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Featured Application: Determination of rock tensile strength (TS) is an important task, especially
during the initial design stage of engineering applications such as tunneling, slope stability, and
foundation. Owing to its simplicity, the Brazilian tensile strength (BTS) test is widely used to
assess the TS of rocks indirectly. Powerful regularization techniques such as the Elastic Net,
Ridge, and Lasso; and Keras sequential models based on TensorFlow neural networks can be
successfully used to predict BTS.

Abstract: Rock tensile strength (TS) is an important parameter for the initial design of engineering
applications. The Brazilian tensile strength (BTS) test is suggested by the International Society of
Rock Mechanics and the American Society for Testing Materials and is widely used to assess the
TS of rocks indirectly. Evaporitic rock blocks were collected from Al Ain city in the United Arab
Emirates. Samples were tested, and a database of 48 samples was created. Although previous
studies have applied different methods such as adaptive neuro-fuzzy inference system and linear
regression for BTS prediction, we are not aware of any study that employed regularization techniques,
such as the Elastic Net, Ridge, and Lasso, and Keras based sequential neural network models.
These techniques are powerful feature selection tools that can prevent overfitting to improve model
performance and prediction accuracy. In this study, six algorithms, namely, the classical best subsets,
three regularization techniques, and artificial neural networks with two application-programming
interfaces (Keras on TensorFlow and Neural Net) were used to determine the best predictive model
for the BTS. The models were compared through ten-fold cross-validation. The obtained results
revealed that the model based on Keras on TensorFlow outperformed all the other considered models.

Keywords: evaporitic rocks; tensile strength (Brazilian); Elastic Net; Ridge; Lasso regression;
TensorFlow

1. Introduction

The TS of a rock is a critical variable for geotechnical, mining, and geological engineer-
ing applications in designing foundations, tunneling, ensuring slope stability, rock blasting,
underground excavation, and mining [1–4]. Two types of methods, direct and indirect,
are available for predicting the TS of rocks. The direct methods are difficult, expensive,
time-consuming, and require high-quality core samples. Alternatively, the TS of rocks can
be estimated using empirical equations [2,4–9]. Indirect methods are preferred because they
are simple, economical, and faster at predicting the TS of rocks and reduce the burden on
the laboratory facilities incurred by direct TS testing or limitations on laboratory facilities
for direct TS testing. The BTS test suggested by the International Society of Rock Mechanics
is widely used, as it is a simple and easy-to-perform test [10]. In addition, various empirical
relationships between the BTS and point load index (PLI), Shore hardness index, Schmidt
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hammer rebound number, ultrasonic pulse velocity, second cycle of slake durability tests
(Id2), porosity (n), etc., are usually employed to estimate the BTS of different rock types,
including evaporitic rocks [2,5,8–14].

However, there are few direct studies on the BTS estimation of evaporitic rocks.
Heidari et al. [12] collected 40 evaporitic rock blocks of the Early Miocene Gachsaran
Formation from various locations in Iran. They prepared disk-shaped specimens from
cylindrical core samples, which were drilled from evaporitic rock blocks for the BTS test,
and the test specimens were tested under air-dry and saturated conditions. They reported
that a strong correlation existed between BTS and PLI, but the saturated state (R2 = 0.77)
exhibited a weaker correlation compared to the air-dry state (R2 = 0.87). In particular, they
stressed that the provided empirical equations could be used only for evaporitic rocks
of the Gachsaran Formation and not for evaporitic rocks in other areas. Arman et al. [2]
performed detailed studies on the strength estimation of evaporitic rocks from the Early
Miocene Lower Fars (Gachsaran) Formation from Al Ain city in the United Arab Emirates
(UAE). They prepared over 210 core specimens from the 48 evaporitic rock blocks collected
from south of the Jabal Hafit mountain in Al Ain city and used some of these samples
to prepare BTS disk specimens. BTS tests were conducted on 124 test samples as per
the American Society for Testing and Materials (ASTM) standards [15]. They estimated
the correlation coefficient, i.e., R-values between BTS and PLI and between BTS and Id2
tests as 0.53 and 0.59, respectively. They highlighted that the textural and compositional
characteristics of evaporitic rocks considerably affect their strength and recommended
caution when dealing with evaporitic rocks in engineering applications owing to the effect
of textural variations in test samples on the strength values.

