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Abstract: In the past half century, large eddy simulations (LESs) have played an important role in
turbulent flow simulation and improving the performance of computing technology. To generate a
fully developed turbulent boundary layer in the channel domain using LES, suitable inflow conditions
along with turbulent characteristics are required. This study aimed to clarify the effect of the integral
length scale on the generation of turbulent boundary layers. To accomplish this, an artificially created
boundary layer was imposed on the inlet section, which gradually evolved into a fully developed
turbulent boundary layer flow inside the numerical domain. In this study, the synthetic inflow
method, which is a commonly employed technique, was used by imposing the spatial and temporal
correlation between two different points on the inlet section. In addition, we conducted parametric
length scale studies on the inlet section and compared our results with existing data. The results
showed that the larger length scales in the spanwise direction were not only effective in achieving
the target shape of a fully developed turbulent boundary layer, but also developed it faster than the
smaller length scales.

Keywords: large eddy simulation; synthetic inflow generator; integral length scale; channel flow;
turbulent boundary layer; CFD

1. Introduction

In a variety of engineering and basic scientific area, the turbulent boundary layers over
smooth and rough wall surfaces have long been discussed and reported. It is usually related
with an increase in momentum transport, for example, see the literatures (Kovasznay [1],
Willmarth [2], Kline et al. [3], Sreenivasan [4] , Kline and Robinson [5], and Cermak and
Cochran [6]). Depending on the shape and height of the surface roughness, the flow field
could be substantially different in terms of the mean velocity and turbulence statistics (see
Rachele et al. [7,8] and Raupach et al. [9]) Regarding the details of turbulent boundary
layer on the surface, there have been more literatures (Meroney [10], Kolmogorov [11],
Prandtl [12], Tennekes and Lumley [13], Hunt [14], and Sun and Mahrt [15]).

In direct numerical simulation (DNS), all scales ranging from the smallest scales,
where the dissipation of the turbulence kinetic energy into thermal energy takes place
(termed the Kolmogorov length scale), up to the largest scales (typically defined by the
characteristic length of the flow configuration being considered) are resolved both in space
and time. Therefore, DNS requires enormous computational efforts. DNS studies are still
limited to the flow problems with small Reynolds numbers and simple geometries. On the
other hand, regarding large eddy simulation (LES), only the large scales are resolved,
and the effects of the smallest scales are modeled. This is because the large-scale eddies
are known to be largely affected by the boundary conditions and therefore should be
computed, but small scales are largely independent of the flow geometry and tend to be
homogeneous and isotropic, irrespective of the geometry being considered, and, therefore,
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can be easily modelled. Therefore, LES requires less computational effort than that for DNS,
and the computational requirements of the LES remain rather high for the optimization of
complicated processes where a large number of computations need to be performed.

The most direct method of generating a well-developed turbulent boundary layer
is to simulate a laminar inflow and allow it to develop spatially over a suitably long
domain, i.e., over a hundred times the thickness of the eventual boundary layer depth
of interest. However, even this “simple” method would present difficulties associated
with ensuring the correct surface conditions, such as the length scale and wall treat-
ment. Further, the computational cost would be very high. Alternatively, using a time-
evolving large eddy simulation (LES) or direct numerical simulation (DNS) with a periodic
(Lee et al. [16], Keating et al. [17], Lim et al. [18], Lim et al. [19]) or a “modified periodic”
(Lund and Wu [20]) boundary condition, the inlet–outlet boundary condition can be used
to generate the appropriate turbulent flow. For the latter, Lim et al. [18] used a sort of
“precursor simulation”, in which the velocity field at an appropriate downstream station is
stored and imposed in a suitably re-scaled form as the inflow data for the primary computa-
tion. The precursor simulation generates a realistic turbulent flow field. However, it is also
expensive and has limitations, such as its applicability to simple geometries only. Therefore,
it is difficult to determine the usefulness of such a method in actual urban-type scenarios.

Procedures that are based on proper orthogonal decomposition (Druault et al. [21],
Johansson and Andersson [22], Perret et al. [23]) may be less expensive than the above
methods for the generation of inflow data provided that there are appropriate DNS/LES (Jo-
hansson and Andersson [22]) or experimental datasets (Druault et al. [21], Perret et al. [23])
available for processing in order to obtain the most energetic modes, with an appropriate
set of time-dependent projection coefficients that provide the phase information. The re-
constructed inflow data for later LES/DNS are “almost realistic”. However, experimental
databases suffer from either low spatial resolution, which is common in measurements
from hot-wire or laser Doppler anemometry (Druault et al. [21]), or low temporal resolution,
as obtained from measurements using particle-image velocimetry (Perret et al. [23]).

Special treatment must then be applied to resolve the issues pertaining to its low
resolution. Consequently, such approaches are generally suitable only for very specific
cases; synthetic turbulence generation is another option and is of particular interest when
only limited turbulence statistics data are available. Hanna et al. [24] generated one-
dimensional (1D) time series of inflow data based on an exponential correlation function to
simulate flows over an array of cubes using LES. The time series were tailored to provide
the required time scale and turbulence intensities, and the subsequent LES was able to
reproduce the main characteristics of the measurements. The merit of that method is its
very high efficiency; however, its accuracy is seriously limited because no spatial correlation
was imposed at the inlet.

