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Abstract: Youth and adults with autism spectrum disorder have poor skills such as communication,
qualitative interaction, and emotional expression resulting in low social awareness. In this paper, we
propose and explore a contactless bio-signal measurement and functional contents for improving
social awareness of individuals with communication challenges. We implemented four individual
methods for collecting and analyzing the bio data of the individuals without requiring their attention:
(1) heart rate, (2) respiration, (3) facial expression, and (4) interaction. The four techniques are all
based on image data received and analyzed from a normal web camera. The data were analyzed in a
real-time, fully functional algorithm: implementing the algorithm on a mobile device will require
future work. However, we have evaluated our method by developing a functional content including
the four methods. Based on the analysis of the collected data from the content and qualitative
responses from the field, the contactless bio-signal measurement technology combined with friendly
designed user interfaces for the individuals with communication challenges could train them to
improve their social awareness.

Keywords: high-functioning autism; contactless measurement; state measure; user interface

1. Introduction

Recently, the emergence of autism spectrum disorder (ASD) has been increasing, and
the prevalence of highly functional autistic children is increasing. High-functioning autism
(HFA) usually refers to a child with mild verbal impairment or autism symptoms and
a verbal IQ of seventy or higher. They tend to be on the higher side of language development
and appear to communicate effectively, but children with HFA show a deficit in their
ability to attempt appropriate communicative signals for social purposes. In addition,
because they focus on their area of interest and often strictly adhere to the subject, they
have difficulty not only in repeating their interests, but also initiating, maintaining, and
closing conversation [1,2]. Although expressing emotions is often considered a given ability,
many people struggle with them on daily basis. For example, studies have shown that
many individuals on the autism spectrum suffer speech impairment [3–5]. They may also
show atypical facial expressions [5,6]. To make the matters worse, their expressions are
more poorly recognized by others, whether autistic or neuro-typical individuals [7].

Management of the autism spectrum focuses on symptom relief and quality of life
improvement rather than cure. For example, there are attempts to reduce discord with
neighbors or family through counseling, reduce various symptoms with drugs or psy-
chotherapy, and minimize social and occupational problems through behavioral correction.
In general, the higher the intelligence, the more effective the treatment and the better the
prognosis [8]. However, in the case of autistic children, treatment and education are limited
because they cannot properly express their emotional state. In fact, when a child with
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autism spectrum disorder yells while participating in a treatment program, it is difficult to
know whether they are yelling because they are feeling happy or excited.

Trying to understand their emotions using alternative methods such as physiological
signal analysis can help manage the autism spectrum. According to James–Lange and
Cannon–Bard’s Emotion Theory [9,10], human emotions appear as physiological phenom-
ena such as muscle tension, heart rate, and changes in skin temperature. Facial expression
has a communication function and serves as a medium for delivering specific informa-
tion [11]. Understanding emotions is a key component of social interaction because it
allows you to accurately recognize the intentions of others and respond appropriately.

Scientific interest in the use of sensor technology to obtain psychological and emotional
states from ASD biometric data has recently increased significantly.

Chung and Yoon [12] presented a framework for autism spectrum disorder treat-
ment system using bio-signal sensing (EEG, ECG) and emotional computing technology.
Billeci et al. [13] and Marco et al. [14] used EEG, MEG, and functional Magnetic Resonance
Imaging (fMRI) while Wang et al. [15] used HRV and Skin conductance and John et al. [16]
focused on works of eye tracking. By using bio-signals in this way, individuals can perceive
human emotions with more objective and high reliability. However, in previous studies,
collecting biometric data through contact sensors such as ECG, EMG sensors, and wearable
devices sense the mental burden and resistance to physical contact of the individuals. This
can be a factor that degrades the accuracy of the acquired data and can have a great impact
on the status analysis of the subject. One of the major problems with using bio-signals for
such applications has been the complexity of measurement device setups and their cost,
which can render them impractical outside laboratories [17,18].

Therefore, we would like to propose a non-contact bio-signal collection technology for
those with limited communication: high-functioning autistic boys who have difficulty in
communication as discussed above. The above method can collect and analyze biometric
data by detecting light blood flow (heart rate), respiration, facial expressions, gaze and facial
movements, and hand movements with only a webcam-level camera without the need to
collect biometric data using multiple contact sensors. It is possible to judge the status of
a person with poor communication skills by analyzing the four kinds of status data.

For example, people with weak communication respond to sounds or actions that
they do not like, and their changes in heart rate are larger than those who do not suffer
from ASD. Breathing can become coarse as your heart rate increases. This can be judged
as a state of excitement for those with weak communication. While communicating, most
people can determine whether their gaze is focused on the other’s face or whether their
gaze is directed to a place other than their face. In addition, if the gaze is focused on the
face, it can be determined whether the communication-weak person is communicating
smoothly depending on which part of the face is focused. The gazes of those with weak
communication clearly show a different gaze pattern from those who do not suffer from
ASD [19–21].

When communicating, their focus is often on the mouth instead of the eyes [22–27].
This is a typical aspect of those with weak communication who have difficulty making

eye contact during communication [16].
This paper focuses on technology for collecting and analyzing state data. Mobile and

VR contents for social skills training that can contribute to improving the quality of life
through the improvement of communication skills of the communication-impaired by
incorporating the proposed non-contact state data collection and analysis technology are
under research.