As alternatives to empirical modeling, various intelligent methods, such as artificial
neural networks (ANNS), firefly algorithm, and neuro-fuzzy interface system (ANFIS),
have been widely accepted in geoengineering disciplines. These methods are used for
predicting rock properties (e.g., strength, elasticity modulus, and slope stability) and are
applied in tasks such as tunneling and blasting [16–38]. However, there are no studies on
the use of alternative intelligent methods for predicting the TS of evaporitic rocks. Yilmaz
and Yuksek [19] predicted the strength and modulus of elasticity of gypsum through
multiple regression, ANN, and ANFIS models. Among these models, the ANFIS model
provided better prediction performance for the uniaxial compressive strength and elastic
modulus of gypsum and was more reliable.

The present study aims to predict the BTS of evaporitic rocks using two simple index
properties, namely, Id2 and specific gravity (Gs). Testing for these properties is easy, fast,
and cost-effective owing to the application of various machine-learning algorithms such as
Elastic Net, least absolute shrinkage and selection operator (Lasso), and Ridge Regressions,
Keras on TensorFlow sequential ANN model, and non-sequential ANN models. These
methods were employed to find the improvement in the correlation and to determine the
most reliable model for predicting the BTS of evaporitic rocks.

2. Sampling, Experimental Work, and Data Collection

A total of 48 evaporitic rock blocks of various sizes were obtained from the Early
Miocene age (23–16 Myr) Lower Fars Formation. This formation comprised gypsiferous
layers interbedded with 3–5-m-thick, highly fragile mudstone, and marl. The blocks
were collected from a quarry located on the eastern side of Hafit mountain, Al Ain City,
UAE (Figure 1) [2,4]. To avoid possible anisotropy effects of thinly bedded rocks along
the gypsiferous layers, rock blocks were carefully selected by visual inspections (macro
level-naked eyes) during the field studies. All evaporitic rock blocks were brought to
the laboratory for shaping them into NX-sized cylindrical core samples (approximately
54 mm), which were then used to prepare test samples for the BTS tests. In the laboratory,
all test specimens for the BTS were carefully inspected with naked eyes for defects of
surface failures due to preexisting veins, macro cracks, and fissures, as such defects can
cause measurement bias. Then, 124 test samples were prepared and tested according to the



Appl. Sci. 2021, 11, 5207 3 of 14

ASTM standards [15]. In addition, index tests, namely, the Id2 and Gs tests [39,40], as well
as the BTS test, were performed. The partial test results of this study are listed in Table 1.
Id2 (%) values were in the range of 8.42–60.77% with a mean value of 36.42%. BTS was in
the range of 1.47–4.39 MPa with a mean value of 2.58 MPa. The Gs values were in the range
of 2.06–2.36 with a mean value of 2.16. For the analysis, the BTS was defined as the target
variable and Id2 and Gs were the input variables.
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Table 1. Partial data used in the study.

Id2 (%) Gs BTS (MPa)

34.9 2.18 2.59
19.0 2.11 1.78
28.0 2.14 2.59
17.0 2.10 1.80
54.1 2.20 2.70
51.9 2.36 2.02
20.3 2.09 2.09
44.6 2.35 1.72
48.8 2.18 2.47
8.4 2.16 2.22

35.1 2.15 3.36
51.1 2.09 3.46
53.5 2.13 3.39
20.7 2.13 1.94
45.7 2.16 3.19

3. Methodology

After the evaporitic rock samples were tested, qualitative and quantitative assessments
were conducted. Figure 2 shows the scatterplot and probability plots of the 3 variables—
BTS, Id2, and Gs—along with their correlations. The probability plots show that BTS and
Gs were unimodal whereas Id2 is bimodal with modes at 20.7 and 45.7. Figure 3 shows the
normal probability plot of the BTS. A Darling–Anderson normality test was conducted,
and it had produced a p-value of 0.278, which was clearly indicating the symmetrical
distribution of the BTS.
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Figure 2. Scatterplot and the probability plots of the three variables.

Quantitative summary statistics of the data are presented in Table 2; the means of
the three variables, BTS, Id2, and Gs, are 2.58, 36.29, and 2.16, respectively, whereas their
medians were 2.52, 42.9, and 2.15, respectively. In addition, 95% confidence intervals for
their true means are listed in the same table.
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Table 2. Descriptive statistics of the BTS.

