neural network, time
series modeling, etc., have been applied to develop the thermal error model of machine
tools. According to the principles of the different mathematical methods, the modeling
methods including the least square method, multivariable regression analysis, Grey system,
neural network, support vector machine, hybrid model, etc., will be introduced in order.
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2.1. Least Square Method (LS)

The least square method is used to seek the best function matching of data by mini-
mizing the sum of squares of errors. Its general form is shown in Equation (1).

y = a1 f1(x) + · · ·+ ak fk(x) (1)

By searching for the reasonable parameters a1 . . . ak, the sum of squares of the error
between calculated value y and measured value x is minimized [18]. The fitting modeling
based on the LS is an earlier way to build the thermal error model of machine tools. Because
of its simple principle, it is easier to applied for compensation in practical.

With the use of Chebyshev polynomial-based orthogonal least squares regression, the
thermal drift error curve of the spindle was fitted [19] in 2015. The obtained curve was
in good agreement with the measurement error curve. In detail, the maximum modeling
residuals in the X, Y, and Z directions were 0.8–1 µm, 0.6–0.9 µm, and 1.2–1 µm, respectively.
In 2016, Christian et al. [20] determined the best position of temperature sensor by judging
the covariance characteristic value of the least square. After thermal error compensation, the
maximum approximate error of the tool center point was reduced up to 25%. In 2020, Liu
and his colleagues [21] used the least square method to establish a thermal error model of
the machine tool spindle in the axial and radial direction which was used for compensation
afterwards. The experiment showed that the contour accuracy of the work piece was
increased by 78.4% after compensation.

2.2. Multivariable Regression Analysis (MRA)

Multiple regression is another common method to establish a linear or non-linear
mathematical model between one dependent variable and one or more independent vari-
ables through statistical analysis of the experimental sample data [22,23]. Compared with
the least square method, the multiple regression model has more independent variables and
is more coordinate to the actual situation. Therefore, the thermal error model established
by this method has higher accuracy and robustness.

The basic model of linear multivariate regression thermal error [24] is shown in
Equation (2),

Y = βX + ε (2)

where Y represents the thermal error; X is the temperature; β is the coefficient; and ε is the
residual. Multivariate regression modeling is used to find the right coefficient β to ensure

that the residual is equal at each data point and the objective function value
n
∑

i=1
(yi − xi

T β)
2

is minimized.
In 2011, Pajor and Zapłata [25] established an analytical model for the spindle based

on the multiple regression model. When the model was applied for thermal error compen-
sation of the spindle, the thermal error of reduced from 73 µm to 13 µm. By replacing the

original objective function with the new objective function
n
∑

i=1
wi(yi − xi

T β)
2, an improved

linear multiple regression model was proposed by Jian et al. [26,27] from 2011 to 2012. With
this method, the thermal error model of the spindle was established and used to reduce
the maximum residual error of the spindle in the Z and Y directions from 25 µm and 7 µm
to 1.8 µm and 0.7 µm. In addition, in the paper of Yuan et al. [28] published in 2013, a
position-independent thermal error model of multiple linear regression for the linear axis
was constructed. After compensation based on the model, the maximum fitting residuals
of the three errors of Y axis Sy, Sz, and Rα were reduced to 9.6 µm, 2.4 µm, and 7.1 µrad,
respectively. Similarly, Zhang et al. [29], Shi et al. [30], and Liu et al. [31] also established
the linear axis thermal error models based on regression analysis. Among them, based
on the homogeneous transformation, Liu et al. [31] proposed a data-driven thermal error
compensation method of high-speed and precision five-axis machine tools. The thermal
error of the liner axis was expressed as the polynomial function of the time and the position.
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In this model, the thermal error and geometric error were separated. Compared with
the uncompensated and traditional error compensation situations, the machining errors
were reduced 85% and 37%, respectively. The fitting performance of the model is shown
in Figure 2.
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Moreover, based on the linear regression analysis, Lin et al. [32] presented a thermal
deformation compensation model for lathe machining. The experimental results showed
that the thermal errors were reduced to 19µ9 when temperature was rising and to 15 µm
when it reached to a stable state.