2. Integrated Interface Implementation

Communication weak people sometimes find it difficult to do things outside their
area of interest. Therefore, a real-time signal detection integrated interface was defined
and implemented by visualizing the status data obtained in a non-contact manner, which
does not require the attachment of a special contact sensor, so that the expert managing
the communication-weak person can easily recognize and understand the status of the
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individual. The integrated state data interface enables the extraction of photo blood flow
(heart rate), respiration, and facial expression state data from real-time camera images, as
well as state data extraction and batch processing for recorded images in Figure 1.
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Figure 1. State data integration interface.

Light blood flow, respiration, and facial expressions have different signal detection
methods and data formats, so the integrated structure of the signal detection algorithm is
applied equally so that even if a new signal detection algorithm is added, it can be easily
linked. The preprocessing process that must be performed to detect the signal is defined
in the same way, and the user’s image is acquired in real time so that the preprocessing
process for signal detection, such as image conversion and face detection, can be performed.

In addition, the UI was applied to intuitively express the functions of the integrated
interface, and each algorithm was threaded and operated to make the most of the perfor-
mance of the PC running the integrated interface. On the top left, a face image including
the upper body received from the camera is displayed, and on the right, real-time status
data is displayed as a graph and visualized, and status data and measurement time can be
separated and saved in CSV.

3. Measurement of State Data Based on Non-Contact Image Analysis
3.1. Optical Blood Flow (Heart Rate) Signal Acquisition

Photo-plethysmography (PPG) is used to measure the blood flow signal by measuring
the change in blood flow that occurs according to the heartbeat through the color change
of the fingertip or face image. We acquire the optical blood flow signal through the face
image, and in order to stably extract the optical blood flow signal, accurate face detection
and consistent tracking of the skin area are required. To minimize the background pixels
unrelated to the skin during face detection, an SSD [28]-based face detector was used
instead of the traditional Vi-ola-Jones detector [29].

As shown in Figure 2a, parts that are not related to pulsating skin such as hair,
eyebrows, and background pixels are still included in the face area detected through the
SSD. In consideration of real-time characteristics, the background area was removed by
modeling the skin color distribution through a statistical method in the YCbCr color space
instead of a deep learning-based segmentation algorithm.

In the RGB color space, the red, green, and blue channels have a high correlation, and
it is difficult to separate the lighting component and the color component.
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Figure 2. Skin pixel filtering applied to the face area detected through SSD. (a) Before filtering,
(b) After filtering.

In addition, it is very likely that noise is included in the extracted signal due to the
fine movement of the body, the three-dimensional structure of the face surface, and the
position change with the lighting. The light component was discarded, and the light blood
flow signal was extracted by focusing on the change in skin color according to the change
in the amount of light blood using the color difference component. Compared to other
color signal components, the color-difference signal shows a distinct pulsating waveform,
and a component corresponding to the pulse in the frequency spectrum is well revealed.
The color difference signal extracted from Figure 2b shows a distinct pulsating waveform
compared to other color signal components, and it is shown in Figure 3 that the component
corresponding to the pulse rate is well revealed in the frequency spectrum.
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filtering applied face area.

In the signal extracted from Figure 3, elements not related to cardiac activity are also
included and a process to remove them is necessary. This is the normalization work to
remove noise such as facial movement and breathing, which have relatively low frequencies.
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The signal was normalized using the average according to the time interval, and the
window size was set as the sampling rate to include at least one pulse period in the interval.
As a result, it was possible to obtain a zero-centered signal from which the DC component
was removed during the normalization process. Since there are still noises corresponding
to high frequency generated by lighting changes in the signal, camera sensors, etc., band
pass filtering was applied to remove them. The passband was set to (0.7, 3.0) corresponding
to 42–180 BPM, and a Butterworth filter of order 5 was used.

As a result, as shown in Figure 4, a signal that facilitates heart rate estimation was
obtained by removing a significant portion of noise from the contaminated signal through
signal normalization and band-pass filtering of the raw signal. In addition, it is possible
to extract additional physiological parameters by performing analysis in the frequency
domain and time series domain by interpreting the normalized signal as an optical blood
flow signal synchronized with the user’s cardiac activity.
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Power spectral density detection and analysis as shown in Figure 5 was performed
by converting to the frequency domain in order to extract the average pulse rate for the
measurement section from the optical blood flow signal. The optical blood flow signal
extracted according to the Nyquist sampling theory can be analyzed up to the frequency
band corresponding to the maximum ‘1/frame rate’. For instance, 30 fps video analysis
up to 15 Hz. Since the normal human pulse rate is between 42–240 beats per minute,
the frequency band of interest is set to the 0.7–4.0 Hz band to detect the band with the
maximum peak.
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In the power spectral density of the detected optical blood flow signal, factors such
as respiration and motion noise are included. In the process of setting the frequency
band of interest, the estimated pulse rate was within the effective pulse rate range by
ignoring periodic components not related to the human pulse. The power spectral density
of a physiological signal includes a fundamental frequency corresponding to the pulse rate
and a harmonic frequency component that is an integer multiple of the source frequency.
Pulse rate can be estimated through source frequency detection.