Variable Mean Median Range 95% CI for M

BTS (MPa) 2.5819 2.5250 2.9200 (2.40, 2.762)
Gs 2.1619 2.1500 0.3000 (2.142, 2.181)

Id2 (%) 36.29 42.90 52.40 (31.93, 40.64)

4. Model Development

The aim of this study was to compare the effectiveness of four regression models
in a machine-learning setup and ANN models to explain and predict BTS. Statistical
relationships between the response variable, BTS, and Id2 and Gs were established to
estimate the BTS. The predictive performances of multiple linear regression (MLR), ANN,
and panelized regression models, including Ridge regression, Lasso, and Elastic Net
were compared.

4.1. A. ANN

ANN is one of the most commonly used supervised machine-learning methods. These
computational models have been applied to a variety of problems in many fields. ANN
comprise three main parts: input layers, hidden layers, and an output layer. The structure
of an ANN plays a major role in determining its performance [41]: the choice of the number
of hidden layers and neurons is crucial. Many software packages, including deepnet,
neuralnet, mxnet, h2o, keras, and tensorflow, implement ANN. In this study, two of the
most commonly used packages in R, namely, Neural Net and Keras on TensorFlow were
employed. A Keras sequential model with two hidden layers with three and two neurons
respectively, was found to be the optimal ANN model. Details about the limiting number
of hidden layers and neurons that can be used for any given set of input layers are available
in the literature [42–46].

4.2. B. Regularization

Ridge, Lasso, and Elastic Net belong to a family of regression techniques that use
L1-norm and L2-norm regularization penalty terms; a tuning parameter λ controls the
strengths of these penalty terms. These techniques were used as an alternative to the best
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subsets. Ridge regression was introduced by [47,48] to improve the prediction accuracy of
the regression model by minimizing the following loss function:

β̂ = argminβ||y− Xβ||22 + λ|| β
∣∣∣|22 , ||β||22 =

p

∑
j=1

β2
j (1)

If λ = 0, the resulting estimates are the ordinary least squares of the MLR. In Ridge
regression, the L2-norm penalty term was used to shrink regression coefficients to nonzero
values to prevent overfitting, but it did not play the role of feature selection.

Lasso regression was developed in the field of geophysics in 1986 and 1996 [49–52].
Lasso regression performs both feature selection and regularization penalty to improve
prediction accuracy. It combats multicollinearity by selecting the most important predictor
from any group of highly correlated independent variables and removing all the others.
An L1-norm penalty term was used to shrink regression coefficients, some to zero, thereby
guaranteeing the selection of the most important explanatory variables. Another advantage
of Lasso is that if a dataset of size n is fitted to a regression model with p parameters and
p > n, the Lasso model can select only n parameters [53]. The following loss function is
minimized to obtain estimates of the regression:

β̂ = argminβ||y− Xβ||22 + λ|β|1 , ( |β|1 =
p

∑
j=1
|β|1) (2)

Elastic Net is a variant of Ridge and Lasso and was introduced by [54]; its penalty
term contains a mixture of the Ridge and Lasso penalty terms and has the following
loss function:

β̂ = argminβ||y− Xβ||22 + λ (α||β||22 + (1− α)|β|1) (3)

where 0 ≤ α ≤ 1; α = 0 denotes Lasso whereas α = 1 denotes Ridge regression [54]. Some
of the coefficients can be shrunk as in Ridge, and some coefficients can be set to zero as
in Lasso.

5. Results and Discussion

After the data were collected, they were randomly split into training and test sets with
an 80:20 ratio (80% training and 20% testing; [55]), and the ranges of the independent vari-
ables in the training data were normalized by subtracting their means and dividing them
by their standard deviations. In machine learning, data normalization in the preprocessing
stage replaces the actual values of each independent variable into z-scores with a mean
of zero and a unit variance to reduce the variability among the different variables. The
normalization method is widely used to improve the convergence of the machine-learning
algorithms [56–58]. After data normalization, cross-validation (CV) techniques are used
to choose the best model. Similar to the bootstrap procedure, CV is a resampling method
used to validate the performance of a fitted model. In K-fold CV, the data are divided
into K subsamples. (K − 1)/K proportion of the data are used to build the model, and the
remaining 1/K proportion of the data are used as a test; this procedure is repeated K times.

In this study, CV was used to compare the performances of the six competing models
to identify the best model for BTS prediction. The root mean square (RMSE), mean absolute
error (MAE), and coefficient of determination (R2) were used to determine the best model
for predicting BTS.

