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Featured Application: Patient-specific, 3D CAD model of the mandible and of the proximal fe-
mur can be obtained from a limited set of measurements; these models can be used for custom-
made designs or for pre-operative planning.

Abstract: Principal components analysis is a powerful technique which can be used to reduce data
dimensionality. With reference to three-dimensional bone shape models, it can be used to generate
an unlimited number of models, defined by thousands of nodes, from a limited (less than twenty)
number of scalars. The full procedure has been here described in detail and tested. Two databases
were used as input data: the first database comprised 40 mandibles, while the second one comprised
98 proximal femurs. The “average shape” and principal components that were required to cover at
least 90% of the whole variance were identified for both bones, as well as the statistical distributions
of the respective principal components weights. Fifteen principal components sufficed to describe
the mandibular shape, while nine components sufficed to describe the proximal femur morphology.
A routine has been set up to generate any number of mandible or proximal femur geometries,
according to the actual statistical shape distributions. The set-up procedure can be generalized to any
bone shape given a sufficiently large database of the respective 3D shapes.

Keywords: PCA; mesh morphing; stochastic bone models; mandible anatomy; proximal femur
anatomy; 3D model generator; comparative anatomy

1. Introduction

Great emphasis has been given in recent years to the possibility of producing patient-
specific devices. In this context, the subject’s geometry is generally obtained through
reconstruction from Computed Tomography (CT) scans or Magnetic Resonance (MR)
scans [1]. In all these cases, the 3D geometry can be built with very good accuracy, especially
when detailed technical guidelines are followed [2,3].

However, CT and MR exams are often confined to a limited number of applications
on a restricted cluster of patients [4]. This is due to the limited availability of the respective
scanners, high exam costs and the radiation considerations of X-ray. As such, since the
1980s’, attempts have been made in order to generate virtual 3D geometries from a limited
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number of physical measurements [5,6]. Noble and coworkers, for example, performed ex-
tensive studies on femoral bone geometry in order to correlate some key measurements [7],
while some of the authors of this paper were involved in the creation of a 3D geometry
given the only antero-posterior and or medio-lateral views [8]. More recently, a systematic
and very efficient approach to study “similar” shapes (that is similar geometries) has
become widespread: this is based on Principal Component Analysis (PCA). PCA is an
extremely powerful tool, able to represent one specific shape as a linear combination of
multiple modes of deformation such as stretching along a given direction, torsion, or more
complex transformations defined as a set of points displacements. These modes are the
same for any shape belonging to the same family of shapes (e.g., a given bone), while
the respective coefficients (or weights) change from one sample to another one. In this
way, measured geometries can be described with a limited set of parameters that are the
coefficients (or weights) of the above mentioned PCA modes [9]. Once the PCA modes
are known, one may apply new virtual weights to each mode to obtain new bone shapes
by the linear combination of PCA modes and the corresponding virtual weights. Therein
lies the power of this technique: once PCA modes have been identified, it is possible to
generate an arbitrarily large number of shapes without further clinical images.

In this light, the impact of PCA on patient-specific design is twofold: on the one hand,
it is possible to obtain an accurate 3D geometry from a limited set of measurements, taken
on patients themselves or from one/two radiographs; on the other hand, the 3D design of
medical devices can be easily parametrized to cover the specific patient’s need. In addition,
new surgical techniques and new devices can be tested on a population virtually generated
according to the actual statistical shape distribution.

In the following paper, the procedure regarding the construction of a PCA-based
statistical model is described in detail using two databases of CTs. One database refers to
the mandibular bone and the other refers to the proximal femur bone. These databases will
be used as a benchmark to illustrate the whole procedure, and to illustrate how a limited
set of parameters allowed to define a patient-specific geometry with good accuracy. In
addition, a further application is presented, based on which new instances can be created.
Here, the empirical statistical distributions of the PCA weights of the training databases
are sampled. These new weights are multiplied to the previously identified PCA modes to
produce the new instances. All data have been reported extensively and the tool to produce
new instances is available to the whole scientific community.