Because of the features of the atmospheric boundary layer flows as an inflow condition,
one of the representative studies would be the work of Xie and Castro [25] and Xie and
Castro [26]. They used the urban boundary layer flows, which should have a high Reynolds
number, and fully developed turbulence driven by large-scale motions. They used a digital
filter-based method, which allows spatially varying turbulence scales on non-uniform grids
to be imposed at the inlet. It was developed independent of the works of Mare et al. [27],
Veloudis et al. [28], whose methods were similar in some respects and have already been
used elsewhere (Jarrin et al. [29]). There are some more literatures (Renard et al. [30], Gupta
and Kalita [31], Barragy and Carey [32], Bennacer et al. [33], Kareem and Gao [34])

Therefore, this study investigated the flow characteristics in a channel with a smooth
wall by imposing synthetic inflow data having a varying length scale. Various inflow
length scales were imposed to examine their effect on the whole flow domain with the
aim of observing the relationship between the length scale and the development of the
turbulent boundary layer. This paper is organized as follows: In Section 2, the governing
equation and synthetic inflow generation using the digital filtering method for the LES inlet
condition are introduced and summarized. This is confirmed by making a comparison with
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the turbulent statistics from an existing DNS database. In Section 3, the synthetic inflow
generation technique was validated by the simulation of a smooth wall-bounded channel
flow. Furthermore, the characteristics of the turbulent boundary layers simulated by LES
using inlet data imposed by the synthetic inflow generation were analyzed. In addition,
the effects of the inlet length scales on the development of a flow structure inside the flow
domain were also investigated. Finally, Section 4 concludes this study.

2. Numerical Analysis
2.1. Governing Equation

To resolve the incompressible flow, we must estimate the flow structure for a wide
range of scales. The DNS method can resolve a wide range of scales, from large ones to the
Kolmogorov, which is the smallest scale. However, until now, its computational cost has
been too high for it to be used as a design tool. LESs resolve only a large scale of motion,
and the effect of smaller scales is modeled by the sub-grid scale (SGS) modeling.

In LESs, the governing equations for a large eddy are applied after a spatial filtering
operation. The spatial filtering operation is given by:

f (x) =
∫

G(x− x′) f (x′)dx′ (1)

where f is a turbulent field and G is a spatial filter.
The continuity and momentum equations for incompressible flows are obtained by

filtering the Navier–Stokes equations. The filtered Navier–Stokes equations are given by:

∂ui
∂xi

= 0 (2)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ 2ν
∂

∂xj
Sij −

∂τr
ij

∂xj
(3)

where τr
ij is the residual stress tensor. τr

ij is given by:

τr
ij = uiuj − uiuj (4)

In Equation (4), the residual stress tensor is unknown and should be modeled.
The eddy viscosity Boussinesq hypothesis is used for modeling the residual stress tensor
as follows:

τr
ij = −2µtSij +

1
3

τkkδij (5)

where µt is the turbulent viscosity of the sub-grid scale. The isotropic part of δij is added to
the filtered static pressure term without being modeled. In Equation (5), Sij is the filtered
rate of the strain tensor and is defined by:

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(6)

The Smagorinsky–Lilly model was used as a subgrid-scale model. In this study,
the Smagorinsky constant Cs was set to 0.065 (Moin and Kim [35]).

2.2. Modeling of the Inflow Generator

We investigated a synthetic inflow generator having a variety of length scales, which
was based on Xie and Castro’s method (Xie and Castro [26]) (XC). In this section, we present
a brief review of the XC model. The XC model imposes correlations using an exponential
function to satisfy the prescribed space and time correlations. The instantaneous value of
the velocity ui may be written as:

ui = ui + aijψj (7)
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where ui is the mean and aijψj is the fluctuating part of ui, which is called Reynolds
decomposition. The fluctuating part can be separated into two parts, aij, which is the
amplitude tensor, and ψj, which is the unscaled fluctuation with zero mean (ψj = 0), a unit
variance (ψjψj = 1), and zero covariance with the other distributions (ψjψj = 0, i 6= j).
The term aij using Reynolds stress Rij is the Cholesky decomposition of the Reynolds stress
by Le and Moin [36] as follows,

aij =


√

R11 0 0

R21

√
R22 − a2

21 0

R31/a11 (R32 − a21a31/a22

√
R33 − a2

31 − a2
32

 (8)

where Rij is the Reynolds stress tensor obtained from the experimental or previously
calculated numerical simulation data. If the boundary layer is homogeneous in the lateral
direction, R31 = R32 = 0; therefore, a31 and a32 can be removed.

The synthetic inflow generation technique using digital filtering aims to find the
unscaled fluctuation (ψj), which is a one-dimensional number sequence with zero mean,
unit variance, and spatial correlation. The correlations in the most turbulent shear flow
have similar features. The advantage of the correlation function is that it approximates the
relation of two different points to the form of an exponential function. The exponential
function is exp (−πr/βL, where β = 2. However, in the equation, β is not clearly defined,
and its function remains unclear. In this study, the exponential function was carefully tested
and subsequently modified. The modified exponential function is expressed as follows
(Kim et al. [37]):

R(r, 0, 0) = exp(−πr
4L

) (9)

where L is the integral length scale and r is a 1D random number sequence with zero mean.
The filter is designed to process a series of random numbers using an exponential function.
Taking a filter coefficient and a series of random numbers into account, the velocity field is
derived as follows:

