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Abstract: Our aim in this article is to study the radiation and multiple slip effects on magnetohydro-
dynamic bioconvection flow of micropolar based nanofluid over a stretching surface. In addition,
a steering mechanism of making improvements to the Brownian motion and thermophoresis mo-
tion of nanoparticles is integrated. The numerical solution of 2-dimensional laminar bioconvective
boundary layer flow of micropolar based nanofluids is presented. The basic formulation as partial
differential equations is transmuted into ordinary differential equations with the help of suitable
similarity transformations. Which are then solved by using the Runge–Kutta method of fourth-order
with shooting technique. Some important and relevant characteristics of physical quantities are
evaluated via inclusive numerical computations. The influence of vital parameters such as buoyancy
parameter λ, bioconvection Rayleigh number Rb, the material parameter K are examined. This
investigation showed that with the increment in material parameter, micro rotation and velocity
profile increases. In addition, the temperature rises due to the enhancement in Nb (Brownian motion)
and Nt (thermophoresis parameter).

Keywords: bioconvection; nanofluid; micropolar fluid; magnetohydrodynamic; multi slips; radiation;
Runge-Kutta shooting scheme

1. Introduction

There are many applications of bio-convection, such as oil model, enhance oil recovery
(EOR). This is the reason some analysts have observed the processes of bio-convection. The
EOR is a new process of technology that is used for the recovery of oil and gas. It contains
the injection of some tiny organisms which can not be seen with the human eye into
cartons and the remaining oil is decreased by situ amplification. The self-incite micrograms
which are in motion increase the volume of fluid outflow in a specific path to generate
bio-convection. Bioconvection is known as the gradual progress of a form in solutions of
tiny organisms which cannot be observed with the common eyes such as bacteria and algae.
During swimming in the vertical direction, the volume of the main fluid is raised with the
propulsion of these organisms by their selves. Nayak et al. [1] investigated the impact of
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3-D bioconvection with multislip effects of Casson nanofluid along with motile gyrotatic
microorganisms. Kezzar et al. [2] solved the non-linear problem for nano bioconvective
flow between parallel plates by using adomian decomposition method. Balla et al. [3]
investigated the combined impacts of bioconvective flow and chemical reaction in a square
cavity. Khan et al. [4] used the Homotopy analysis method for entropy generation and
gyrotactic microorganisms. Liaqat et al. [5] explored the unsteady case for multi slips
effects on bioconvective micropolar nanofluids using the stretching sheet. Ayodeji with his
coworkers [6] discussed the Nb and Nt effects for magnetohydrodynamic bioconvective
flow with multi slips. Nanofluid flow with self-propelled microorganisms for a nonlinear
stretching sheet was discussed by Mondal and Pal [7]. Bhatti et al. [8] examined the
activation energy of nanoparticles along with gyrotatic microorganisms over a stretchable
sheet. Ansari et al. [9] studied the gyrotatic microorganism effects and the effects of
nano-particles in magnetohydrodynamic Casson fluid. Magagula with his co-workers [10]
studied double dispersion with Casson fluid as a base fluid in the presence of gyrotatic
microorganism. Khaled et al. [11] analyzed the application of bioconvection over a moving
surface by using a homotopy analysis scheme.

Microfluid has gained wide concentration because of its many usages in various fields
of industry, construction and engineering. Compared to Newtonian liquids, micropolar
liquids are more resistant to the motion of outflow. This process also suggests that the
outflow of viscous fluid is higher for the greater micropolar value of the parameter. It
has also been analyzed that in the process of laminar flow, micropolar fluids can be
very effective fluid media. The idea of micropolar fluids studies the effect of micro-
rotation in hydrodynamics, which contains rotational microcomponents. Ali et al. [12]
investigated the impact of ferromagnetic and ferrimagnetic past over a stretching sheet.
They used Ethylene glycol and water as base fluids with the magnetic dipole. Liaqat
and his co-workers [13] analyzed the boundary layer flow of ferrite nanoparticles. They
used Paramagnetic, Diamagnetic, and (Ferromagnetic) as ferrites and water and ethylene
glycol as a base fluid. Abdal et al. [14] examined the radiation and dissipation effects
due to stretching surface. Sadiq et al. [15] analyzed micropolar fluid’s outflow along
with the boundary layer having different properties. Aslani et al. [16] discussed the
micropolar Couette fluid flow with magnetic fields. Mishra et al. [17] worked on the effect
of magnetohydrodynamic outflow by using the micropolar fluids, keeping the medium
porous. Nadeem et al. [18] investigated heat flow of 3-D micropolar fluids with Riga plate.
Aslani et al. [19] analyzed radiation effects of a micropolar fluid with mass transpiration.
Janardhana et al. [20] worked on the micropolar fluids and solved it numerically under
the effect of transfer of heat as well as the radiations. He used a cylinder for this, which
was empty and in the upright direction. He also applied the idea of Bejan’s function of
heat. Ramadevi et al. [21] numerically studied the mixed convection micropolar fluid flow.
Ismail et al. [22] discussed that micropolar fluid beneath the consequence of convinced
magnetic fields. Similar work was being done by [23,24].