2. Materials and Methods

Figure 1 presents a workflow which illustrates the full procedure which will be
described in more detail in the following paper.
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Figure 1. A schematic workflow gathering the steps of the whole procedure: mesh morphing,
Generalized Procrustes Analysis (GPA), Principal Component Analysis (PCA), Statistical Shape
Model (SSM) and stochastic model.

2.1. Reference Database

Collecting a wide database of anatomical morphologies is the first step when setting
up a procedure to carry out PCA and define “Principal Components” (PCs) for a given
bone. The database should be as wide as possible to cover the variability of the subset
being analyzed as much as possible: this subset could cover the entire world population or
could be confined to certain nations, age, gender, etc. In the present case, the mandibles
database was limited to an adult population living in Italy, while the proximal femur
database referred to an adult population, living in the UK. As such, it would not be possible
to extend the respective results straightforwardly to populations living in different nations
or having a different age.

The mandible database was made up of 40 CT scans, and the proximal femur database
included 98 CT scans; all CT scans were provided anonymously, and had been performed
in the ordinary clinical practice of hospitals. As for the mandible dataset, CT scans came
from different hospitals, different machines, and were obtained with various set ups (input
energy, slice thickness, etc.), as is likely to happen whenever the reference database is
built from existing CT scans, without performing ad-hoc examinations. The proximal
femurs CT scans instead, comprised of 98 Caucasian women who were at least 5 years
post-menopause: 49 of them had suffered from a hip fracture, while the other 49 were
selected to be pair-matched in terms of age, height and weight. The study was approved
by the Sheffield Local Research Ethics Committee, and all subjects gave informed written
consent. The patients underwent QCT scans (LightSpeed 64 VCT, GE Medical Systems
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at 120 KVp/150 mA), with the scanned region including from above the femoral head to
3.5 cm below the lesser trochanter. Details of the cohort are reported in [10], while the
extraction of the geometries used as inputs for the PCA is described in [11].

For the two databases, CT scans of severely deformed bones (from congenital mal-
formations or injuries) were discarded; details concerning the analyzed mandibles and
proximal femurs are listed in Table 1.

Table 1. Details of mandibles and femurs database.

Mandibles Training Dataset Femurs Training Dataset

Number of CT scans 40 98
Age 20–96 55–90

Gender 32.5% female 100% female

2.2. Iso-Topological Meshes: Mesh Morphing

As detailed in the next paragraph, PCA requires the identification of points of corre-
spondence, called landmarks, among all the shapes in the training set. For 3D shapes the
identification of these nodes is not trivial [12,13] and one solution is to create iso-topological
meshes, which are meshes having the same number of nodes N, the same connectivity
matrices, and where nodes having the same identifying number are located at the same po-
sitions on the given geometry [14]. For example, with reference to the mandible, node #851
is located on the left coronoid process for all geometries, node #1235 is located on the right
condyle, and so on. The approach implemented for the definition of corresponding nodes
on 3D shapes is based on the mesh morphing technique, which allows a mesh representing
a shape (standard mesh) to adapt to another mesh representing a similar shape (target
mesh); the standard mesh is built on a given shape which can be freely chosen among
all the available ones, and it should possibly represent a geometry that does not include
peculiar morphologies. This kind of approach overcomes the correspondence problem
for three-dimensional shapes, especially for complex ones, because the morphing of a
standard mesh to all the other shapes, defining the training dataset, guarantees the perfect
correspondence between nodes and therefore facilitates the identification of landmarks for
shape analysis. Moreover, due to the iso-topology among meshes, all nodes can potentially
be considered as shape landmarks. The mathematical problem of mesh morphing can
be reduced to an interpolation between nodes and in the present study this interpolation
was performed using the so-called radial basis functions (RBF) [15,16]. The RBF approach,
based on the known displacement of a limited number of nodes, called control points,
allows to interpolate the displacement that the whole set of nodes has to undergo in order
to obtain morphing. The basis function κ is “radial” in the sense that it depends on the
Euclidean distance r between the set of nodes x, representing the nodes of a standard shape,
and the set of control points xc (c = 1, . . . , n), representing the centers of the function:

r =||x− xc||2 (1)

Many different radial basis functions exist and can be implemented for the displace-
ment interpolation: both piecewise smooth (linear, cubic, thin plate spline) and infinitely
smooth (i.e., Gaussian, inverse quadratic, multi-quadratic) functions can be implemented
for morphing purposes.