However, it is worth noting that when there are more variables, the calculation time of
MRA is too long. Moreover, the correlation between the thermal error and the temperature
is only considered by the MRA, which will lead to the temperature variable coupling and
reducing the accuracy of the model [33–35].

2.3. Grey System

In 1982, Professor Deng, a Chinese scholar, established the theory of “grey system”.
It is a mathematical method that can extract useful information from data with limited
quantity and accuracy to obtain the characteristics of the research object [36]. The general
grey system model (GM(n,m)) [37], is shown in Equation (3) below.

dnX1
(ξ)(k)

dtn + a1
dn−1X1

(ξ)(k)
dtn−1 + · · ·+ anX1

(ξ)(k) = b1X2
(ξ)(k) + b2X3

(ξ)(k) + · · ·+ bm−1Xm
(ξ)(k) (3)

It is an n-order gray model with m variables where X1 is the thermal error; X2 . . .
Xm are the temperature data; N is the order of the differential equation; M is the number
of data types; and ζ is the number of transformations. Notably, by changing the number
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of variables and order of equation, different GM models will be obtained. Among these
models, the first-order univariate model GM(1,1) is the most commonly used model.

Modeling based on the grey system theory is simpler, more convenient, and does
not depend on massive and complete data information [38]. Based on the standard gray
system model GM(1,1), a genetic algorithm was used by Jiang and Yang [39] to optimize the
dimensions and variable weights of the new gray system model to minimize the residual
value of the optimized model. This optimized model can not only reflect the systematic
trend of thermal errors, but can also weaken the influence of the random change of thermal
error, thereby the prediction accuracy of the thermal error model was improved. However,
considering that the solution of the existing gray prediction model GM(1,N) was not
accurate enough, Tien [40] used gray control parameters to develop an improved model
GMC(1,N) on the basis of GM(1,N). The improved model was more accurate because
its grey differential equation was linear and its solution was based on the superposition
principle. In order to further improve the prediction accuracy of grey GMC(1,N) model,
Wang et al. [41] proposed a new gray GMC(1,N) machine tool thermal error prediction
method based on the CS algorithm named as CS-GMC(1,N) model. This model was
compared with the gray model based on particle swarm optimization (PSO) named as
the PSO-GMC(1,N) model. It was found that the prediction accuracy of the CS-GMC(1,N)
model was higher than that of the PSO-GMC(1,N) model.

2.4. Neural Network (NN)

Neural network is a hot research spot that has emerged from the field of artificial
intelligence since the 1980s. In the neural network model, multiple variables are used as
input and output. There are three layers (input, output, and hidden) in classical NN model.
The input layer accepts external signals and data. The output layer realizes the output of
the system processing results, and the hidden layer is a unit that lies between the input
and output layers and cannot be observed from the outside of the system. As shown in
Figure 3, it is a kind of structure of thermal error compensation model based on a BP neural
network with five inputs.
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Compared with the regression model, the artificial neural network model has good
nonlinear fitting performance and better prediction accuracy. As early as the end of the
last century, artificial neural networks have been used for the thermal error modeling of
machine tools [42]. Usually, the temperature variables tested by multiple sensors are taken
as the input and the thermal errors of machine tools are the output of NN model. After the
network learning and training, the thermal errors of machine tools in multiple directions
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can be accurately fitted and predicted [43–45]. Back propagation (BP) and radial basis
function (RBF) are two kinds of the most common used neural network methods.