A fluid consists of very small flecks whose size can be measured in a nanometer known
as nanofluid. Such type of fluid plays an important role in the colloidal interruption of
fluid. The tiny particles that are involved in the manufacturing of nanofluids, mostly made
of carbon, oxides, carbides and oil-based nanofluids [25]. Nanofluids can be regarded
as the prospect of the transfer of heat. Due to the presence of suspended nanoparticles
with high thermal conductivity, they are expected to have better thermal properties than
conventional fluids [26,27]. Recently, several studies have shown improvements in the
thermal conductivity of nanofluid. The use of nanofluids can significantly increase the
heat transfer rate. To expand the application of nanofluids, it is important to further
study the basis of heat transfer and friction factors in the case of nanofluids. In all types
of fluids, nanofluids are the best option to discuss the accomplishment of the transfer
of heat. Liaqat et al. [28] investigated the multi-slips effects of magnetohydrodynamics
Casson nanofluid past over a shrinking sheet. Sohaib et al. [29] numerically investigated
the unsteady case for multislip effects on micropolar nanofluid with heat source and
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radiation. Bagh with his co-workers [30] studied the unsteady case for axisymmetric
nanofluid. Bagh et al. [31] studied Stefan blowing effect on thermal radiation for nanofluid
flow on the leading edge. Yang et al. [32] analyzed transfer of heat and flow optimization
of nanofluids. It is obvious that typical generator oils use approximately less thermal
conductivity and transfer of heat characteristics. Yang with his co-workers [33] analyzed
it by using the nanofluids. Karvelas et al. [34] discussed the aggregation of nanoparticles.
Abdal et al. [35] studied the analytical solution of Casson nanofluid. Ji et al. [36] worked on
the improvement of thermal conductivity by using the nanofluids in water. They observed
the effect of temperature. Moraveji et al. [37] discussed the flow of nanofluid by making tiny
pathways with the help of dissipation of heat and also observed its property of hydraulic.
Mousavi et al. [38] studied the experimental comparison between hybrid nanofluid ZnO
and MoS2. Abbas et al. [39] discussed boundary layer flow of nanofluid. Husnain et al. [40]
investigated the buoyancy effects of MHD nanofluid over a vertical plate. Similarly, many
researchers done research in this field [41,42].

Motivated by the above literature, authors have shown deep interest in investigating
the magnetohydrodynamic fluid flow of micropolar based nanofluid over a stretching
surface. The improved heat transfer via nanofluid motion is augmented with thermal
radiation and multi-slip conditions. Another aspect of innovation is bioconvection of
micro-organism to provide stability by mixing and thus it may avoid aglow migration of
nano entities. In view of such examination, partial differential equations are transformed
into ordinary differential equations with the help of suitable transformations and then
solved by using Runge–Kutta fourth-order method with shooting technique. In addition,
in this study, the flow velocity behavior along with temperature, concentration and motile
gyrotatic microorganism due to the impact of several physical parameters have been
assimilated through graphs and tables.

2. Physical Model and Mathematical Formulation

Choose x-axis and y-axis in such a way that y-axis is orthogonal to x-axis, shown
in Figure 1. Consider Ũ(x, t) = ãx̃/(1− λ̃t̃) is the non-uniform velocity with moving
sheet, where a represent the stretching/shrinking rate in the direction of x-axis and λ̃t̃
is non-negative constant having property λ̃t̃ < 1. B̃(x) = B̃0 x̃−1/2 is the magnetic field
along y-direction, where B̃0 6= 0 is the magnetic field strength. T̃∞ represents free stream
temperature, C̃∞ is the nano-particle concentration, ñ∞ is the microorganism concentration.
T̃w(x̃, t̃) is the temperature of the sheet such that ( [29]):

T̃w − T̃0

(
ãx̃

2ν̃(1− λ̃t̃)2

)
= T̃∞.