When the frequency band with the detected maximum power was fmax, (1) was used
to convert it into beats per minute (BPM).

HR = fmax × 60 (1)

For example, when the frequency band having the maximum power in a certain
optical blood flow signal is 1.1, the average heart rate can be estimated as 66 bpm.

In order to obtain heart rate variability (HRV) information for further analysis, it
is necessary to measure the peak-to-peak interval (PPI) in the signal in the time series
domain. In order to obtain heart rate variability (HRV) information for further analysis,
it is necessary to measure the peak-to-peak interval (PPI) in the signal in the time series
domain. A separate peak detector module was used for peak position detection, and
constraints were used to detect peak intervals within the effective pulse rate range. The
guaranteed distance between the minimum peaks is determined by ‘fps/maximum pulse
rate frequency’, and the maximum pulse rate is a variable that can be adjusted to suit the
application scenario. For PPI calculation, position information of the peaks was stored in
a separate array, and the timestamp difference value of the two most recent peaks was
calculated as the current PPI.

The resolution is determined according to the frame rate, and considering 30 FPS
(Frames Per Second), it has a resolution of about 2 BPM in the pulse section at rest and about
8 BPM in the high heart rate section. Considering 60 FPS, it can have a resolution of about
1 BPM in the pulse section at rest and about 4 BPM in the high heart rate section. Recently
released general webcams have a performance of about 30 FPS in an uncompressed format
with a resolution of 640 × 480 pixels, but detailed analysis of heart rate variability is
possible depending on the performance conditions of the camera used.

Heart rate variability refers to a periodic change in heart rate and can be used to
estimate stress status and health status through additional analysis. In addition, in the case
of healthy people, the heart rate variability is irregular and complex in order to achieve
a physiological balance in a short time by responding sensitively to changes, but the
reduction in heart rate variability indicates that the dynamic changes and complexity of the
heart rate has decreased. It was confirmed that the body’s ability to adapt has decreased as
shown in Figure 6.
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In order to extract physiological parameters from the signal, a window of a certain
size is covered to estimate the parameters for the corresponding signal section. In this
case, a sliding window method was used to extract continuous physiological parameters
in real time. In order to estimate the heart rate that changes according to the physiological
state of the body in real time and to estimate the stable heart rate from the power spectral
density, a sliding window is applied at 1 s intervals while using a window of about 4 s. The
physiological parameters obtained in this way operate well when the user is not in motion,
but stable estimation may be difficult due to noise when facial movement occurs.

This is because, while the face is close to an ellipse, it is detected in a rectangular
shape due to the characteristics of the existing face detector, increasing the probability
of including background areas other than the face. When the face is rotated, the light
reflection from the surface of the face changes, causing unstable detection of areas such
as skin color, background, and hair. In order to alleviate the instability caused by noise,
pulse rate filtering was performed using the characteristic that the pulse rate continuously
beating follows a Gaussian distribution. Outliers were removed by applying Gaussian
filtering to the power spectral density for pulse rate estimation by deriving the mean value
and standard deviation of recent pulse rate estimates.

The input data can be largely divided into pre-recorded video files and image se-
quences, or real-time camera input. In the case of pre-recorded video files and image
sequences, the input data must be assumed to be a fixed frame rate or include frame-by-
frame timestamp information. In the case of real-time camera input, processing time per
frame may vary depending on the state of the processor, leading to difficulty to assume
a fixed frame rate. Assuming a real-time camera input with a frame rate of 30, it is theo-
retically possible to read 30 frames per second, but in reality, there may be cases where
only one or two frames are missing and only less than 30 frames are read. For example,
assuming that a time window having a length of 4 s is used, an error of a physiological
parameter estimated later may increase due to the accumulation of such missing frames.
To solve this problem, in the case of real-time camera input, the real-time frame rate was
calculated by storing the timestamp at the point of processing each frame internally in
a separate array. If the signal length corresponding to the time window is k, the real-time
frame rate is calculated by (2).

frame rate =
k

× tamps[k − 1]−× tamps[0]
(2)
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More accurate physiological parameter estimation is possible by calculating the frame
rate at the time of calculating the filtering unit and the physiological parameter estimating
unit as a value approximating the actual frame rate.

3.2. Respiration Signal Acquisition

Figure 7 shows the user’s motion extracted by applying the optical flow proposed by
Brox [30]. Since this optical flow is a dense optical flow that calculates motion information
for all pixels, it is possible to extract motion information of the entire image. Since the
movement caused by respiration is mainly related to the up/down movement, only the
up/down movement information was used among the detected movement information.
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Figure 7. Motion information detected using optical flow.

In order to extract respiration information using the motion information detected
in Figure 7, motion vectors for all pixels within a frame for a certain time window must
be obtained. The time window size was used as 23 in the 4 fps environment because
the time window should be set to a sufficient size to cover at least one breathing cycle.
Motion vectors are compressed into Eigen vectors to obtain a motion matrix. Respiration
information was amplified through a chi-square kernel for all motion trajectories in the
motion matrix, and noise was removed and refined. It is shown in Figure 8 that the
respiration information descriptor present in the image is extracted from the refined result.
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Figure 8. The extracted motion, the calculated motion matrix, and the breathing descriptor of the image calculated from the
motion matrix.