By using a BP neural network, complex nonlinear relations can be fully approximated.
BP neural networks have high robustness and fault tolerance ability, so it is widely used
for thermal error modeling. However, the convergence speed of the BP neural network is
slow and it is easy to fall into value-extremum [46]. In order to solve these problems, Ma
and Jiang [47] used a hybrid particle swarm algorithm to optimize the structure of the BP
neural network and to avoid unstable prediction performance. Similarly, Chen et al. [48],
Yuan et al. [49], Huang et al. [50], and Li et al. [51] used the variable inertia factor particle
swarm algorithm to optimize the weights and thresholds of the BP neural network, and
build the thermal error model of the machine tool. The improved BP neural network model
could better overcome the limitations of the traditional BP algorithm, and the accuracy was
relatively high. Among them, the prediction accuracy of Huang’s model was 93.155%, and
that of Li’s model reached to 96.5%. In order to solve the problem that the BP neural network
cannot adjust independent parameters of new data in thermal error modeling, Liu et al. [52]
proposed an improved BP neural network model based on the overall adjustment strategy. By
achieving the minimum value of the square error of the overall data, the prediction accuracy
of this improved thermal error model was increased 50%. In the paper of Tan et al. [53],
multiple BP neural network models were integrated to enhance the predictive performance.
With the improved model on a horizontal machining center THM6380, the root mean squared
error (RMSE) of the integrated model was 5.6522 µm. To improve the robustness of the BP
neural network, Ren et al. [54] modified the BP network into a dynamic feedback network.
With this method, the residual error after thermal error compensation was smaller. The ability
dealing with dynamic information was also improved and the training time was greatly
reduced. Furthermore, based on the research of the relationship between the thermal error
and the actual motion error of machine tool parts, Xin et al. [55] used the “two-step method”
to establish the thermal error model of a ball screw. In this method, BP neural network was
first used to model the thermal deformation of the screw. Then, the relationship between the
axial thermal error of the table and the actual thermal deformation of the screw was obtained
based on the polynomial fitting method. However, this method has not been applied for
complex machine tools.

The RBF neural network is a feedforward neural network that has good approximation
and global optimal performance. However, its key feature functions are more difficult to
be extracted than the BP neural network, and its generalization performance is worse [56].
Su et al. [57] used the RBF neural network to build a more accurate thermal error model.
But it took a long time to determine the number of neurons in the hidden layer in the
algorithm. In order to improve the prediction accuracy of the RBF model, Zhang et al. [58]
improved the RBF neural network and constructed the thermal error prediction model by
applying the PSO algorithm to optimize the important parameters of the RBF neural network.
Lu et al. [59] of Hunan University devoted to solve the problem of low modeling efficiency of
the existing thermal error modeling methods and unsatisfactory model prediction accuracy.
They proposed a generalized RBF neural network modeling method and applied it to the
thermal error modeling of the spindle box of a NC guide rail grinder. Compared with the
conventional RBF neural network modeling method, the generalized RBF neural network
model had the advantages of high prediction accuracy and generalization ability. Li and
Wu [60] developed a fuzzy RBF neural network prediction model for the milling machine
spindle. The experimental results showed that the maximum errors of the Y-axis and Z-axis
predictions were reduced to 3.5 µm and 2.9 µm after compensation. Zhang et al. [61] of
Hua Zhong University of Science and Technology used the fuzzy clustering method and
grey relational analysis method to optimize the temperature measurement points, and
then established a radial basis function neural network prediction model based on genetic
algorithm. Compared with the traditional RBF neural network method, the improved
model had higher precision and stronger robustness and the forecasting model residual
error ranged from 4.88 to 3.80 µm down to 2.48–2.14 µm.
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Grey system theory has the advantage of dealing with an uncertain system with
incomplete information and inaccurate data. It can extract useful information from small
samples to study the characteristics of the system. In 2012, Zhang et al. [62] combined
the gray theory and neural network to establish a parallel gray neural network model
(PGNN). After applying it to the spindle on a five-axis machining center, the maximum
prediction thermal error was reduced to 3.65 µm. By using the PSO algorithm to obtain the
optimal weight threshold of the gray neural network (GNN), Feng and Wang [63] built the
spindle thermal error model and the relative error of the prediction was 1.55%. Similarly,
Zheng et al. [64] used genetic algorithm to optimize the weight threshold of the grey neural
network, and took the average relative error as the evaluation standard of the prediction
model, which effectively avoided the problem that the grey neural network fell into the
local optimal solution. Considering the influence of cutting conditions on the thermal
error of the machine tool, a genetic algorithm gray neural network (GAGN) was used by
Chen et al. [65] to optimize the thermal error model of grey neural network. The maximum
relative error after compensation was 7.02 µm. However, the training parameters of the
thermal error model established by it need to be determined according to the cutting
conditions. When the cutting conditions changed, the original model was no longer be
applicable, so its versatility was poor.