Figure 1. Flow geometry.
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Similarly C̃w(x̃, t̃) and ñw(x̃, t̃) are the nano-particles concentrations and microorgan-
ism concentrations defined as

C̃w − C̃0

(
ãx̃

2ν̃(1−λ̃t̃)2

)
= C̃∞,

ñw − ñ0

(
ãx̃

2ν̃(1−λ̃t̃)2

)
= ñ∞,

where reference temperature represented by T̃0, reference nano particle concentration is C̃0
and ñ0 is the reference concentration of microorganism, respectively.

Using aforementioned assumptions, the governing flow equations are given
below [28,29,43]:

∂ũ
∂x̃

+
∂ṽ
∂ỹ

= 0, (1)

∂ũ
∂t̃

+ ũ
∂ũ
∂x̃

+ ṽ
∂ũ
∂ỹ

=

(
µ̃ + k̃

ρ̃

)
∂2ũ
∂ỹ2 +

k̃
ρ̃

∂Ñ
∂ỹ
− σ̃B̃2(x̃)ũ

ρ
− ν̃

k̃
ũ+

1
ρ̃

[
ρ̃β̃g̃(T̃ − T̃∞)(1− C̃∞)− g̃(C̃− C̃ f )(ρ̃p − ρ̃)− γ̃∗ g̃(ρ̃m − ρ̃)(ñ− ñ∞)

]
, (2)

ρ̃ j̃
(

∂Ñ
∂t̃

+ ũ
∂Ñ
∂x̃

+ ṽ
∂Ñ
∂ỹ

)
= γ̃

∂2Ñ
∂ỹ2 − k̃

(
2Ñ +

∂ũ
∂ỹ

)
, (3)

∂T̃
∂t̃

+ ũ
∂T̃
∂x̃

+ ṽ
∂T̃
∂ỹ

= α̃
∂2T̃
∂ỹ2 −

∂q̃r

∂ỹ
+ τ̃

(
D̃B̃

∂T̃
∂ỹ

∂C̃
∂ỹ

+
D̃T

T̃∞

(
∂T̃
∂ỹ

)2)
, (4)

∂C̃
∂t̃

+ ũ
∂C̃
∂x̃

+ ṽ
∂C̃
∂ỹ

= D̃B̃
∂2C̃
∂ỹ2 +

D̃T̃
T̃∞

∂2T̃
∂y2 , (5)

∂ñ
∂t̃

+ ũ
∂ñ
∂x̃

+ ṽ
∂ñ
∂ỹ

+ b̃W̃c̃
∂

∂ỹ

(
ñ

∆C̃
∂C̃
∂ỹ

)
= D̃m̃

∂2ñ
∂ỹ2 . (6)

The boundary conditions for the given problem is given below [28]:
ũ = Ũ(x, t) + Ũslip, ṽ = ṽw, Ñ = −m̃ ∂ũ

∂ỹ + T̃ − T̃w(x, t)− T̃slip = 0,
C̃− C̃w(x, t)− C̃slip = 0, ñ− ñw = 0, as y = 0,
ũ→ 0, Ñ → 0, T̃ − T̃∞ → 0, C̃− C̃∞ → 0, ñ− ñ∞ → 0 as y→ ∞.

(7)

Here, ũ and ṽ are the component of velocity along x̃ and ỹ, respectively, j̃ is micro-
inertia, m̃ is constant (0 ≤ m ≤ 1), dynamic viscosity is denoted by µ̃, Ñ represents
micro-rotation vector, vortex viscosity is k̃, ρ̃ represents fluid density, electrical conductivity
is denoted by σ̃, thermal diffusivity is α̃, spin gradient viscosity is γ̃, g̃ is gravity acceleration,
ρ̃m is microorganism density, ρ̃p is nano particle density, D̃T refers as thermal diffusivity,
D̃B refers as Brownian diffusivity, D̃m refers as molecular diffusivity, W̃c is the speed of cell
swimming, T̃ represents temperature, C̃ represents nanoparticle concentration, ñ refers to
the motile density of microorganisms, b̃ refers to chemotaxis constant.