ψm =
N

∑
j=−N

bjrm+j (10)

where ψm, bj, and rm are the velocity field, filter coefficient, and a series of random numbers
with zero mean (rm = 0), respectively, and unit variance (rmrm = 1). In addition, the inte-
gral length scale (L) can be considered as a multiple of the grid size (4x) and expressed as
L = n4x. In addition, N is determined by the integral length scale. The relation between N
and n was also carefully tested for N ≥ 2n, and finally, N = 2n was accepted. In this study,
the variation of the length scale was made in the inlet section. Using Equations (9) and (10),
the filter coefficient bj could be defined as shown in Equation (11).

bj = (b̃j)/

(
N

∑
k=−N

b̃2
k

)1/2

, b̃j = exp
(
−π|j|

2n

)
(11)

Based on these equations, one-dimensional data satisfying the required length scale
L, mean ψm = 0, and variance ψmψm = 1 can be obtained. The filter coefficient for a
two-dimensional (2D) plane can be obtained by the convolution of two 1D filter coefficients,
bjk = bjbk. It is expressed as follows:

ψm,l =
N

∑
j=−N

N

∑
k=−N

bjkrm+j,l+k (12)

In the first time step, the velocity data of a plane are generated by applying the filter
to the random number on the 2D plane. The data ψj(t, y, z) of the 2D plane are set to have
a constant length scale, Li = ni4xi, in the vertical direction and in the spanwise direction.
To impose a more precise length scale, it is also possible to divide the region of the inlet
plane and apply different length scales at each region. The time scale should be considered
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for the application of the plane velocity field data for the next time step. Based on Taylor’s
hypothesis, the Lagrangian time scale can be expressed as follows:

T = L/u (13)

where L is the length scale and u is the local mean velocity. In addition, the Eulerian time
scale, T, can be obtained from experimental or previous numerical analyses. The velocity
of the next time step can be calculated by Equation (14) using the velocity at the previous
time step.

ψi(t +4t, y, z) = ψi(t, y, z)exp
(
−π4t

4T

)
+ φi(t, y, z)

[
1− exp

(
−π4t

2T

)]0.5
(14)

where φi is obtained using a new set of random data; however, ψi is the plane velocity
field data of the current or next time step and T is a constant value for the entire inlet plane
representing the Eulerian time scale. Note that φi is fully random in time, its variance is
unity, and it is an independent variable from ψi(t, y, z).

2.3. Implementation of the Boundary Condition and Inflow Length Scale

In this study, a hexahedral grid system was used for the numerical simulation of mak-
ing fully developed turbulent flow. To improve the convergence efficiency in the solution
of the governing equations, a stretch mesh was used so that the grid was concentrated on
the wall surface, and the resolution was sufficiently high close to the wall, but coarse at the
far field from the wall. The Reynolds number (Reτ) on the smooth wall-bounded channel
flow was 150 based on the friction velocity (uτ) and the half height (d) of the channel.
The size of the whole computational domain was 60d× 2d× 3.5d in the streamwise (x),
wall normal (y), and spanwise (z) directions, respectively. The number of cells in the whole
domain was approximately 2.5 million, as shown in Figure 1. To improve the convergence
of the analysis, a stretch mesh satisfying y+ < 1 in the first cell center was considered
for the wall-normal direction. For the x and z directions, uniform meshes were used, and
the resolutions were 4x+ = 15,4z+ = 7.5. The number of cells in each direction was
600× 60× 70 in the x, y, and z directions, respectively. All statistics were averaged by
40t∗, where t∗ = tuτ/d is a non-dimensional time. Averaging for the statistical analysis
was performed after the initialization period of 400t∗. The Smagorinsky subgrid-scale
model was adopted with a constant cs = 0.065 (Moin and Kim [35]). The time step satis-
fies the condition that the CFL number should be smaller than one. The corresponding
4t∗ = 4t× uτ/δ = 0.001. A second-order implicit scheme was used for time discretiza-
tion, and a second-order central difference scheme was used for spatial discretization.
Furthermore, the transient incompressible flow solver was used, and the PISO algorithm
was adopted as the velocity–pressure coupling scheme. The PRESTO algorithm was used
as a discretization technique for pressure (Solozano et al. [38]).

Walls

(Top & Bo�om)

Periodic

(Le� & Right) Outlet

Inlet

2d

60d

3.5d

Figure 1. Schematic diagram of the computational domain (total number of cells: 600× 60× 70).
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The boundary conditions of this channel flow were: a no-slip condition on the top and
bottom walls, a periodic boundary condition in the lateral direction, and a zero-gradient
condition with no diffusion of all the flow variables on the outlet. The synthetic turbulence
obtained by the synthetic inflow generator was interpolated into the cell center of the
inlet plane. The statistical information of turbulent flow, including the first and second
moment statistics and the integral length scales used as input parameters to generate the
synthetic inflow, were obtained from the DNS database that analyzed the plane channel
flow (Moin and Kim [35]). The integral length scale Li was obtained using Equation (15)
with a two-point correlation and R(xi) in the DNS database.

Li =
∫ ∞

0
R(xi)dxi, i = 1, 2, 3 (15)

Figure 2 shows the length scale obtained from the DNS database and the simplified
length scale applied to the synthetic inflow generation. Figure 2a shows the distribution of
the streamwise direction length scale, Lx, along the wall-normal direction.

(a) (b) , 

, DNS

, DNS

, DNS

, in�ow

, in�ow

, DNS

, DNS

, DNS

, in�ow

Figure 2. Integral length scales (symbol: two-point correlation in DNS data; line: inflow generation).