Herein, after some preliminary comparison analysis involving different RBFs, a linear
formulation has been found to provide the best response in terms of nodes deformation for
the analyzed shapes; this RBF is defined as:

κ(r) = r (2)
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Nodes belonging to the standard mesh (x) are moved to a new position (xnew) follow-
ing the interpolation provided by the RBF as follows:

xnew = x +
n

∑
c=1

κ(r)wc = x +
n

∑
c=1
||x− xc||2wc (3)

where the coefficients wc are computed according to the constraint that the new position of
the control points (xc,new) on the standard mesh has to coincide with the corresponding
control points on the target shape (xc,target):

xc,new = xc,target (4)

xc,target − xc =
n

∑
c=1

rwc (5)

The implemented process for the generation of iso-topological meshes was built
following the following steps:

1. A set of control points, corresponding to relevant anatomical landmarks were identi-
fied on the standard mesh and on all the other shapes in the training set;

2. The standard mesh was morphed onto the target geometry using routines developed
for this aim in MATLAB (v. 17, The MathWorks, Inc., Natick, MA, USA), based on the
mesh morphing process described above (Equation (3));

3. As a result of the morphing procedure, the standard mesh was deformed, obtaining a
mesh iso-topological to the original standard mesh and with a shape close to the target
geometry. In order to achieve the best shape reproduction, nodes of the morphed
standard mesh were projected perpendicularly to the closest triangle of the target
mesh, along the triangle normal vector: in this way the morphed mesh was further
adjusted to the target geometry;

4. A Laplacian smoothing was then applied to the projected nodes [17], i.e., each node
was replaced with the centroid of its neighboring nodes; this operation allowed to
improve mesh quality;

5. Node’s projections and Laplacian smoothing were applied iteratively until the iso-
topological mesh replicated the target geometry well. In particular, the process was
stopped when the maximum deviation between the morphed mesh and the target
one was below 2 mm.

It is well known that Laplacian smoothing should be carefully used due to the possible
loss of anatomical information arising from this mesh manipulation. Indeed, when a high
number of iterations is required to obtain a satisfying smoothing level, other filter options
should be considered (i.e., Taubin smoothing algorithm [18]). This aspect was considered
within the morphing procedure. Specifically, an error distribution analysis between the
morphed shape and the corresponding original geometry was performed for every bone in
the training set. The average error settled below 2 mm, thanks also to the limited number
of iterations (two or three) required to obtain a regular morphed geometry.

2.3. Creation of a PCA-Based Statistical Shape Model

A Statistical Shape Model (SSM) allows the prediction of a general shape as the sum of
an average shape and a certain number of “‘transformations” (the so-called PCs, or modes),
tuned by the respective weights:

G′CNR = GCNR,avg +
M

∑
i=1

Wi·PCi (6)

where: GCNR,avg is an average geometry, described by a vector of N × 3 components, where
N is the total number of mesh nodes; PCi is the ith principal component (or mode); Wi is a
scalar which represents the weight to be assigned to the ith PC.
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In this formulation, the average shape provides the mean anatomical information of
the considered geometry (bones in the present case); the average shape can be obtained
from all geometries belonging to the training set once they have all been scaled to be the
same size, centred (i.e., their centres of mass are coincident) and aligned. The PCs represent
the main (i.e., the most variable) directions of deviation from the average shape highlighted
by the analyzed cohort. The linear combination of these PCs through properly computed
weights generates a new shape, belonging to the same “family”, i.e., to the same statistical
shape distribution.