Respiration descriptor was used to detect the region containing respiration information
in the image as an ROI. The similarity was calculated through the dot product of the
respiration descriptor and the motion vector of each pixel: it is shown in Figure 9 that the
final respiration ROI is detected by applying pixel similarity dimensionality reduction.

Changes in pixels can be observed in a certain time window, and movements of the
chest and head due to breathing also cause these changes in pixels. Since the pixels in
which the change is caused by respiration shows a change pattern similar to the actual
respiration signal, it is possible to classify the presence or absence of respiration information
by analyzing the similarity between the pixel change and the respiration signal.
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Figure 9. ROI detection, purification process and actual detection results.

We have designed a learning model (Figure 11) that analyzes the pattern of changes
in pixels obtained in Figure 10 to classify whether changes are caused by respiration or
not. Compared to the case where video is input (input data is four-dimensional; time
window, image height, image width, image channels), the model has a characteristic that
the structural characteristics of the image are not reflected in the classification of the model
(the input data is two-dimensional; time window, image channels) can significantly reduce
the complexity of training data. In the case of using a video as an input, one video is
one data sample, but the designed model contains more than 300,000 data samples in one
video, so efficient learning is possible (Figure 11).
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Pixels (ROI) including respiration information can be detected using the learned
model, and pixels from which noise components are almost removed can be selected
and refined using the classification result. In addition, it is possible to obtain breathing
information by amplifying the motion of the video in the normal breathing frequency
band (0.17~0.7 Hz), and by amplifying the breathing information, a breathing signal that is
robust to noise was extracted as shown in Figure 12.
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If the average of the ROI signal values is used for signal extraction, the respiration
information is canceled by the inverted phase, and the correct respiration signal cannot
be estimated, so a method of aligning the phase is needed to improve this problem. For
example, assuming that the signal of one pixel is a 64-dimensional vector, it is possible to
determine the trend of clustering of pixels having the same phase in the corresponding
space, so that the phase of the signal can be classified through a clustering algorithm.
Representative clustering algorithms are k-means [31], a distance-based clustering method,
and DBSCAN [32], a density-based clustering method. In the distance-based clustering
method, the criterion for determining clusters is Euclidean distance, and since each cluster
tends to form a prototype, correct performance cannot be guaranteed for clusters that
cannot be expressed as a prototype. The density-based clustering method is robust to the
shape of the data distribution, but the results are greatly changed by parameters such as
epsilon that are determined in advance, and there is a limit to the detection of clusters with
different densities. Since a vector whose phase is inverted has a characteristic of opposite
directions in a 64-dimensional space, using the cosine distance can obtain a direction
similarity independent of the size of the vector. Therefore, as shown in Figure 13 by
applying hierarchical clustering based on the cosine distance, it is possible to classify
clusters with different vector directions, and through phase alignment, it is possible to
extract a refined signal by reducing noise such as cancellation caused by integrating signals
with different phases.

The higher the precision of the ROI detector, the higher the quality of the signal
contained in the pixel, but it is susceptible to noise, making it difficult to detect ROI even
with small movements other than breathing. On the other hand, the higher the recall of the
ROI detector, the more robust the ROI can be detected, but the quality of the signal included
in the ROI is degraded, and pixels other than the respiration may be included in the ROI.
To detect an appropriate ROI that can be used for analysis, precision and reproducibility
must also be considered, so some noise may be included in the ROI detection result. When
noise pixels are included in the ROI, when clustering is performed in two clusters, noise
is included in each cluster, making it difficult to obtain an appropriate respiration signal.
Therefore, it is necessary to utilize additional information that can separate the noise from
the respiratory information cluster.

The phase of the signal is opposite when the movement caused by the same breath
changes from light to dark and from dark to light. This means that the movement induced
by breathing has a symmetry with respect to the origin.
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Therefore, if one performs clustering by adding the origin-symmetric data to the
original data (Figure 14), one can obtain the result shown in Figure 15 by this symmetry.
Analyzing the type of data included in the cluster, it is determined that the two clusters
have symmetry when the same type of data is included in another cluster. Therefore, noise
can be removed by using this symmetric data cluster for respiration signal estimation.
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Figure 15. Clustering of respiratory pixel and noise data with origin symmetric data and data
contained in each cluster.

The technology to classify breathing signals by utilizing the symmetry of the signal
as a feature shows excellent performance when it is a stable breathing signal, but when
noise occurs in the breathing signal itself, the symmetry is broken and the performance
is degraded. In particular, when the object is moving, noise, not breathing information,
can be easily included in the breathing pixel. In the case of movement, stable breathing
information must be maintained for as long as the time window to restore symmetry and
to obtain correct breathing information again. Whenever movement occurs, there may
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be a delay in which correct breathing measurements cannot be made for this reason. It is
shown in Figure 16 that unlike the previous method, in which all information of a certain
time window was used, it was possible to continuously measure breath without delay by
using only the motion of the most recent frame.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 24 
 

 

Figure 15. Clustering of respiratory pixel and noise data with origin symmetric data and data con-

tained in each cluster. 