Furthermore, Rosseland approximation q̃r in Equation (4) is defined as, q̃r =
−4σ̃∗

3k̃∗
∂T̃4

∂ỹ ,

where σ̃∗ is refer as Stefan–Boltzmann constant, k̃∗ refer as mean absorption coefficient
(see [12,44]). On expanding T̃4 by Taylor series, we get T̃4 = 4T̃T̃3

∞ − 3T̃4
∞, neglecting the

higher order so, ∂q̃r
∂ỹ = 16T̃3

∞ σ̃∗

3k̃∗ κ̃
∂2T̃
∂ỹ2 . Generally, ψ (stream function) is defined as ∂ψ

∂y = u and

− ∂ψ
∂x = v. With the help of given similarity transformations, convert the Equations (1)–(6)

into ordinary differential equations [28,29].

 η =
(

a
ν̃(1−λ̃t̃)

)1/2
y, ψ =

(
aν̃

(1−λ̃t̃)

)1/2
x f (η), Ñ =

(
a3

ν̃(1−λ̃t̃)3

)1/2
xh(η),

θ(η)− T̃−T̃∞
T̃w−T̃∞

= 0, φ(η)− C̃−C̃∞
C̃w−C̃∞

= 0, ξ(η)− ñ−ñ∞
ñw−ñ∞

= 0.
(8)
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After transformation above equations we get:

(1 + K)
d3 f
dη3 + f

d2 f
dη2 −

(
d f
dη

)2
− δ

(
η

2
d2 f
dη2 +

d f
dη

)
+ K

dg
dη
−M

d f
dη
− kp

d f
dη

+λ(θ(η) + Nrφ(η)− Rbξ(η)), (9)(
1 +

K
2

)
dg2

dη2 + f
dg
dη
− d f

dη
g− δ

(
η

2
d2 f
dη2 +

3
2

d f
dη

)
− K

(
2g +

d2 f
dη2

)
= 0, (10)

(1 + R)
1

Pr
d2θ

dη2 −
d f
dη

θ + f
dθ

dη
− δ

(
η

2
dθ

dη
+ 2θ

)
+ Nb

dφ

dη

dθ

dη
+ Nt

(
dθ

dη

)2
= 0, (11)

d2φ

dη2 − Ln
[

d f
dη

φ− f
dφ

dη
+ δ

(
η

2
dφ

dη
+ 2φ

)]
+

Nt
Nb

d2θ

dη2 = 0, (12)

d2ξ

dη2 − Lb
(

ξ
d f
dη
− f

dξ

dη

)
− Pe

(
d2φ

dη2 (ξ + Ω) +
dξ

dη

dφ

dη

)
− δ

(
η

2
dξ

dη
+ 2ξ

)
Lb = 0, (13)


f (0) = fw, d f (0)

dη = 1 + S f
d2 f (0)

dη2 , g(0) = −m d2 f (0)
dη2 , θ(0) = 1 + Sθ

dθ(0)
dη ,

φ(0) = 1 + Sφ
dφ(0)

dη , ξ(0) = 1− B, at η = 0,
d f (∞)

dη → 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, ξ(∞) =→ 0. at η → ∞.

(14)

the parameters in Equation (9)–(14) are defined as:

M = σ̃(1−λ̃t̃)
ρ̃ax̃ B̃2

0 is magnetic parameter, δ = λ̃
a is unsteadiness parameter, κ = k̃

µ̃ is

material parameter, λ = Gr
R2

ex̃
is buoyancy parameter, Nr =

(ρ̃p−ρ̃)(C̃w−C̃∞)

β̃ρ̃(1−C̃∞)(T̃w−T̃∞)
is Bouyancy

ratio parameter, Rb = γ̃∗ (ρ̃m−ρ̃)(ñw−ñ∞)

β̃ρ̃(1−C̃∞)(T̃w−T̃∞)
is Rayleigh number, R = 16σ̃∗ T̃3

∞
3k̃∗K̃

is thermal radia-

tion, Nt = τ̃D̃T(T̃w−T̃∞)
ν̃T̃∞

is the thermophoresis parameter, Nb = τ̃D̃B(C̃w−C̃∞)
ν̃ is the Brownian

motion parameter, Ln = ν̃
D̃B

is the Lewis number, Lb = ν̃
D̃m

is the bioconvection Lewis

number, Pe = b̃W̃c
D̃m

bioconvection Peclet number, Pr = ν̃
α̃ is Prandtl number, Ω = ñ∞

ñw−ñ∞

is micro-organism concentration difference, fw = − ṽ0√
x (

(1−λ̃t̃)
ν̃a )1/2 is the parameter of

suction/injection.