If the relative turbulence intensities are sufficiently low, according to Taylor’s hypoth-
esis, the length scale can be determined by the local mean velocity u and the Eulerian
time scale T. Therefore, Lx(y) = T × u(y) is applicable (Taylor [39]). In the equation,
T is a constant, and the local mean velocity in the streamwise direction increases with
the distance from the wall, while the streamwise length scale also becomes large. In this
study, the turbulence intensity of the flow simulation was smaller than 0.3, and Taylor’s
hypothesis can therefore be applied across the entire domain. However, the streamwise
length scale obtained from the actual DNS was highest close to the wall and gradually
decreased in the freestream. To impose a precise streamwise length scale of actual DNS
data as the inlet condition, the three-dimensional (3D) domain should be considered when
generating the fluctuating part, ψi. The advantage of the inflow generation technique
considered in this study is that it can generate efficient inlet velocity field data at every time
step only on the 2D plane, while matching the second-order turbulent statistics obtained
from the experiment or a previously calculated simulation. Figure 2b shows the length
scale for the y and z directions. Notably, there are no DNS data of a length scale in the
wall-normal direction (y) in the existing literature. Therefore, because it is inhomogeneous
for the wall-normal direction, we assumed in the study that Ly = 0.67Lz for the length
scale in the y direction (see Iwamoto et al. [40]). As mentioned above, the entrance plane
can be divided into several sections, and different values of Ly and Lz were applied to
each section.
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2.4. Variation of Inflow Length Scale

In this study, the flow characteristics were observed with variations in the integral
length scales at the inlet section. As mentioned earlier, the streamwise local length scale,
Lx(y), is determined by the local mean velocity, u(y), and the constant time scale, T, where
the constant T could be obtained by Lx and u at y/d = 1. The spanwise length scale could
be applied as a multiple of L∗z , where L∗z is the reference spanwise length scale, which is
equivalent to the value Lz used in Figure 2. To observe the effect of the Lz distribution
on the flow field, this study chose several different values, such as 0L∗z (white noise),
0.15L∗z , 0.3L∗z , 0.5L∗z , 2L∗z , and 3L∗z (see Table 1). To achieve a precise matching with the L∗z
distribution of the existing DNS database, in the length scales L∗z , the domain needed to be
divided into three different zones. These zones were separated in several salient positions
at y/d = 0.1, 0.2. Table 1 presents the configuration of each case depending on the size
of the length scale in each zone. For instance, Case 02 did not consider the length scale
in the inlet condition, whereas Cases 01, 07, and 08 had a uniform spanwise length scale
in Lz. Besides, to observe the effect of different length scales on different zones, Cases 03,
04, 05, and 06 would play an important role, in addition to studying the variation of flow
statistics based on length scales. Depending on the location of the length scale, the zone
was divided at y/d = 0.1 and 0.2. In particular, Cases 07 and 08 had length scales that were
two and three times larger, respectively, than that of Case 01 for all the streamwise, vertical,
and spanwise directions.

Table 1. Size of length scales applied in the simulation.

Name y/d < 0.1 0.1 < y/d < 0.2 y/d > 0.2

Case 01 1L∗z 1L∗z 1L∗z
Case 02 0, random 0, random 0, random
Case 03 0.15L∗z 0.15L∗z 0.5L∗z
Case 04 0.3L∗z 0.3L∗z 1L∗z
Case 05 0.5L∗z 0.5L∗z 1.5L∗z
Case 06 0.3L∗z 1L∗z 1L∗z
Case 07 2L∗z 2L∗z 2L∗z
Case 08 3L∗z 3L∗z 3L∗z

2.5. Filtering Process and Correlation

This study adopted the filtering process in which random data are filtered and corre-
lated to obtain fluctuating data in ψm. When the series of random numbers was filtered
through the synthetic inflow model used in this study, the filtered velocity field data, which
were similar to the fluctuating part of the flow, were obtained. To apply this algorithm to the
synthetic inflow generator, the velocity field data were first generated in a 2D equi-spaced
uniform mesh and then interpolated into a non-uniform mesh with the aim of fitting it into
the more realistic inlet domain as an inlet condition.

Figure 3 compares the DNS database with the data from the synthetic inflow generator
for the mean and turbulent statistics. The non-dimensional parameters used here can be
defined as follows:

y+ =
uτy

ν
, u+ =

u
uτ

, < u′iu
′
i >

+=

√
Σ(u′iu

′
i)

uτ
(16)

In the figure, the ordinate axis shows the non-dimensional mean and stress profiles,
and the abscissa represents the non-dimensional distance from the wall (y+). In the mean
velocity profile u+, the current result agreed well with the overall range of the domain,
such as the law of the wall at y+ < 5 and the logarithmic law at y+ > 30. In addition, it can
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be seen that the axial and shear stresses from the synthetic inflow generator were in good
agreement with the DNS data. In this study, the mean velocity log law was applied as:

U
u∗

=
1
κ

ln
y− d

y0
(17)

where u∗ and d are the friction velocity (
√

τwall/ρ) and “zero plane displacement”,
respectively.

Viscous 

sublayer 5 30
Logarithmic

layer

Bu�er

layer

DNS

In�ow

Law of the wall

Logarithmic law

(a) (b)

(c) (d)

Figure 3. Statistical profiles from DNS and the synthetic inflow generator. (a) mean velocity profiles (b) streamwise stress
profiles (c) vertical and transverse stress profiles (d) Reynolds stress profiles.