5.1. A. ANN Model

Two R packages, namely, Keras on TensorFlow and neuralnet, were used to build
the ANN model. Keras is a high-level neural network application-programming interface
(API) written in Python, and neuralnet is a well-known ANN package written in R. Keras
runs on TensorFlow for the development and implementation of deep-learning models.
TensorFlow is an open-source platform for machine learning developed by the Google
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Brain Team. A Keras sequential model with the rectified linear unit (Relu) activation
function and neuralnet were used to determine the best model for predicting BTS.

Loss function (MSE), epochs, batch size, and learning rate are the training parameters
for the ANN sequential (ANNS) model. The epochs indicate the number of times the
dataset is passed through the network. The best ANNS model identified by the accuracy
measurement results was the model with a learning rate of 0.01%, a hidden-dim value of 2
with three and two neurons, respectively, the number of epochs as 100, a batch size of 16,
and a validation split of 0.20. The model had 20 parameters—9 for the first hidden layer, 8
for the second hidden layer, and 3 for the output layer. The model was trained very well
with the data, and the training error rate decreased very sharply, as seen in Figure 4; both
MSE and MAE decreased exponentially before 60 epochs and stabilized thereafter.
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The best ANN Neural net (ANNN) model had the same number of hidden layers as
ANNS. The coefficients of determination (R2) for the two models, ANNN and ANNS, were
62% and 69%, respectively.

5.2. B. Regression Model

To determine the best regression model for the normalized training set, we used regres-
sion feature selection methods such as forward selection, backward elimination, and the
best subsets. All these methods unanimously selected the second-order regression model
with two explanatory variables, Id2 and Gs. All the parameters were highly significant (see
Table 3), and the coefficient of determination R2 and adjusted R2 were 51.8% and 50.5%,
respectively. Figure 5 shows the predicted values from the interpolated regression model.

Table 3. MLR Parameter Estimates.

Variable Coeff. T-Value p-Value VIF

Constant 2.5878 36.39 p < 0.001
Id2 0.4622 6.00 p < 0.001 1.14
Gs 0.3006 −3.91 p < 0.001 1.14
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The normality test of the residuals is shown in Figure 6. The p-value of the Kolmogorov–
Smirnov test exceeded 15%, which clearly shows that there was no deviation from nor-
mality. Besides, the variance inflation factor (VIF) was very low (1.14), indicating that
multicollinearity was not detected. VIF values exceeding 10 were regarded as indicative of
multicollinearity.
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Figure 7 shows a diagnostic plot for the residuals of the model. The residual plot in
Figure 7 did not show any pattern of heteroscedasticity in the “nonconstant error variance”.
To test the correlation among the residuals, the Durbin–Watson test was performed, and a
test statistic of d = 2.50 was obtained. At the 5% significance level, the upper critical value
of the test was du, 0.025 = 1.51; clearly, the observed value of the test statistic was larger
than both du, 0.025 and 4-du, 0.025, these critical values support the claim that those errors
are not correlated.
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The family of penalized regression techniques was an alternative to MLR models and
examples of these family include Ridge, Lasso, and Elastic Net. Lasso and Elastic Net
are feature selection tools as well as predictive modeling techniques. These models apply
regularized constraints (λ, α) to the model coefficients and shrink some of them to zero.
To determine the optimal regularization parameter λ for these models, the cv.glmnet, and
glmnet R packages were used. These functions use penalized maximum likelihood method
to fit generalized linear models. The Ridge, Lasso, and the Elastic Net model paths were
fitted using the mean-squared error CV criterion. The workflow of the methodology of the
study is summarized in Figure 8.
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The family of penalized regression techniques was an alternative to MLR models and 
examples of these family include Ridge, Lasso, and Elastic Net. Lasso and Elastic Net are 
feature selection tools as well as predictive modeling techniques. These models apply reg-
ularized constraints (λ, α) to the model coefficients and shrink some of them to zero. To 
determine the optimal regularization parameter λ for these models, the cv.glmnet, and 
glmnet R packages were used. These functions use penalized maximum likelihood 
method to fit generalized linear models. The Ridge, Lasso, and the Elastic Net model paths 
were fitted using the mean-squared error CV criterion. The workflow of the methodology 
of the study is summarized in Figure 8. 