The average shape (GCNR,avg) can be evaluated through the Generalized Procrustes
Analysis (GPA), while the variability model Wi·PCi is actually defined through PCA.
Both procedures require: (1) the definition of landmarks able to describe the 3D shape
(correspondence nodes) on all the shapes in the training set; (2) having obtained iso-
topological meshes through the mesh morphing technique. In the following analyses, the
whole node set of each mesh was used as the landmark set.

In the following, a 3D geometry Gi will be represented by a N × 3 matrix, where xi,j,
yi,j, and zi,j are the coordinates of node j (j = 1 . . . N) belonging to shape i (i = 1 . . . M).

As a first step, given a set of M geometries Gi (i = 1 . . . M) representing the same
shape (either the mandible or the proximal femur in this case), the data were pre-aligned
and scaled in order to remove rotation, translation, and to achieve uniform scaling. This
was performed using GPA [19], which consisted of finding the transformation Ti so that
each shape Gi best aligned with a target mean shape (GCNR,avg). The “best” alignment
was defined in terms of the minimized sum of squared distances over the nodes in the
coordinate frame between the aligned shape and the average shape.

Data translation could be performed straightforwardly calculating for each ith shape,
the average of x, y, and z coordinates (that is the centre of gravity of the point cloud) and
subtracting its value from the respective node coordinates:

xi =
N

∑
j=1

xi,j

N
; yi =

N

∑
j=1

yi,j

N
; zi =

N

∑
j=1

zi,j

N
(7)

(
xi,j, yi,j, zi,j

)
C =

(
xi,j, yi,j, zi,j

)
− (xi, yi, zi) (8)

The new node coordinates were listed into a new centered matrix Gi,c whose centroid
was located at (0, 0, 0).

As a second step, the matrices were scaled according to a scale factor Si, obtained by
dividing each matrix by the respective norm, and multiplying the result by the average
norm Normavg:

Normavg =
N

∑
j=1

Norm(Gi,C)

N
; Gi,CN =

Gi,C

Norm(Gi,C)
Normavg = Si·Gi,C (9)

Eventually, an iterative procedure was started:
All matrices were averaged:

GCN,avg =
M

∑
i=1

GCN
M

(10)

in order to provide an initial estimate of the average shape.
Each shape Gi,CN was rotated to be aligned to GCN,avg: the rotation matrix Q was

obtained from the singular value decomposition of the product of shape Gi,CN by the
average shape calculated in the previous step:

[Ui, Vi] = SVD
(

GCN,avg
T × Gi,CN

)
(11)

Qi = Ui ×Vi′ (12)



Appl. Sci. 2021, 11, 5204 7 of 14

Gi,CNR = Gi,CN ×Qi (13)

New rotated matrices Gi,CNR were therefore obtained.
The distances between each shape Gi,CNR and the average shape GCN,avg were summed

over all nodes and all shapes, obtaining:

D =
M
∑

i=1

N
∑

j=1

√[(
xi,j
)

CNR −
(
xj
)

CN

]2
+
[(

yi,j
)

CNR −
(
yj
)

CN

]2
+
[(

zi,j
)

CNR −
(
zj
)

CN

]2
(14)

If the distance value was greater than a threshold value, a new average shape was
computed, and the process started again from point 2.

The iterative process ended when the sum of squared distances D had converged
(deviations smaller than 0.001 mm2).

Eventually, a set of centred and aligned geometries, sharing the same norm, was
obtained; they will be called G’i (i = 1 . . . M), in the following paragraphs.

PCA could be applied on this set of geometries in order to obtain the variability model.
The calculation of PCs required, first of all, that matrices Gi,CNR and GCNR,avg were

reshaped. These were organized in one single column vector, being composed of 3N
elements, named Vi,CNR. and VCNR,avg, respectively. Next, a new matrix MCNR was built,
whose ith column was made of (Vi,CNR-VCNR,avg); MCNR size was therefore N ×M. Finally,
PCi sets were calculated as the eigenvectors of the covariance matrix COV given by:

COV = MCNR ×MCNR′ (15)

PCs satisfy the following properties:
Whatever couple of eigenvectors PCi, PCj are orthogonal: in other words, the following

equations holds for i = 1 . . . M; j = 1 . . . M; i 6= j:

PCi·PCj = 0 (16)

PCi, PCj are sorted according to the respective eigenvalue λi which represents the
variability among vectors of MCNR, captured by the ith PC.