The technology to classify breathing signals by utilizing the symmetry of the signal 

as a feature shows excellent performance when it is a stable breathing signal, but when 

noise occurs in the breathing signal itself, the symmetry is broken and the performance is 

degraded. In particular, when the object is moving, noise, not breathing information, can 

be easily included in the breathing pixel. In the case of movement, stable breathing infor-

mation must be maintained for as long as the time window to restore symmetry and to 

obtain correct breathing information again. Whenever movement occurs, there may be a 

delay in which correct breathing measurements cannot be made for this reason. It is 

shown in Figure 16 that unlike the previous method, in which all information of a certain 

time window was used, it was possible to continuously measure breath without delay by 

using only the motion of the most recent frame. 

 

Figure 16. Optical flow tracking result for pixels detected by ROI. 

Since the parameters of the ROI detection model are adjusted to accommodate some 

noise in consideration of the reproducibility, respiration pixels can be detected robustly 

against noise caused by movement, etc. If the detected breathing pixels are tracked by 

optical flow, it is possible to quantify the movement of the pixels, and among them, the 

breathing information can be estimated through up-and-down motion information di-

rectly related to breathing. Unlike the previous method, in which all information of a cer-

tain time window was used, it is possible to continuously measure breath without delay 

by using only the motion of the most recent frame. 

Typical causes of changes in blood flow are heart rate and respiration. As shown in 

Figure 17, changes in chest pressure caused by breathing can cause changes in blood flow. 

Figure 16. Optical flow tracking result for pixels detected by ROI.

Since the parameters of the ROI detection model are adjusted to accommodate
some noise in consideration of the reproducibility, respiration pixels can be detected ro-
bustly against noise caused by movement, etc. If the detected breathing pixels are tracked
by optical flow, it is possible to quantify the movement of the pixels, and among them, the
breathing information can be estimated through up-and-down motion information directly
related to breathing. Unlike the previous method, in which all information of a certain time
window was used, it is possible to continuously measure breath without delay by using
only the motion of the most recent frame.

Typical causes of changes in blood flow are heart rate and respiration. As shown in
Figure 17, changes in chest pressure caused by breathing can cause changes in blood flow.
Since such a change in blood flow causes a minute change in skin color, respiration infor-
mation obtained through observation of the change in skin color can be used to improve
signal quality when a skin area is detected in an image. The respiration measurement
method through motion analysis is susceptible to movement other than the movement
caused by respiration, whereas the skin color change analysis method enables stable ob-
servation of changes through facial area tracking. If motion analysis is difficult due to
movement, the method of measuring respiration from changes in skin color can be used as
a good alternative.

Changes in blood flow due to heart rate are mainly periodic, and the cycle is shorter
than changes due to breathing. Therefore, it is possible to estimate the respiration signal
from which the heart rate component has been removed through a high-pass filter that can
filter short periodic signals from the blood flow change signal. As shown in Figure 18, it
is possible to extract more refined and stable breathing signals by integrating breathing
information that can be obtained from skin color changes as well as motion analysis.

3.3. Face Feature Point Detection and Facial Expression Recognition Implementation

Facial feature points were detected using CE-CLM [33], a deep learning-based algo-
rithm. A total of 68 major facial feature points to be detected were used as facial expression
recognition and behavior analysis data. Figure 19 is a facial feature detection and facial
expression recognizer using CE-CLM that can detect facial feature points at FHD resolution
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in real time and analyze facial behavior such as facial pose tracking and gaze tracking
based on the detected facial feature points.
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Figure 17. Changes in blood flow due to respiration observed in PPG (Photoplethysmogram).
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Figure 18. The result of removing the skin color change and heart rate component measured from the actual skin of the face.
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Figure 19. Facial feature point detection and facial expression recognizer.

Since the location and change of facial feature points have different size and direction
distributions for each person due to differences in appearance, a normalization function
was implemented that can measure changes in facial feature points based on their neutral
expressions in order to normalize individual differences. In Figure 20, facial rotation and
movement were corrected and individual differences were normalized by measuring the
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movement of each facial element after aligning the neutral expression and the expression
to be measured using rigid body transformation for the feature points of the joy feature
and the neutral feature obtained through Figure 19.
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In addition, facial asymmetry has been studied as an index of facial behavior that
can grasp the psychological state, and since artificial and spontaneous expressions are
expressed in different motor cortex, there is a difference in the degree of facial lateral
asymmetry. The asymmetry measurer in Figure 21 measures the degree of asymmetry of
a pair of feature points in a lateral symmetry relationship by a geometric operation using
the dot product between the face center vector and the feature point vector.
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Figure 21. Face side asymmetry meter using facial feature points.

For real-time state data analysis, a facial expression recognition model with a fast
and small amount of computation is required, and the input data dimension of the model
must be reduced. Accordingly, an expression recognition model based on facial feature
points (Figure 22) was designed. In the case of images, data is stored in the form of
three dimensions (image height, image width, image channels), which requires a lot of
computation when using input data. Dimensional reduction was performed using facial
feature points with geometry features according to facial expressions as input data of the
facial expression recognition model. The facial feature point data used as input enables
facial expression recognition in consideration of the movement and rotation of the face
through the facial feature point normalization method described above. In addition,
features using HOG [34] (Histogram of Oriented Gradients) are used as input data of the
model, and even texture features are used as input data.