3. Mathematical Scheme

Ordinary differential Equations (9)–(13) are numerically solved with the help of
shooting technique and Runge–Kutta method. This scheme is more capable and easy to
apply as compared with other methods such as, homotopy perturbation method (HPM),
finite difference method (FDM). For this, new variables are introduced:

w′1 = w2,
w′2 = w3,
w′3 = −1

1+K [w1w3 − w2
2 + Kw5 − (M + Kp)w2 − δ( η

2 w3 + w2) + λ1(w6 − Nrw8 + Rbw10)],
w′4 = w5,
w′5 = −1

(1+ K
2 )
[w1w5 − w2w4 − K(2w4 + w3)− δ( η

2 w5 +
3
2 w4)],

w′6 = w7,
w′7 = −Pr

1+R [w1w7 − w2w6 − δ( η
2 w7 + 2w6) + Nbw7w9 + Ntw2

7],
w′8 = w9,
w′9 = [Ln(w2w8 − w1w9 + δ( η

2 w9 + 2w8))− Nt
Nb w′7],

w′10 = w11,
w′11 = Lb(w2w10 − w1w11 + δ(( η

2 )w11 + 2w10)) + Pe[w9w11 + (Ω + w10)w′9],
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The relations in Equation (14) are:

η = 0 : w1 = fw, w2 = 1 + S f w3, w4 = −m w3, w6 = 1 + Sθ w5, w8 = 1 + Sφ w7, w10 − 1− B = 0,
η → ∞ : w2 → 0, w4 → 0, w6 → 0, w8 → 0, w10 → 0.

it is required to induce eleven guess and five unknown conditions, let w3(0) = a, w5(0) =
b, w7(0) = c, w9(0) = d, w11(0) = e. These conditions are satisfied when η → ∞.

4. Results and Discussion

The main purpose of this study is to investigate the study of radiation and multiple
slip effects on magnetohydrodynamic bioconvection flow of micropolar based nanofluid
over a stretching surface. In Table 1, the comparison of skin friction coefficient with
already published papers is made to justify the validation of the current structure. A strong
correlation is observed between the results. Table 2 shows the comparison of Pr and M for
skin friction with already published papers. In Table 3, comparison of−θ′(0) with different
values of Pr is shown. It is obvious that with the boosting values of Pr there is an increment
in the −θ′(0). For the confirmation of the accuracy of the present numerical structure, a
comparison of the current result for Nusselt number with different values of Pr, M and
R are made when all other parameters are zero, with already published results shown in
Table 4. It is found that there is an outstanding correlation arise between the results.

Table 1. Comparison of skin friction coefficient for various values of M.

M Shahid et al. [45] Gireesha et al. [46] Sohaib et al. [29] Our Results
β = 0

0.0 1.0000080 1.000 1.0000130 1.0000110
0.2 1.0954458 1.095 1.0954463 1.0954453
0.5 1.2247446 1.224 1.2247454 1.2247434
1.0 1.4142132 1.414 1.4142180 1.4142160
1.2 1.4832393 1.483 1.4832402 1.4832396
1.5 1.5811384 1.581 1.5811396 1.5811382
2.0 1.7320504 1.732 1.7320516 1.7320512

Table 2. Skin friction and Prandtl number comparison for various values of M and Pr.

M Shahid et al. [45] Fazle [47] Our Results Pr Shahid et al. [45] Fazle [47] Our Results

0 −1.0000082 −1.0000084 −1.0000081 - - - -
1 1.41421353 1.41421356 1.41421354 - - - -
5 2.44948963 2.44948974 2.44948968 0.72 0.8088 0.8088 0.8086
10 3.31662463 3.31662479 3.31662475 1 1.0000 1.0000 1.0000
50 7.14142839 7.14142843 7.14142841 3 1.9237 1.9237 1.9245

100 10.0498751 10.0498756 10.0498754 10 3.7207 3.7207 3.7212
500 22.3830283 22.3830293 22.3830298 - - - -

1000 31.6385833 31.6385840 31.6385838 - - - -

Table 3. Nusselt number comparison for various values of Prandtl number.