2.4. Stochastic Shape Model

The first result of the whole procedure is related to the definition of the number of
PCs which are required to explain at least 90% of the total variation among subjects. Given
the size of database used here, it is obvious that 40 PCs would cover 100% of the whole
variability in the case of the mandible and 98 PCs would do so in the case of the proximal
femur. However, the procedure actually comes to be useful if the number of PCs needed
to cover 90% variability is significantly smaller than the number of available subjects.
Indeed, PCs represent the main possible shape variations present in the analyzed cohort
and they are sorted starting from those explaining the largest variability. The goodness
of fit resulting from using a limited set of PCs can be checked employing Equation (6)
to fit the shapes of the training set, and calculating average distance between the actual
node positions and the fitted node positions. In addition, the frequency distribution of the
shapes scale factor Si (Equation (9)) as well as the frequency distribution of the weight Wi
assigned to each ith component (Equation (6)), can be estimated. Both these factors were
evaluated here considering all bones belonging to a training set and the respective nodes.

One application of these stochastic distributions is setting up a procedure to generate
new mandible and femur morphologies based on the respective distributions. This could be
useful in order to test innovative surgical techniques and new prostheses on large samples
(virtual population of 3D bone models).

The stochastic bone model can be developed recurring to the so-called “inverse
transform sampling method”, as explained in the following:

1. A random number ranging between 0 and 1 is generated for each component and for
the scale factor;
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2. The random number is considered as a value of the cumulative density distribution
of scale factors or weights and the respective inverse function is calculated. In this
way, random weights (WiR) and a random scale factor (SR), are obtained, distributed
according to the empirical cumulative density distribution function, recorded from
each bone training set;

3. A new bone is generated according to the following equation:

G′R,CNR =

(
GCNR.avg +

M

∑
i=1

WiR·PCi

)
·SR (17)

3. Results

Figure 2 displays the pattern of the cumulative explained variance versus the number
of PCs. According to Figure 2, 15 components (out of 40 analyzed shapes) are sufficient to
cover over 90% of the total variance in the case of the mandible, while only 9 components
are able to cover over 90% of the variance in the case of the proximal femur.

Figure 2. Cumulative explained variance versus the number of principal components for the mandible (a) and for the
proximal femur (b).

The regression of each mandible versus the respective PCs has resulted in a root mean
square error below 1.13 mm, while the same error has resulted to be below 1.09 mm for the
proximal femurs.

The different PCs describing the main shape variations with reference to the average
shape are illustrated in Figures 3 and 4 for the mandible and for the femur, respectively.
The respective animations are reported as Supplementary Materials.

Figure 3. The first 15 mandible principal components (PCs). The average mandible shape is rep-
resented in blue, while the deformations along the ith PC applying a weight equal to ±

√
λi are

reported in green/brown.
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Figure 4. The first nine proximal femurs principal components (PCs). The average femur shape is
represented in blue, while the deformations along the ith PC applying a weight equal to ±

√
λi are

reported in green/brown.

Following the definition of the SSM (Equation (6)), each ith PC contributes to determine
the geometry of each bone sample with a certain weight Wi. Hence, the frequency distri-
butions of these weights among the whole analyzed cohort can be considered. Figure 5a
shows them with reference to the mandible’s dataset. It is evident that the normality of
distributions is quite questionable. For this reason, the authors chose to develop a stochastic
model based on empirical cumulative frequency distributions (Figure 5b).

Figure 5. Empirical Frequency (a) and cumulative frequency (b) distributions of weights for each principal component,
with reference to the 40 mandibles set.
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New sets of 20 bones, the size having been defined arbitrarily for example purposes,
could therefore be generated applying inverse transform sampling for both the mandible
and the proximal femur changing the PCs weights; the results are reported in Figures 6 and 7.