For deep learning-based real-time facial feature point extraction using CE-CLM model,
parallel processing using GPU is essential, and real-time performance of facial feature
point extraction using CE-CLM model cannot be guaranteed in an environment without
GPU. Therefore, we implemented a real-time facial feature extraction function suitable
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for a GPU-free environment using face alignment provided by the dlib library. dlib’s face
alignment outputs two-dimensional facial feature points, and enables the extraction of
facial feature points with a speed of 40 fps or more with only an operation using only the
CPU (i7-6700). However, due to the limitation of 2D facial feature point extraction, there
is a problem that the accuracy of feature point extraction decreases when there is a face
rotation based on the x-axis and y-axis in the 3D camera coordinate system.
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In the CPU calculation-based algorithm, the result of performing size normalization
by dividing 21 facial feature points and 38 feature point distance measurements by the
distance between the two eyes is shown in Figure 23.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 24 
 

 

Figure 23. Extraction of feature points from neutral expressions (left) and smiley expressions 

(right) and results of size normalization, Participant 1 (a), Participant 2 (b). 

The facial feature points obtained through Figure 23 have not been normalized for 

differences by feature distance due to the different appearances of each individual. 

In the existing person-specific normalization between three-dimensional facial fea-

ture points, a rigid body transformation method was used to normalize the measured val-

ues, but in a CPU calculation-based algorithm, a normalization method based on the dis-

tance measurement value between the feature points as 2D data was used. Figure 24 

shows the result of performing person-specific normalization based on facial features dur-

ing expressionless expression. Through this, it was possible to measure facial movements, 

which partially solved the problem of reducing the accuracy of feature point extraction in 

case of facial rotation. 

Figure 23. Extraction of feature points from neutral expressions (left) and smiley expressions (right)
and results of size normalization, Participant 1 (a), Participant 2 (b).

The facial feature points obtained through Figure 23 have not been normalized for
differences by feature distance due to the different appearances of each individual.

In the existing person-specific normalization between three-dimensional facial feature
points, a rigid body transformation method was used to normalize the measured values,
but in a CPU calculation-based algorithm, a normalization method based on the distance
measurement value between the feature points as 2D data was used. Figure 24 shows
the result of performing person-specific normalization based on facial features during
expressionless expression. Through this, it was possible to measure facial movements,
which partially solved the problem of reducing the accuracy of feature point extraction in
case of facial rotation.
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Figure 24. A graph of characteristic values of smiley expressions before (a) and after (b) person
specific-normalization for Participant 1 (left) and Participant 2 (right).

3.4. Contactless Interaction Implementation
3.4.1. Gaze and Facial Movement Tracking Interaction

In order to recognize and track the user’s gaze, it is important to accurately identify
the location of the user’s face and pupil. Among the 20 feature points extracted using
WrnchAPI [35], the tip of the nose is used as the root to grasp the movement of the head.
Up, down, left, and right movements can be identified, but in order to increase accuracy,
only three directions (center, left, and right) can be identified. Eye tracking must perform
calibration that defines the camera’s intrinsic parameter, the positional relationship between
units, and the eye parameter. Using web camera-based gaze tracking provided by OpenCV,
the coordinates of the pupils in the web camera are estimated in real time, the left, center,
and right directions are recognized, and movement is estimated in Figure 25.
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3.4.2. Hand Movement Tracking Interaction

To detect the skin color corresponding to the candidate area of the hand, the image
in the RGB color space is converted to the YCrCb color space, and then 128 ≤ Cr ≤ 170,
73 ≤ Cb ≤ 158 excluding the luminance (Y) is used for each channel value. The skin color
was detected by comparing the results. Then, the point where the direction of the line
changes was designated as a finger candidate by calculating the convexHull for the hand
area. However, when all fingers were bent, there was a problem of detecting non-finger
parts. To compensate for this, the contour was approximated, and a defect was imple-
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mented to detect the finger. Since the location where the finger candidates are found is the
place where the two locations meet, it is recognized as a finger only when the angle formed
by the left and right edges is less than 90 degrees. Afterwards, based on the previously
detected hand region mask, the feature points were extracted by receiving the coordinate
values of the feature points in all areas of the finger.

Among the input coordinate values, the feature point corresponding to the center of
the hand area was extracted as a red point to recognize the hand motion. As shown in
Figure 26 to visualize the hand movement-based interaction, we implemented an event in
which a blue square randomly occurs in three directions, left, center, and right. When the
red dot stays in the blue square for a certain period of time, the next action is performed.
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4. Experiment

The purpose was to secure a selection factor for the state data set for training to
improve the communication function of the communication-weak by combining the previ-
ously developed technology with the training contents under development, and to verify
the validity of the non-contact biometric data collection and analysis technology. The test
group is the target of 8 people with weak communication and 14 people in the control group
as shown in Table 1. The criterion for selecting a group of people with communication
weakness is adolescents and adults aged 13 to 40 years old. The comparative group is a
person who voluntarily agreed to participate in the study after reading the study guide
and consent to participate in the study for adolescents and adults aged 13 to 40 years
old. Contents consist of Music based Attention Test (MAT) and Comprehensive Attention
Test (CAT).

Observation items are contact and non-contact optical blood flow signals/respiration
signals, facial features, and facial expression recognition.