3. Results and Discussion
3.1. Channel Flow Simulation Using the Synthetic Inflow Generator

Given that the synthetic inflow generator was available, the channel flow simulation
on the LES platform was initially conducted with the aim of observing the development
of the turbulent flow in the whole domain. The channel flow started with the data from
the synthetic inflow generator, adopting it in the inlet section, and developed the flow
downstream to the smooth wall-bounded channel. The development of the axial and shear
stress profiles are very important for identifying the fully developed flow, (Kim et al. [37],
Deck et al. [41]), as well as obtaining an appropriate turbulent flow downstream.

Figure 4 shows the development of dimensionless axial and shear stress distributions.
Figure 4a indicates the variation in the wall shear stress close to the surface from the inlet
to downstream of the channel; the ordinate axis indicates the non-dimensional wall shear
stress, defined as 〈τw〉+ = τw/(ρu2

τ), and the abscissa represents the streamwise distance
(x) from the inlet normalized by the half height (d) of the channel. To observe the effect
of the longitudinal domain size, two different domains (x/d = 12 and 60) were designed
and calculated. As shown in the figure, the wall shear stress decreased near the inlet of the
channel and slowly recovered downstream, becoming almost constant at around x/d = 30
(see solid line). Moreover, the short domain case (x/d = 12) did not recover (see dashed
line), and the difference between the highest and lowest magnitudes of 〈τw〉+ was much
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larger than that of the domain size x/d = 60. Therefore, if the domain size was set to
be less than x/d = 30, the wall shear stresses would be very low. Figure 4b shows the
Reynolds stress profiles at several equi-spaced positions, x/d = 0, 10, 20, 30, 40, and 50,
and the abscissa indicates the wall-normal distance from the wall surface normalized by d.

(a)

(b)

(c)

(d)

(e)

domain size : x/d =60

domain size : x/d =12

Figure 4. Spatial development of: (a) dimensionless wall shear stress; (b) shear stress; (c) axial stress (longitudinal); (d) axial
stress (vertical); (e) axial stress (spanwise).

Figure 4c–e indicates the variation of axial stress profiles along the whole domain.
Note here that the solid lines in the figure represent the existing DNS data. The axial (longi-
tudinal) stress profiles began initially with the data from the synthetic inflow generator;
however, they gradually developed and reached the fully developed profile downstream,
which corresponded to the existing DNS data. The vertical and spanwise stress profiles
were also not properly developed upstream, but they almost fully developed downstream.

Figure 5 shows the gradient of the dimensionless shear stress, < τw >+ /4x, in the
streamwise direction with the aim of identifying more precisely the critical point indicating
a fully developed boundary layer. As shown in Figure 5, there was a steep gradient near
the inlet, and the values < τw >+ /4x gradually recovered and converged to an almost
constant value (i.e., around zero) in the region where x/d ≥ 40.

Figure 6 shows the mean and turbulent statistics in the channel flow and compares
them with the existing DNS data (Kim et al. [42]). In the figure, the fully developed profile
was obtained at x/d = 50, and the inlet data from the inflow generator and the DNS results
for the reference and existing data were also compared. As shown in the figure, most of the
profiles agreed perfectly well with each other, which was very satisfactory. The turbulent
statistics for both cases, that is the inlet and x/d = 50, also showed a similar pattern.
In particular, the non-dimensional mean velocity, u+, was almost identical. The axial
longitudinal stress profile, 〈u′u′〉+ at x/d = 50 also showed a similar distribution near
the wall surface compared to that at the inlet. However, when y/d was between 0.1 and
0.4, it was relatively lower than that at the inlet, whereas it was relatively high for y/d
between 0.4 and 1.0. The axial vertical stress profile, 〈v′v′〉+, and the shear stress, 〈−u′v′〉+,
at x/d = 50 were slightly overestimated compared to the data at the inlet. The difference
between the turbulent boundary layers at the inlet and x/d = 50 was due to a relatively
coarse resolution of the LES in the core region.
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approx. 40

Figure 5. Variation of dimensionless wall shear stress per grid size.
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(c)
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(d)
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Kim et al. (1987)

Figure 6. Mean and turbulent statistics in channel flow at the inlet, x/d = 50, and comparison with the study of Kim et al. [42].
(a) mean velocity profiles (b) streamwise stress profiles (c) vertical and transverse stress profiles (d) Reynolds stress profiles.
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3.2. Effect of Inlet Length Scale on Wall Shear Stress

Figure 7 shows the distribution of the non-dimensional wall shear stress < τw >+ for
all the cases of different inlet length scales. Notably, the streamwise length scales were
the same for all those cases. To observe the effect of the length scale close to the wall,
the spanwise length scale was set from a minimum of 0.15L∗z to a maximum of 3L∗z . It
should be noted that the variation in the inlet length scale had a significant effect on the
recovery of the wall shear stress downstream. As shown in Figure 7a, Case 01 revealed
that the wall shear stress recovered fairly well at x/d = 40. The wall shear in other cases
having a relatively smaller length scale than that in Case 01 was mostly unstable and did
not properly recover downstream, except in Case 06.