In addition, there are other improved method based on neural networks such as Fourier
neural network, multiple-input multiple-output (MIMO), long short-term memory (LSTM),
etc. Wang et al. [66] established a comprehensive mathematical model of milling machine
geometric error and thermal error using a Fourier neural network. After compensation, the
maximum positioning error was reduced from 20.2 µm to 4.4 µm. Yang et al. [67] established
a MIMO artificial neural network model of the axial thermal elongation and radial thermal
drift of the coordinate boring machine spindle, and the model prediction accuracy reached
86%. Zhong et al. [68] from Chongqing University used fuzzy C-mean clustering to select
temperature variable, and used probabilistic neural networks to establish a compensation
model for the relationship between the radial thermal deformation error M and temperature
of a worm wheel gear grinding machine, then proposed a thermal error compensation method
based on a probabilistic neural network. In l most previous studies, the correlation between
the historical accumulated temperatures and the thermal error of machine tool were ignored.
Based on a long short-term memory (LSTM) cyclic neural network, Tan et al. [69] proposed a
method that effectively used the temperature rise data of the current and historical moments
of the machine tool. By using this method, the thermal error could be characterized more
in line with the actual situation. However, this method had poor predictive performance
for the thermal error under unknown conditions. Liu et al. [70] also considered the actual
working conditions, but they focused the relationship between the radial thermal error of
the spindle and the inner diameter of the work piece. The measurement data of the inner
diameter of the work piece on the production line was used as input, and the multi-layer
perceptron neural network (MLP) was used to build the thermal error models of the machine
tool under actual processing conditions. Du et al. [71] introduced the genetic algorithm and
backpropagation algorithm in the model training process to train the fuzzy neural network
parameters. It improved the situation that the robustness of the thermal error model was
reduced due to the randomness of the membership function value, and improved modeling
and prediction capabilities for complex systems. Shi et al. [72] proposed a new thermal error
modeling method based on a Bayesian neural network. By applying it into the feed drive
system compensation, the maximum thermal error was reduced from 18.2 µm to 5.14 µm.
Tu et al. [73] constructed a thermal evaluation model of a machine tool spindle based on
particle swarm optimization weighted naive Bayesian to obtain the global optimal solution
of the weights, and the model prediction accuracy was 94.1%. In 2021, in the research of
Zheng et al. [74], an improved adaptive genetic algorithm (IAGA) incorporated with a back-
propagation neural network (BPNN) was presented. Compared with the experimental results,
accuracy of the improved model forward went beyond that of the traditional modeling
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methods such as MRA, genetic algorithm with BPNN (GA-BPNN), and PSO with BPNN
(PSO-BPNN) models.

2.5. Support Vector Machine (SVM)

SVM is a classifier developed from the generalized portrait algorithm in pattern
recognition. Its early work was published in 1963 by the former Soviet scholars Vladimir N.
Vapnik and Alexander Y. Lerner [75]. Based on the principle of structural risk minimization,
the upper limit of functional error is minimized by SVM. It has strong nonlinear function
fitting ability [76], which makes it solve the practical problems better [77–82]. Although
SVM had faster convergence speed and higher prediction accuracy, it is still a new attempt
to apply the support vector machine regression modeling theory for the thermal error
modeling of machine tools.

In 2013, Miao et al. [78] established the spindle thermal error models based on SVM
and multiple regression respectively for the leaderway-V450 machining center. By analyz-
ing the accuracy of the cross-quarter experimental data, it was verified that the SVM model
used for thermal error compensation not only had high accuracy, but also good robustness.
Besides, it was found out that when there were less data for modeling, the prediction
accuracy and robustness of multiple regression model were poor. However, the SVM
model still had higher prediction accuracy even when the working conditions changed [79].
In 2017, Zhang et al. [81] combined the grid search method to optimize the parameters (the
penalty parameters and kernel parameters) of the SVM thermal error model to improve the
performance of the thermal error model. After applying the improved model on the X and
Z axes of the CNC platform, the X-axis positioning error and the Z-axis positioning error
were reduced 89.55% and 85.67%, respectively. The compensation performance was better
than that of the BP neural network. Similarly, in the research of Zhang et al. [80] in 2020,
the PSO algorithm was used to optimize the parameters of the SVM, and the prediction
model PSO-SVM was proposed to predict thermal error. Compared with the traditional
SVM model, the new model had higher prediction accuracy. More importantly, it could
avoid falling into local optimization and reduce the training time effectively. Furthermore,
in the research of Li et al. [82], based on least squares support vector machine (LSSVM, a
mature algorithm improved on the SVM), a more effective model (GA-LSSVM), which was
combined with genetic algorithm (GA) was proposed. Compared with the LSSVM model
and the traditional BP model, the GA-LSSVM model had the following superiority: (1) the
absolute residual and mean square error were the smallest; (2) the model determination
coefficient R2 was the largest; and (3) performance was the best. Based on the synthetic
temperature information (STI), the whale algorithm was used to optimize the thermal error
model of support vector regression by Li et al. [83] in 2021. Compared with the S-GA-SVR
thermal error model optimized by genetic algorithm, the RMSE of thermal error in the Z
direction of the spindle was reduced 46.6%.