Table 1. Basic information of research participants.

Classification Category Comparative Group Control Group Total

Gender
Male 3 8 11

Female 11 11

Age

12~15 1 2 3
16~19 5 4 9
20~24 6 1 7
25~29 2 1 3

Education

Junior Highschool 2 2 4
Attending Highschool 4 2 6
Graduated Highschool 1 2 3
Attending University 5 2 7
Graduated University 2 2

Disability ASD 2 2
ID 6 6

ASD: Autism spectrum disorder, ID: Intellectual disability.
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Status data was collected and analyzed based on the face images of individuals with.
ASD through a webcam or front camera in a PC or tablet environment in which the content
is driven. The participants of the experiment wore ECG and EMG sensors, and were
conducted in an environment of 200 lux or more of illumination.

Tables 2 and 3 compare ECG and EMG sensor data with heart rate and respiration data
acquired through non-contact biosignal measurement technology. With the subject sitting
in a chair, the distance between the subject and the camera was about 60 cm, and the heart
rate measurement data was acquired from the subject’s face image, and the accuracy was
calculated by sampling at 6 s intervals. In simple numerical terms, the difference is 1.27 in
heart rate and 0.29 in respiration on average, and the RMSE (Root Mean Square Deviation)
is less than 2 in heart rate and less than 1 in breathing. Compared to the conventional
contact collection method, it was verified in Tables 2 and 3 that our non-contact technology
shows competitive results.

Table 2. Non-contact heart rate measurement data compared to contact (unit: bpm).

Num 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean
Err RMSE

1
contact 90 81 79 81 77 81 82 85 91 90 79 73 82 78 88 83 80 78 75 76

1.673ours 88 81 78 80 80 82 80 85 90 90 81 73 78 80 87 82 81 78 77 74
err 2 0 1 1 3 1 2 0 1 0 2 0 4 2 1 1 1 0 2 2 1.3

2
contact 78 77 88 78 82 86 85 86 87 88 83 85 88 85 95 89 82 80 84 83

1.774ours 77 77 86 76 81 87 85 86 85 89 80 85 86 85 90 89 84 78 83 83
err 1 0 0 2 1 1 0 0 2 1 3 0 2 0 5 0 2 2 1 0 1.15

3
contact 83 82 86 70 88 81 81 83 82 87 85 86 82 86 85 84 85 89 78 85

1.244ours 84 81 84 71 87 81 82 82 83 86 84 85 83 85 85 86 86 89 77 82
err 1 1 2 1 1 0 1 1 1 1 1 1 1 1 0 2 1 0 1 3 1.05

4
contact 84 87 86 86 89 86 86 79 84 77 79 99 78 80 82 79 82 78 86 80

2.626ours 84 87 86 87 87 86 84 74 84 76 82 90 77 81 80 78 83 77 86 78
err 0 0 0 1 2 0 2 5 0 1 3 9 1 1 2 1 1 1 0 2 1.6

5
contact 84 88 79 87 90 85 93 86 86 80 84 81 86 82 86 87 86 91 87 88

1.466ours 84 86 78 86 87 85 90 85 84 81 82 82 85 83 85 86 85 90 86 87
err 0 2 1 1 3 0 3 1 2 1 2 1 1 1 1 1 1 1 1 1 1.25

mean 1.27 1.756

Table 3. Non-contact breathing measurement data compared to contact type (unit: number of breaths).

Num 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean
Err RMSE

1
contact 19 19 20 18 18 17 15 16 16 15 16 16 17 15 15 21 21 17 16 17

0.591ours 19 20 20 18 19 17 16 16 16 15 16 17 17 15 15 22 21 16 16 18
err 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0.35

2
contact 14 15 11 14 11 14 13 12 13 15 22 21 22 15 15 14 13 12 14 15

0.447ours 14 15 11 14 11 14 13 12 13 15 21 22 21 15 15 14 13 12 14 14
err 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0.2

3
contact 13 15 14 13 15 13 14 11 15 14 14 14 14 23 26 23 20 20 20 18

0.387ours 14 15 14 13 15 13 14 11 15 14 14 14 14 23 27 23 20 20 21 18
err 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0.15

4
contact 17 14 17 16 13 15 13 13 13 11 16 14 14 14 12 15 13 13 16 16

1.140ours 17 19 17 16 13 15 13 13 13 11 16 14 14 15 12 15 13 13 16 16
err 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.3

5
contact 15 15 14 15 14 13 25 20 19 18 15 14 14 13 13 13 13 18 13 13

1.396ours 15 15 14 16 14 13 25 20 19 18 14 14 14 13 12 13 13 12 13 13
err 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 6 0 0 0.45

mean 0.29 0.792
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In Table 4, the expression recognition rate of the subjects was calculated through (3)
for 6 types of expressions (joy, surprise, disgust, sadness, fear, neutral) by comparing the
DISFA dataset [36] with the subject’s face image.

ACC = R × 100, R = T
T+F , (0 ≤ R ≤ 1),

T = Number of successful recognition,

F = Number of failed recognition

(3)

Table 4. Non-contact image-based facial expression recognition (unit: %).