 
Figure 8. Methodology workflow.

First, a sequence of n lambdas was generated, and the training dataset was divided
into K = 10 folds. The model was cross-validated n times using nine subsamples as the
training set and the remaining sample as the test set. Each time, as MSE was computed,
a fold was removed and a different one was chosen. The lambda value with the smallest
MSE was chosen, and the best model was fitted. The upper panels of Figure 9 show CV
MSE as a function of log (λ). The vertical dashed lines in these plots represent the log (λ)
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value with the minimum MSE and the largest value of log (λ) within one standard error to
that of log (λ) with the minimum MSE for the Ridge and Lasso models, respectively.
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The plots in the lower panels of Figure 9 show the shrinking of the coefficients of the
Ridge and Lasso models as a function of log (λ). All the coefficients of the Ridge and Lasso
models approach zero at log (λ) = 4 and −1.5, respectively, whereas those of the Elastic
Net approach zero at log (λ) = 1. For the Elastic Net, the best value of the regularization
parameter estimate is λ = 0.007, corresponding to α = 0.1.

The mean square error of each model was calculated, and the (λ, α) values with the
minimum mean square error were chosen to build the best model. The estimates of these
parameters for the four competing regression models with their root mean squares (RMSE)
are listed in Table 4.

Table 4. Estimates of regularization parameters.

Model λ α RMSE

MLR 0 0 0.435
Ridge 0.035 1 0.434
Lasso 0.009 0 0.435

Elastic Net 0.007 0.1 0.435

The results of the information criteria for the 10-fold CV for the four regression models
are listed in Table 5. These results show no apparent differences among the four regressions
models; all the accuracy measurement results are close.

Table 5. Comparison of the regression models.

Model R2 MAE RMSE

MLR 0.669 0.351 0.435
Ridge 0.670 0.348 0.434
Lasso 0.670 0.349 0.435

Elastic Net 0.670 0.348 0.435
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Figure 10 shows the performances of the compared models. The R2 values of the
models indicate that the ANNS outperformed all the other models.
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The results of the accuracy measurements, i.e., RMSE, MAE, and R2, are listed in
Table 6 for comparing the performances of the six models. The R2 and MAE values indicate
that the ANNS model outperformed all the other fitted models. With regard to RMSE,
the Lasso and MLR models have a slight advantage over the other models. Penalized
regression methods work very well when the number of explanatory variables is large,
whereas ANNS performs best when the sample size is large.

Table 6. Performance comparison of the models.

Model R2 MAE RMSE

ANNS 0.689 0.281 0.370
ANNN 0.623 0.300 0.388

MLR 0.674 0.288 0.364
Ridge 0.672 0.295 0.368
Lasso 0.673 0.291 0.365

Elastic Net 0.670 0.294 0.367

6. Conclusions

In this study, six methods, namely, ANNS, ANNN, Ridge regression, Lasso regression,
MLR, and Elastic Net regression, were examined to build a model that can be used to
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predict BTS. Most of these methods perform variable selection, which is the process by
which a reduced number of independent variables is chosen, as well as prediction. Both
ordinary least squares and maximum likelihood methods were used to fit the BTS data to
these models. Those are well-known methods that can provide highly accurate predictions.
The limitations of those methods were investigated using 10-fold CV criteria, and the
results have demonstrated all the methods are useful and competitive for use along with
the other existing modeling methods. Another key limitation of this study is the size of the
data. However, these samples were the averages of large sample sizes with unequal lengths.
Such cases are more common when the cost of the extraction is very high or it is difficult
to obtain enough samples. Prediction results from the six best models produced by the
above techniques are compared by using Root Mean Square Error (RMSE), Absolute Mean
Error (MAE), and the coefficient of determination (R2). Based on the results of the RMSE,
the accuracy of the predictions for the BTS values obtained from all the competing models
are very close, but the results of the MAE and R2 have shown that the Keras sequential
model outperformed the other competing models. Although this dataset indicated the
simplicity and the potential superiority of the ANNS model, but ANNS is closely adapted
to the training data, and exploiting its broad flexibility demands ingenuity in choosing the
estimation method to achieve high accuracy prediction. Besides, Elastic Net and Lasso
play an important role in the studies with small sample sizes that have large number of
parameters. In such cases, those techniques, which are mainly used for the analysis of
small samples, are the best candidates to be employed for the modeling and the prediction
of such data types.
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