2.6. Hybrid Model

Due to the complex structure and varying operating conditions of the machine tool,
its thermal characteristics are nonlinear and change in real time. Therefore, it is difficult to
establish a thermal error prediction model with good versatility, high accuracy, and strong
robustness based on a single data fitting method. In order to solve this problem, some
scholars have tried to establish a hybrid prediction model or a comprehensive prediction
model of thermal error, which could combine the advantages of the separated two modeling
methods [84].

In 2010, Lin and Fu [85] proposed a support vector machine-neural network hybrid
model. In order to verify the superiority of the hybrid model over the models based on the
other two single method (SVM and NN), all three models were compared. The results are
shown in Figure 4.
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When the spindle speed was 2000 rpm, the errors based on these three models were all
within 0.5 µm. However, as seen in Figure 4, the absolute error percentage of the hybrid model
was only 1.95%, while the absolute error percentages of the other two single models were
respectively 2.74% and 2.63%. This indicated that its forecast performance was better than any
a single forecasting method. In 2012, Zhang et al. [62] proposed a gray neural network model
that combined the gray system with the neural network model. When applied the model
on the five-axis machining center spindle, it showed good fitting accuracy and prediction
accuracy. In 2015, by combining the GM(1,n) model with the LSSVM model, Yao et al. [86]
established a hybrid prediction model, in which the prediction validity algorithm was used to
adjust the model weighting coefficient. The optimal effective degree composite forecasting
model (OE-CM) was established to obtain the best forecasting effect. Similarly, in the research
of Li et al. [87], a hybrid model of spindle thermal error based on time series and neural
network was mentioned. The model was applied to compensate the thermal of the VM850
vertical machining center. By using this hybrid model, the number of temperature sensors
was reduced and the error prediction of the machine tool was more comprehensive and stable.
It is worth noting that the model still had high prediction accuracy in a complex processing
environment. In 2018, Li et al. [88] applied a combined algorithm (BP neural network based
on the BAT algorithm) to solve the thermal error modeling problem. The experimental results
showed that the RMSE of the prediction error and the measurement data was 3.80011 µm. In
addition, in Jin’s [89] paper published in 2020, based on a hybrid model of COMSOL and PLS,
a thermal error modeling method for electric spindles was applied to avoid the shortcomings
of poor generalization of a single model. The overall model prediction performance of the
hybrid model was better, and it could predict the thermal deformation of the electric spindle
well under different working conditions.