Figure 6. New set of 20 mandibles, generated through inverse transform sampling, applied on
empirical cumulative weight distribution of weights for each component.
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Figure 7. New set of 20 femurs, generated through inverse transform sampling, applied on empirical
cumulative weight distribution of weights for each component.

4. Discussion

The here presented work was mainly aimed at illustrating the procedure to adopt
in order to build an SSM. Two databases referring to two different bone sites were used
to illustrate the procedure. The proximal femur database was definitely larger and could
therefore be considered more exhaustive compared to the available mandible database,
which was more limited. In both cases, PCA proved its efficiency in summarizing the
main anatomical features: 40 mandibles were considered, and as a result of PCA, 15
components sufficed to generate a theoretically infinite set of different mandible shapes,
able to cover 90% of the variability identified in the original database. As far as the 98
proximal femurs database is concerned, 90% of the shape variance could be covered by
nine PCs. The geometry of the proximal femur is certainly simpler compared to a full
mandible, and it is not therefore surprising that a smaller number of PCs was required to
cover almost the whole variability present in the more numerous database; this aspect is
also confirmed from the work of Taylor et al. [20]. From this perspective, the number of
PCs is actually a measure of the geometric shape complexity [21].

The generation of new geometries must follow the empirically estimated frequency
distributions of weight components, in order that the actual variability found in nature
is reproduced. The hypothesis of a normal distribution is questionable according to the
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results that were obtained: therefore, the authors preferred to avoid fitting the cumulative
frequency with a known statistical distribution. If statistical tests were performed to
check weight distributions normality, this statistical hypothesis would not be rejected in
most cases. However, it is well known that failure to reject statistical hypothesis does
not mean, as assumed by some authors, that the normality of the distribution has been
demonstrated [22]: the approach followed herein by the authors was therefore certainly
considered more precautionary.

The possibility to create a statistically sound set of bones is a mandatory issue when,
for instance, a prosthesis needs to be designed to cover the need of a whole population [23].
In addition, it can provide key information for the design of parametric [24] and modu-
lar [25] models. Three-dimensional models can also be used to create patient-specific finite
element models [6,26] or multibody models in order to study the structural behaviour of a
prosthesis or of a synthesis device [27,28]: in this whole context, working on iso-topological
meshes allows straightforward applications in the setup of numerical procedures, without
additional need for technical skills.

Statistical shape models might also be used for diagnostic purposes, in order to assess
if a certain morphology could be considered as “normal”, checking if it falls inside a given
probability range [29] as well as more deeply investigating relations between anatomy and
a number of pathologies [30–32].

The application of the SSM method was presented here to also consider the possibility
of predicting of new bone shapes. It must be said that CT scan data allows not only
the three-dimensional reconstruction of external and internal anatomical structures, but
also the extrapolation of information on material mechanical properties [30,33,34]. In this
context, when dealing with bones, the possibility to generate new instances enables us
to gather not only the shape but also the local density that may indeed be preferable, in
order to have a full bone model for further investigations (i.e., static and dynamic analyses).
To this end, the same approach presented here might be also adopted for carrying out
PCA on the patient-specific local density values from the CT Hounsfield Units, so that the
prediction of the mechanical properties of new mandible and femur bone instances would
also be allowed. Thanks to the availability of CT images for the two bone districts analysed
here, this will in fact represent the next step to be tackled, so that the generation of new
bone instances gathering shape and density values will be made possible. The stochastic
geometric models created within this study and presented here are available for the whole
scientific community:

https://www.ing.unipg.it/en/research/industrial-bioengineering ‘Shared Files’ (ac-
cessed on 2 June 2021)

http://www.biomedlab.polito.it/en/research/biomechanics (accessed on 2 June 2021)
Geometrical models will be made available upon request, according to the experimen-

tal cumulative density functions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11115204/s1.
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