Pr Liaqat et al. [5] Shahid et al. [45] Bagh et al. [48] Haile et al. [49] Our Results

0.72 0.8086 0.808634 0.808634 - 0.808633
1.00 1.0000 1.000008 1.000001 1.0004 1.000008
3.00 1.9236 1.923678 1.923683 1.9234 1.923677
10.0 3.7206 3.720668 3.720674 3.7205 3.720658
100 12.2946 - - 12.2962 12.29405
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Table 4. Comparison of R, Pr and M.

R Pr M Majeed et al. [50] Ishak [51] Mabood et al. [52] Mukhopadhyay [53] Our Results

0 1 0 0.954783 0.9548 0.95478 0.9547 0.9546
1 1 0 0.531730 - 0.53121 0.5312 0.5310

0.5 2 0 1.073519 1.0735 1.07352 1.0734 1.0738
1 1 1 0.450571 0.450571 0.450571 - 0.450571
1 0 1 - 0.5312 0.5312 0.5312 0.5311

Now, we see the influence of different parameters graphically on velocity f (η),
temperature θ(η) , volume fraction of nanoparticles φ(η), density of motile microorgan-
isms ξ(η) and angular velocity g(η) profiles along with fixing the remaining parameters
M = 1, K = 0.5, Kp = 0.2, Rb = 0.1, Nr = 0.1, λ = 0.2, δ = 0.2, R = 0.5, Pr = 1,
B = Nb = Nt = 0.1, Ω = 0.2, Lb = 1.2, Pe = 1.2 and Ln = 5, fw = 1, m = 0.5. The effect of
magnetic parameter M and hydrodynamic slip is shown in Figure 2. Decrement behavior
shown for velocity with rising the values of M. The decrement of velocity profile is caused
due to the increment of resistive Lorentz force. It is also observed that velocity profile
decreases with suction ( fw) and boundary layer thickness decreases when hydrodynamic
slip is in tact.
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Figure 2. Influence of magnetic and suction/injection parameter on velocity.

It is clear from the Figure 3, with the increasing values of material parameter K, an
increment is seen in velocity profile but velocity profile decreases with the increment in
hydrodynamic slip S f . Physically, material constant K is the combination of the vortex and
dynamic viscosity. The larger value of K means smaller dynamic viscosity µ and hence the
speed of flow becomes faster.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
)

Sf = 0

Sf = 1

K = 0, 1, 2

fw = 0

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
)

Sf = 0

Sf = 1

K = 0, 1, 2

fw = 0.5

Figure 3. Influence of material and suction/injection parameter on velocity.

The effect of permeability parameter kp and hydrodynamic slip on velocity profile
is shown in Figure 4. Decrement behavior of velocity with the rising values of kp and S f
is noticed. It is also observed that the velocity profile decreases when fw increases also
boundary layer thickness decreases. The basic reason for this phenomenon is that in the
porous medium the resistance becomes higher, due to this the momentum development for
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the flow regime declines. In Figure 5, the effect of Rayleigh number Rb and fw is discussed
on the velocity profile. Due to this effect velocity profile shows a decrement under the
action of hydrodynamic slip S f . Physically, the decrement occurs because buoyancy force
produces resistance against the movement in the horizontal direction.
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Figure 4. Influence of permeability and suction/injection parameter on velocity.
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Figure 5. Influence of Rayleigh number and hydrodynamic slip on velocity.

From Figure 6, the effect of mixed convection parameter λ along with hydrodynamics
slip S f on angular velocity is observed. It is seen that angular velocity increases with
the rising values of λ and S f . However, angular velocity profile decreases for the rising
values of fw (suction). Figure 7 describes the rise of material parameter K which causes
a gradual increase to the angular velocity g(η). From these figures, it is cleared that the
angular velocity is promoted along with the expanding values of K and fw. Because the
increment in K means larger vortex viscosity and hence stronger micro-rotation. However,
with the increment in the hydrodynamic slip S f , the profile of g(η) decreases. Opposite
behavior of g(η) is shown in Figure 8, for unsteady parameter δ. It is because the larger
lays after the stretch in the sheet show the overall motion of the fluid. The temperature
profile is plotted in Figure 9 with the values of magnetic number M and thermal slip Sθ .
The temperature θ(η) is gradually increasing directly with the increment in the inputs of
these parameters. In addition, it is observed that the thermal profile decreases with the
increment in fw. Figure 10 shows clearly that the effect of Brownian motion parameter
Nb along with thermal slip Sθ . It is observed that temperature rises with the rising values
of Nb. According to the concept of Brownian motion, nanoparticles are directly related
to temperature. With the increment in temperature, an enhancement yields in the kinetic
energy of these particles.
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Figure 6. Influence of buoyancy and suction/injection parameter on g.
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Figure 7. Influence of material and suction/injection parameter on g.
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Figure 8. Influence of unsteady parameter and hydrodynamic slip on g.
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Figure 10. Influence of unsteady and Brownian motion parameter on θ.