In Case 02, which was the worst case having no length scale implemented in the
inflow, the wall shear stress continuously decreased downstream, and the wall shear stress
substantially dropped to approximately 50 % at the outlet compared to that at the inlet.
Case 03, in which the length scale was 0.15L∗z , was used in the range y/d < 0.2, and was
shown to be similar to Case 02, although it was slightly larger in terms of shear stress.
This was similar to the case having a short domain size of x/d = 12 shown in Figure 4a,
which implies that the domain needed to be at least longer than this size in the streamwise
direction to obtain fully developed turbulent statistics.

Case 04, which had a smaller length scale (i.e., 0.3L∗z ) in the range y/d < 0.2, indicated
that the shear stress had a local minimum turning point under this condition, and this
meant that the shear stress decreased and gradually recovered at a specific point around
x/d = 20. However, the shear stress continued to increase and finally became unstable at a
point approximately 14 % higher than that of Case 01. For Case 05, in which the length
scale was slightly smaller (i.e., 0.5L∗z ) in the range y/d < 0.2, but larger (i.e., 1.5L∗z ) for the
rest of the range, the wall shear stress appeared to be quite close to that of Case 01 in the
inlet region; however, it appeared scattered, wavy, and unstable downstream. Apart from
Case 04, it did not tend to continue increasing continuously near the outlet, but it reached a
value that was 10 % higher than that in Case 01. In this study, we tried to adjust the size
of the length scale in certain zones, such as 0.3L∗z in L∗z and L∗z in y/d > 0.1, with the aim
of understanding the effect of zone height on flow development. Interestingly, we found
that the shear stress agreed fairly well with that in Case 01. This implies that depending on
how the length scales were imposed in the zones, the wall shear stress would be adjusted
in a target shape inside the domain.

Figure 7b shows the wall shear stress distribution for the cases with a larger inlet length
scale (approximately two and/or three times) than that of Case 01 (i.e., L∗z ). Interestingly,
Cases 07 and 08 (i.e., 2L∗z and 3L∗z ) showed a faster recovery of the wall shear stress
compared with Case 01. As shown in the figure, Case 08 had a higher length scale than
Case 07, but the distance required to recover in the shear stress would be almost the same,
whereas the earlier drop in the shear stress close to the inlet in Case 08 was steeper than
that in Case 07.

In the case of the shear stress distribution of Case 01, Case 04, and Case 06 (see Figure 7),
these three cases had the same spanwise length scale of 1L∗z at y/d > 0.2, but the conditions
differed at y/d < 0.2. As shown in the figure, Cases 01 and 06 had very similar shear stress
distributions, whereas Case 04 exhibited a markedly different tendency. The difference
among these three cases was that the region with 0.3L∗z existed at y/d < 0.2 for Case 04
and at y/d < 0.1 for Case 06. It can be observed that the change in the spanwise length
scale in the range 0.1 < y/d < 0.2 had a significant influence on the development of the
turbulent boundary layer.



Appl. Sci. 2021, 11, 5177 12 of 23

Case 01

Case 07

Case 08

Case 01

Case 02

Case 03 

Case 04

Case 05 

Case 06

(a)

(b)

Figure 7. Development of dimensionless wall shear stress with different length scales. (a) Cases 01–06
(b) Cases 01, 07 and 08.

Figure 8 shows the averaged turbulent boundary layer profile, and y/d = 0.1, 0.2
corresponds to y+ = 15.2, 30.3, respectively, i.e., y/d = 0.1 was placed in the buffer layer
and y/d = 0.2 in the logarithmic layer. With respect to the turbulence characteristics near
the wall, some studies (Kline et al. [3], Hinze [43], Grass [44]) reported that the region close
to the wall has a highly active turbulence movement, which is associated with the behavior
of low-speed streaks and horizontal shear stress in the spanwise direction. In addition,
there was a breakup in the region 10 < y+ < 30, which is called “bursting”, contributing as
much as 70 % of the turbulence. Kasagi et al. [45] and Smith and Schwartz [46] identified
counter-rotating streamwise vortices in the region 14 ≤ y+ ≤ 25, which contained the most
energetic vortices.

According to existing research, the 10 < y+ < 30 region contributed greatly to the
generation of turbulence. As shown in Figure 7, Cases 01 and 06 had the spanwise length
scale of 1L∗z , which was a relatively large scale in 15 < y+ < 30, whereas Case 04 had
0.3L∗z , which means that it had a lower length scale in this region, which was insufficient
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to generate turbulence statistics. In addition, the lower length scale reduced the energy
production such that the minimum distance to recover the shear stress close to the wall
was longer. It can be seen here that the change in the length scale in the region y+ < 15 did
not significantly impact the recovery of the shear stress. Therefore, the results of Case 01
and Case 06 were very similar. The change in the length scale in the approximate region of
15 (0.1)< y+(y/d) < 30 (0.2) contributed significantly to the generation of turbulent energy
near the wall surface.

Viscous 

sublayer
5 30

Logarithmic

layer

Bu�er

layer

=0.2 , = 30.3

=0.1, = 15.2

DNS

In�ow

Law of the wall

Logarithmic law

Figure 8. Mean streamwise velocity profiles. y/d = 0.1, 0.2 denote y+ = 15.2, 30.3, respectively.