Status Ground-Truth Number of Trials T F Ratio

1 joy
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For each of the six expressions, the test was performed 100 times, and the accuracy
of 95.7% was verified in the expression recognition rate with 574 times of recognition and
26 times of false recognition.

Table 5 is the determination of the measurement accuracy for the gaze (face direction)
and hand interaction. Three interaction areas were selected in consideration of the camera
angle of the environment using the tablet and to characterize that precise interactions
of the people with ASD. The screen size was based on 640 × 480, and the accuracy was
determined for the following three areas. x is the abscissa, y is the ordinate, and the size of
the area was determined empirically through sufficient tests.

1. Left area: 10 < x <60, 250 < y < 350
2. Center area: 295 < x < 345, 250 < y < 350
3. Right area: 580 < x < 630, 250 < y < 350

In the case of gaze, the target blue rectangle appears randomly on the screen, and
the green rectangle corresponding to the subject’s gaze is placed on the blue rectangle. In
the case of hand interaction, the direction of the subject’s palm was marked with a red
circle, and the recognition accuracy was calculated through (3) by placing it on a randomly
appearing blue square.
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Table 5. Determination of recognition accuracy for gaze and hand interaction (unit: %).

Method Ground-Truth Number of Trials T F Ratio

1 gaze
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In the experiment, it is more advantageous than the contact sensor in that it was
possible to collect biometric data without noise and without using a contact sensor that
can feel the mental burden of the people with ASD via their heart rate and breathing and a
sense of resistance to physical contact. In addition, it was confirmed through Tables 2 and 3
that similar biometric data measurement values were obtained when compared with the
contact sensor. From the image-based facial expression recognition, as shown in Table 4, it
has become an index that can grasp the psychological state of people with ASD. In Table 5,
the subjects accurately identified their gaze, and it was verified that the hand was accurately
recognized and matched to the target even in the hand interaction.

5. Conclusions

In this study, a technology for measuring the state data of people with ASD was
proposed through the development of a non-contact image-based bio-signal measurement
technology. Data was collected by detecting light blood flow (heart rate), breathing, facial
expressions, gaze and facial movements, and hand movements based on a single RGB
camera rather than using individual sensors to measure each state data. Conventional
contact sensors such as ECG and EMG can feel the mental burden and a sense of resistance
to physical contact with people with ASD. In addition, not only can it have a great influence
on the state analysis of the communication-weak, but it can also adversely affect the
psychological state of the communication-weak.

Based on the collected biometric data, a real-time signal detection integrated interface
was defined and implemented by analyzing the condition of the communication-weak
person and making it visible so that the expert who manages the person can easily recognize
and understand their status. It is predicted that it can be applied to various platforms
based on contactless bio-signal measurement technology or integrated interface to develop
functional contents that provide opportunities for people with weak communication skills
to live their daily lives and meet social needs.

In the future study, applying a face detector for every frame in heart rate measure-
ment is disadvantageous to the overhead and stability of the detection area, so applying
a circulated structure-based tracking algorithm based on object tracking technology could
improve the learning speed and stability of the face area. In addition, noise generated
in a motion situation has a limitation in simply mitigating the change in signal value
through a normalization process. Therefore, it is expected that if a method of quantitatively
detecting facial motion by applying optical flow and a Kalman filter and mitigating the
noise component based on the detected motion amount is applied, it is expected that the
change in blood flow volume resilient to motion noise can be estimated.

In respiration, the learning-based ROI detection model is expected to improve the
overall respiration signal extraction performance by improving the ROI detection accuracy
by applying an additional network structure to optimize the task of the model, such as the



Appl. Sci. 2021, 11, 5169 21 of 23

advanced shortcut of DenseNet or the bottle-neck layer. In addition, there is a disadvantage
in that it is difficult to utilize structural information of an image due to the characteristics
of the existing method of using a model that classifies whether a change is caused by
respiration by analyzing a pattern of pixel change to detect a respiration signal. To improve
this, the use of a 3D-CNN model that considers the structural characteristics of the image
is expected to improve the stability of ROI detection.

In facial expression recognition, features subjected to person-specific normalization
are used as input data of the facial expression recognition model. In addition, we plan to
test the performance of the model and the normalization method using two representative
public databases (DISFA, MMI) in the field of facial expression recognition.

In addition, the function of extracting facial feature points based on CPU computation
enables real-time state data analysis in an environment without GPU support by using face
alignment of the dlib library.

However, it is still vulnerable to face rotation, occlusion, and movement using 2D
facial feature points as an inference model. This should be possible to develop a model
with improved performance by removing the regression branch operation, which is used
only for training during inference calculations, by using a 3DDFA model with a small
number of parameters and a fast inference speed as a backbone network.

In the case of the gaze, it will be supplemented to enable more precise measurement
of gaze through area segmentation and enhancement of facial feature point extraction
functions. In hand interaction, the function will be extended to simple gesture recognition
as well as interaction through simple palm tracking.

In the case of the integrated interface, the UI/UX will be supplemented so that the
expert who manages the communication-weak person can more easily recognize the status
data of the communication-weak person acquired by contactless method.

In addition, we will develop mobile and VR contents that utilize the state data of the
communication weak, and recruit more experimental personnel. Future research will prove
whether the content to be developed later can contribute to the improvement of quality of
life through the improvement of communication skills of people with ASD.
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