2.7. Other Modeling Methods

In the paper of Zhang et al. [90] published in 2011, a thermal error modeling method
based on the optimal selection of the time series model was proposed. This model inte-
grated the dynamic and historical information of the machine tool and had higher modeling
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accuracy than the general least square method. It also had stronger anti-interference ability
against random factors, which indicated that the time series model can further improve the
prediction accuracy of the thermal error model. In the research of Xiao et al. [91], a machine
tool thermal error modeling method based on the state space (SS) model was mentioned.
With the use of the SS model for compensation, the thermal error of the lathe was reduced
from 19.40 µm to 4.20 µm. In 2015, Du et al. [92] proposed a natural exponential model
method to symmetrically predict the thermal error of the spindle. Based on the model, the
constant of thermal equilibrium time and steady-state thermal error at random speeds were
calculated according to the finite element analysis results. Compensation tests have been
carried out on the HDBS-63 horizontal machining center. It was found that the maximum
axial error was reduced from 55 µm to 16 µm, and the radial error was reduced from 15 µm
to 6 µm after compensation. In 2018, Zhao and his colleagues [93] proposed a new method
for machine tool error modeling based on the Kalman filter. It regarded the regression
coefficient of the statistical model as the state vector and the statistical model as the ob-
servation equation. The modeling accuracy of the Kalman filter method was 10.5% and
1.8% higher than that of the least square method and LSSVM method, respectively. Besides,
the modeling time was 0.9% and 6.8% less than that of least square method and LSSVM
method, respectively. In the paper of Mares et al. [94] in 2020, an improved method based
on transfer functions was presented. Its modelling and calculation speed were suitable
for real-time applications. When the method was applied on the 5-axis machine tool, it
was found out that the thermal error reduction in the X, Y and Z directions were 62%, 56%,
and 73%, respectively, after compensation. Early in 2021, a new dynamic linear modeling
method of machine tool thermal error based on data driven control theory was proposed
by Liu et al. [95]. The prediction error of the new thermal error model of the CNC machine
tool was less than 4%. Moreover, fuzzy clustering combined with principal component
regression (PCR) was applied for thermal error modeling by Li et al. [96]. The prediction
accuracy of the thermal error model was about 86%. In the paper of Yang et al. [97], based
on the bond graph method, a thermal characteristic model was developed. The maximum
error of thermal deformation predicted by the model was 1.45 µm, which indicated that this
method has great advantages in real-time prediction of spindle thermal behavior, and can
be used in industrial applications. In recent years, deep learning has been performing well
in various fields. It takes the advantage of large datasets and efficient training algorithms
to outperform other approaches in various machine learning [98]. The principle of machine
learning is shown in Figure 5.
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Particularly, deep learning has also become an important means to realize thermal
error compensation of machine tools. For example, based on bidirectional short-term mem-
ory (BILSTM) deep learning, Liu et al. [99] completed thermal error modeling and applied
it on the machine tool, reducing the thermal error by 85%. In the paper of Tian et al. [100],
a thermal prediction model based on a self-organizing deep neural network (DNN) was
developed to facilitate accurate-based training for thermal error modeling of heavy-duty
machine tool-foundation systems. With the model, feature extraction capabilities were
improved, test errors was reduced, and convergence speed was improved. Real-time
modeling is a dynamic modeling method, which is more flexible and accurate than static
modeling. In 2015, Chen et al. [13] proposed a real-time compensation method for thermal
errors of the milling machine. The proposed thermal error model was applied to the milling
machine, and the displacement variations on the x- and y-axes and the position error at the
tool center were controlled within 20 µm when the compensation system was activated.

3. Discussion

In this section, the advantages and disadvantages of the models are summarized in
the following table (Table 1).

Table 1. Comparison of different thermal error modeling methods.

Modeling Method Advantages Disadvantages References

LS
Mature theory.
Simple model structure.
Widely used.

Less independent variables.
Low predictive ability under
complex conditions.

[18–21]

MRA Simple model structure.
Reliable in performance.

Calculation time is too long with
more variables.
Temperature variable coupling.

[22–35]

Grey system Simpler modeling.
Do not rely on massive and complete data information.

When changing the input, the model will be
very different. [36–42]

NN

BP High prediction accuracy.
Slow convergence speed.
Easy to fall into a local minimum
The initial value is very difficult to determine.

[47–56]

RBF Simple structure design.
Faster training speed.

The key feature functions are more difficult
to extract.
Worse generalization performance.

[57–62]

SVM Strong nonlinear function fitting ability. The best theory
for small sample statistics and predictive learning.

Not easy to select parameters.
A lot of computing resources.
slow convergence speed.

[75–83]

Hybrid model

Combine the advantages of the separated two modeling
methods.Good versatility.
High accuracy.
Strong robustness.