Figure 9 shows the streamwise development of the wall shear stress < τw >+ in the
domain with the deviation, which indicates the magnitude of data variability as error
bars. As the length scale near the wall became smaller (Case 05), the deviation became
larger. Interestingly, as shown in the figure, Cases 01 and 06 were very close to each
other, whereas the shear stress deviation of Case 06 was relatively large. In this case,
the only difference was that Case 06 had a length scale of 0.3L∗z in the region y/d < 0.1
(i.e., y+ < 15). Therefore, if the spanwise length scale was small, the spatial correlation
between two different points became lower such that this case required a relatively long
longitudinal length and time to fully develop in the domain. As the length scale increased,
the wall shear stress tended to recover quickly. However, when the length scale was 2L∗z
or more, the distance required for the full development of the boundary layer did not
change significantly.

Figure 10a shows the change in the wall shear stress in the channel domain. In particu-
lar, Figure 10b–e shows the distribution of Reynolds stress profiles, 〈u′u′〉+, 〈v′v′〉+, 〈w′w′〉+
at each longitudinal position of x/d. As depicted in the figure, Case 01 revealed that the
downstream region had fully recovered the shear stress; however, Case 03 had a poor
distribution in the domain. This implies that the size of the inlet length scale close to the
wall greatly influenced the development of the shear stress. In addition, if the wall shear
stress was fully recovered, the axial stresses 〈u′u′〉+, 〈v′v′〉+, 〈w′w′〉+ remained constant in
the whole domain.
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Figure 9. Variation of dimensionless wall shear stress and deviation in the domain with changing
length scales for (a) Case 05, (b) Case 06, (c) Case 01, and (d) Case 08.
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Figure 10. Development of dimensionless wall shear stress and axial stresses. In the figure, at the left: Case 01, at the right:
Case 03, solid line: DNS data, ◦: simulation results. (a) wall shear stress, (b) Reynolds shear stress, (c) streamwise shear
stress, (d) transverse shear stress, and (e) vertical shear stress.

Figure 11 compares the turbulent statistics in the boundary layer flow obtained down-
stream, at x/d = 50, from Case 01, Case 06, Case 07, and Case 08 with the data from the
synthetic inflow generator in the inlet. As shown in the figure, the turbulent statistics at the
inlet and downstream at x/d = 50 clearly had a similar tendency. In Figure 11a, the axial
longitudinal stress 〈u′u′〉+ at x/d = 50 appeared similar near the wall surface compared
to the inlet. However, when y/d was between 0.1 and 0.4, it was relatively lower than
that of the inlet, and in the range 0.4 to 1.0, 〈u′u′〉+ was relatively high. For x/d = 50, all
cases had a similar 〈u′u′〉+ distribution. In Figure 11b–d, the vertical 〈v′v′〉+ and spanwise
〈w′w′〉+ components of the axial and shear stresses, 〈−u′v′〉+ at x/d = 50 were all slightly
over-estimated compared to that at the inlet. When x/d = 50, it can be seen that the
case having a larger inlet length scale had slightly lower stresses, except for 〈u′u′〉+. This
appeared to be caused by the fact that the LES resolution was lower than that of DNS.
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Case 01 : 
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In�ow

Figure 11. Mean and turbulent stress profiles at x/d = 50. In the figure, (a) 〈u′u′〉+, (b) 〈v′v′〉+, (c) 〈w′w′〉+, (d) 〈−u′v′〉+.

3.3. Effect of Inlet Length Scale on the Integral Length Scale in the Domain

Figure 12 shows the longitudinal integral length scale of the streamwise and ver-
tical velocity (i.e., Lx(u) and Lx(w)) at the inlet section (Figure 12a,c) and at x/d = 50
(Figure 12b,d). As shown in Figure 12a,c, in the cases close to the inlet, the magnitude of
the integral length scale Lx(u)/d close to the wall surface presented a large discrepancy
when compared with existing DNS data. On the contrary, the length scales away from the
wall (i.e., y/d > 0.5) were more similar. In particular, Case 09 (i.e., the case having the
largest integral length scale at the inlet) had values very similar to the existing DNS data.
The discrepancy between the length scales close to the wall may be due to the fact that the
streamwise length scale obtained from the actual DNS was for the fully developed profile;
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therefore, it was higher than that of the current study close to the wall and gradually
decreased in the freestream. Interestingly, even though the length scale was different at
the inlet (see Case 02 having no integral length scale at the inlet), the boundary layer
developed, and the integral length scale profiles were almost equivalent downstream. This
region was fully developed, except for regions that were proximal to the wall. As shown
in Figure 12a,c, the longitudinal integral length scale of the vertical velocity (i.e., Lx(w))
at the inlet section would have the same tendency as the length scale of the streamwise
velocity (i.e., Lx(u)).

=0 =50

(a)

(c)

(b)

(d)

Case01

Case09

DNS database

Figure 12. Longitudinal integral length scale profiles at the inlet section (a,c) and at x/d = 50 (b,d), Lx(u)/d: (a,b), Lx(w)/d:
(a,b). In the figure, (a) denotes longitudinal integral length scales of the streamwise velocity component at inlet section,
(b) longitudinal integral length scales of the streamwise velocity component at x/d = 50, (c) longitudinal integral length
scales at the inlet section of the spanwise velocity component, and (d) longitudinal integral length scales of the spanwise
velocity component at x/d = 50, (◦: Case01, +: Case09, •: DNS database).
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Figure 13 shows the lateral integral length scale of the streamwise and vertical velocity
(i.e., Lz(u) and Lz(w)) at the inlet section (Figure 13) and at x/d = 50 (Figure 13b,c).
As mentioned earlier, regardless of the integral length scale at the inlet, the profiles observed
downstream were similar, that is they were fully developed.