Figure 11 showed the rise in temperature profile θ(η) under the action of thermophore-
sis parameter Nt with thermal slip Sθ . The particles which have high temperature are
pushed away from the hotter region to a colder one. Due to this reason, the fluid’s tempera-
ture gets changed. Therefore, temperature increases with the increment in thermophoresis
parameter Nt but temperature profile decreases with the small increment in the unsteady
parameter δ. With the growing values of buoyancy parameter and hydrodynamic slip,
decreasing behavior of temperature is seen in Figure 12. In Figure 13, the impact of Lewis
number Ln with concentration slip Sφ, in the presence of suction parameter on the volume
fraction of nanoparticles φ(η) profile can be seen. It is observe that φ(η) decreases with the
increment in Ln with fw. Basically, Ln is the ratio of momentum diffusivity to Brownian
diffusivity. The reason behind the decrement in Ln is that molecules collide randomly with
the increment in the Brownian diffusivity parameter. Figure 14 is sketched to discuss the
rise of Brownian motion parameter Nb on φ(η). The inclination in Nb results a decrease
in volume fraction of nanoparticles φ(η). Moreover, the concentration profile decreases
with the increment in fw. The opposite behavior of φ(η) is noticed for thermophoresis
parameter Nt in Figure 15. Motile density ξ(η) is a decreasing function for bioconvection
Lewis number Lb, as seen in Figure 16. With the increment in Lb, a decrement is generated
in its diffusivity. Because mass diffusivity shows accession with the increment in Lb which
causes a decrement in the density of motile organism. In addition motile density profile
ξ(η) decreased with the increment in unsteady parameter δ. Figure 17 expressed the effect
of microorganisms difference parameter Ω on motile density ξ(η). It is very clear from
the figure that by increasing the value of Ω and B, the decrement is observed for motile
density ξ(η). In addition, motile density profile ξ(η) decreased with unsteady parameter δ.
In Figure 18, the increasing values of Peclet number Pe mean smaller mass diffusivity of
microorganism and hence the distribution of motile microorganisms is declined.
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Figure 11. Influence of unsteady and thermophoresis parameter on θ.
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Figure 12. Influence of buoyancy parameter and hydrodynamic slip on θ.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

fw = 0

fw = 1

Ln = 1, 2, 3

S  = 0

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(
)

fw = 0

fw = 1

Ln = 1, 2, 3

S  = 0.5

Figure 13. Influence of Lewis number and suction/injection parameter on φ.
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Figure 14. Influence of suction/injection and Brownian motion parameter on φ.
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Figure 15. Influence of suction/injection and thermophoresis parameter on φ.
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Figure 16. Influence of unsteady parameter and microorganism concentration difference on ξ.
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Figure 17. Influence of unsteady parameter and microorganism concentration difference on ξ.
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Figure 18. Influence of bioconvection Peclet numeral and bioconvection Lewis number on ξ.

5. Conclusions

In this article, the numerical study of magnetohydrodynamic stratified micropolar
bioconvective fluid containing gyrotatic microorganisms and nanoparticles with radiation
effects is investigated. With the help of similarity transformation, partial differential
equations are converted into ordinary differential equations then solved with the Runge–
Kutta method. Moreover, the impact of different physical parameters is analyzed. The
main findings of this articles are given below:

• The fluid velocity decreases with the increasing values of M, Kp and Rb while the
opposite behavior is noticed for K and λ.

• With the increasing values of M, micro-rotation profile decreases while it increases
with the increment in K.

• Temperature increases with the increment in the values of Nb, Nt, and M while
opposite behavior shows for λ.

• A decrement in the concentration profile is seen when the values of Ln and Nb rises
while the profile rises with the rise in Nt.
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• With the increment in the values of Lb, Ω and Pe the motile micro-organism density
profile decreases.
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