Increase the difficulty of modeling. [84–90]

Specifically, LS is an earlier way to compensate the thermal errors of machine tools
with mature theory and simple model structure, so it is widely used. However, it has less
independent variables and is not quite in line with the actual situation and its predictive
ability is limited under complex conditions. The modeling process of the MRA is not only
simple in structure, but also reliable in performance. The MRA model for a machine tool
with simple structure and working conditions has higher accuracy. However, when there
are a lot of variables, the calculation time of MRA is long. However, the correlation between
the thermal error and the temperature is only considered by the MRA, which will lead to
the temperature variable coupling and reduce the accuracy of the model. Modeling based
on the grey system theory is simpler, more convenient, and does not depend on massive
and complete data information. However, it is a model that predicts its own development
based on its own original data. So taking different data in the original data sequence, the
model will be very different. Generally, neural networks have higher prediction accuracy
compared to LS and MRA. Among them, the BP neural network had the high accuracy, but it
had a slow convergence speed and it was easy to fall into a local minimum. The initial value
was also very difficult to determine. Because most of the parameters can be given better
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initial values during initialization according to actual problems, the structure design of RBF
neural network is simple and the training speed is faster. However, its key feature functions
are more difficult to extract than the BP neural network, and its prediction performance is
worse. The SVM has strong nonlinear function fitting ability, which makes it able to solve
the practical problems better. It is considered as the best theory for small sample statistics
and predictive learning. The biggest problem in using SVM for thermal error modeling is
the optimal selection of parameters. Another problem with SVM is that the solution process
requires a lot of computing resources, and the speed is slow. A hybrid model could combine
the advantages of two separated modeling methods. It is easy to establish a thermal error
prediction model with good versatility, high accuracy, and strong robustness based on the
hybrid method. However, the hybrid model will increase the difficulty of modeling, and a
reasonable determination of the weight of a single model in the hybrid model is the key to
determine the prediction accuracy of the model.

4. Conclusions

In the past ten years, more and more attention has been given to the research field of
machine tool thermal errors. Some modeling methods such as LSSVM and neural network
have performed well, but these type of models need many training samples and large num-
ber of calculations. It is easy to be invalidate in the process of adjusting weights, and they
require a lot of time training samples, even with today’s highly developed computer hard-
ware technology. Therefore, there is not a blowout development of the research on neural
networks or SVM. However, with the continuous development of computer hardware tech-
nology, neural networks and other modeling methods will surely show more possibilities.
Traditional modeling methods such as least squares or multiple linear regression, etc. will
not disappear completely for now. Because their mathematical principles are simple and the
prediction performances are remarkable, models based on some improved algorithms still
show strong vitality and have a place in engineering applications. Based on the discussion
in the last section, the advantages and disadvantages should be considered for the use of
thermal error modeling methods under different conditions. When the structure of the
machine tool and working conditions are simple, LS and MRA should be considered first,
and the prediction accuracy of MRA is generally higher. In contrast, NN and SVM are more
suitable for complex machine tools and working conditions. If a single model cannot meet
the requirement of accuracy and robustness, a hybrid model should be considered to solve
this problem.

In the future, research on the thermal error modeling technology of machine tools
could be conducted in the following aspects.

(1) On the premise of ensuring the prediction accuracy, the robustness of the thermal
error model needs to be further improved. The established thermal error model
under the same machine tool, specific working conditions, and environment has high
accuracy. However, when the external environment, working conditions, instrument
measurement accuracy, and other factors change, the prediction accuracy of the
thermal error model will begin to deteriorate.

(2) The current research on the thermal error of machine tools, from the selection of
temperature measurement points, the establishment of the model, to the actual appli-
cation of the compensation model, was all carried out on the same type of machine
tool. However, when the model was transferred to other types of machine tools, the
accuracy of the model was greatly compromised, or even completely invalid. Future
research should consider whether the thermal error model can be successfully applied
to different machine tools.

(3) Besides the error compensation method, there is also the error prevention method to
reduce the thermal error of machine tool. Considering that both of them have their
own advantages and disadvantages in practical applications, how to combine the two
reasonably to complement each other should become the content of future scholars’
in-depth thinking and research.
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(4) The hybrid forecasting model is established based on two different mathematical
modeling methods. By adjusting the weights of two methods, its performance can be
improved. Compared with the single model, the hybrid forecasting model has a more
comprehensive and stable error prediction performance for the machine tool. Under
complex working conditions, it still has higher prediction accuracy. However, there
are few studies on hybrid forecasting models, and the types of mathematical principles
used in the hybrid model are limited to only two. In the future, a thermal error hybrid
forecasting model based on three or more mathematical modeling methods may
achieve unexpected performance.
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