(a) (b) (c)

Case 01, 

Case 03, 0.3 , at < 0.2

Case 06, 0.3 , at < 0.1

Case 07, 2

Case08, 3

DNS database 

Averaged 

Averaged 

Figure 13. Lateral integral length scale distribution at the inlet and downstream sections. In the figure, (a) denotes all
the lateral integral length scales at the inlet section (◦: Case01, �: Case03, �: Case06, ×: Case07, 4: Case08, •: DNS
database), (b) the lateral integral length scale of streamwise velocity components at x/d = 50 (•: DNS database, :
Averaged Lz(u)), and (c) the lateral integral length scale of spanwise velocity components at x/d = 50 (•: DNS database,

: averaged Lz(w)).

3.4. Second Invariant Flow Structure near the Wall

A second invariant of the velocity gradient tensor can be used to visualize the flow
structure near the wall. The related Q-criterion is defined as follows:

Q =
1
2
(
ΩijΩij − SijSij

)
(18)

where Ωij =
1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
and Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. Ωij denotes the rotation rate, and Sij

denotes the rate of the strain. From the equation, when Q is positive, it means that the
intensity of the rotation rate is higher than the deformation rate.

Figure 14 shows the iso-surface of the Q-criterion in the range y/d < 0.25 near the
wall. The Q distribution showed a remarkably similar tendency to that of the wall shear
stress 〈τw〉+ distribution in Figure 7. In fact, Case 03, as shown in Figure 7, tended to
have a continuous reduction in the shear stress 〈τw〉+ from the inlet to x/d < 5, and this
was also similar in the Q distribution. In Case 04, as shown in Figure 14b, the Q structure
was not observed in the region of 1 < x/d < 35. This means that when the shear stress
was lower than 0.8, the vorticity strength was weak and therefore not enough to form the
vortex. Thus, the vortex did not form. In addition, as the shear stress recovered, the vortex
reformed when the shear stress was higher than 0.8.

In Figure 14d, that is, in Case 05 and the cases having a length scale higher than 0.5
near the wall, the shear stress was higher than 0.8 in the entire region, and the vortex
appeared in the whole area. The vortex structure showed a slight discrepancy depending
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on the shear stress and the size of the length scale. Interestingly, in the region where the
boundary layer was fully developed, the Q structures in all cases (Case 01, Case 07, Case 08)
were similar.

DL_a02

DL_a01

DL_a03

SL_a03

SL_a01

SL_a02

DL_b01

Rand

(b) Case 03

(c) Case 04

(d) Case 05

(e) Case 06

(f) Case 01

(g) Case 07

(h) Case 08

(a) Case 02

0 10 20 30 40 50 60

Figure 14. Iso-surface of the Q-criterion at y/d < 0.25 and the value of Q > 1.

Figure 15 shows the energy spectrum distribution at the inlet and for y/d = 50
compared to the existing DNS data. Figure 15a,b includes the results of (c) Case 01 and
(d) Case 09. As mentioned earlier, Case 09 had length scales that were two times larger
in the streamwise and spanwise directions compared with those of Case 01. In the figure,
the symbol k is the wave number, which is defined as 2π f /Um. Figure 15a,c shows that
the energy spectrum at the inlet had an appropriate level at the low wave number region;
however, in the higher wave number region, it did not agree with the DNS data. In the
figure, the dashed line has a slope of -5/3 in the spectrum. Regardless of the integral length
scale at the inlet, the energy spectrum in the fully developed region agreed well with the
DNS data.
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Figure 15. Energy spectrum distribution at the inlet (a,c) and for y/d = 50 (b,d). In addition, (a,b) are the results from
Case 01 and (c,d) from Case 09.

4. Conclusions

To generate the turbulent boundary layer flow in a numerical domain, a synthetic
inflow generator was applied. It was based on spatial and temporal correlation functions,
which had the form of an exponential function. To validate the turbulent boundary layer
profiles that were obtained by using the synthetic inflow generator, the results obtained
were precisely compared with existing data. From the results, it can be concluded that
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the turbulent boundary layer was successfully generated. In the mean velocity profile u+,
the boundary layer agreed well with the overall range of the domain, and the axial and
shear stresses were in good agreement with the DNS data.

To observe the effect of the inflow length scales imposed at the inlet section on the
development of a turbulent boundary layer, the length scales were varied with a focus on
studying their effect. The results showed that a larger length scale in the inlet section had a
faster rate of recovery in terms of the wall shear stress, which implies that larger length
scales in the inlet section would be essential to the rapid development of the boundary
layer, and thereby the realization of a fully developed turbulent boundary layer.

In addition to the variation of the inlet length scale, the inlet plane was separated
into two different zones with the aim of imposing two or three different length scales on
each zone. The proximity of the wall was chosen to be approximately y/h = 0.1 and 0.2
so that the two ranges were first 0 < y+ < 15 (in the middle of the buffer layer zone) and
15 < y+ < 150 and, secondly, 0 < y+ < 30 (in the buffer layer zone) and 30 < y+ < 150.
Based on the results obtained, it can be seen that the length scale variation in the region
y+ < 15 did not significantly impact the recovery of the wall shear stress. However, the size
of the length scale in the region of approximately 15 < y+ < 30 contributed significantly to
the generation of turbulent energy near the wall surface.
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