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Abstract: This paper presents a measurement method of bridge vibration based on three-dimensional
(3D) reconstruction. A video of bridge model vibration is recorded by an unmanned aerial vehicle
(UAV), and the displacement of target points on the bridge model is tracked by the digital image
correlation (DIC) method. Due to the UAV motion, the DIC-tracked displacement of the bridge model
includes the absolute displacement caused by the excitation and the false displacement induced by
the UAV motion. Therefore, the UAV motion must be corrected to measure the real displacement.
Using four corner points on a fixed object plane as the reference points, the projection matrix for each
frame of images can be estimated by the UAV camera calibration, and then the 3D world coordinates
of the target points on the bridge model can be recovered. After that, the real displacement of the
target points can be obtained. To verify the correctness of the results, the operational modal analysis
(OMA) method is used to extract the natural frequencies of the bridge model. The results show that
the first natural frequency obtained from the proposed method is consistent with the one obtained
from the homography-based method. By further comparing with the homography-based correction
method, it is found that the 3D reconstruction method can effectively overcome the limitation of the
homography-based method that the fixed reference points and the target points must be coplanar.

Keywords: bridge vibration; unmanned aerial vehicle; digital image correlation; homography
transformation; three-dimensional reconstruction; operational modal analysis

1. Introduction

During the long-term operation process of bridges, various damage may occur and
lead to the reduction of their bearing capacity inevitably. To ensure the safe operation of
bridges and avoid collapse accidents, it is necessary to carry out real-time health monitor-
ing for bridges. The anomaly detection methods, such as the temperature-driven moving
principal component analysis (MPCA) method [1], threshold-based, and anomaly trend
detection method [2], have been used for structural health monitoring (SHM). Currently,
vibration-based damage detection of bridges plays a vital role in SHM [3]. A fundamental
task of vibration-based detection methods is to measure the vibration responses accurately.
Vibration measurement is mainly divided into contact methods and non-contact meth-
ods. The contact measurement methods are primarily to use the sensors installed on the
structural surface, such as displacement sensors [4], acceleration sensors [5,6], and strain
gauges [7] to collect structural responses. Although acceleration is commonly used for
measurement, it is inaccurate in low-frequency vibration; in addition, the corresponding
velocity and displacement time histories obtained show irrational drift and usually need
to be corrected [8]. There are some other disadvantages for the contact methods. Firstly,
a large number of sensors need to be deployed on the structure for the whole field mea-
surement, which is costly or impossible in some cases, as the sensor weight may affect the
measurement results in some light structures. In some situations, sensors are difficult to be
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deployed. Therefore, some non-contact measurement methods, such as the global position-
ing system (GPS) [9], and laser doppler vibrometer (LDV) [10], have been used to measure
structural dynamic displacement under these situations. As the measurement accuracy
and sampling frequency of GPS is low, it is generally used for bridges with large vibration
amplitude [11]. Though the LDV system can be utilized to collect the vibration response
of bridges at various locations, it is costly and time-consuming to measure vibration in
practical applications [12]; moreover, it is not suitable for long-term bridge monitoring
because it needs to be deployed on the ground underneath the bridge and supervised at all
times [13].

With the rapid development of computer technology and image processing technology,
the vision-based measurement methods [14–16] have been widely used as they are accurate,
non-contact, and full-field. Compared with contact methods, the vision-based methods
provide the possibility for displacement measurement of a bridge at a distance. Through the
motion magnification analyses, the vision-based methods can identify modal parameters
for SHM without providing displacement measurement [17]. In addition, it is more accurate
and applicable than other non-contact methods, e.g., GPS. Moreover, the emergence of
low-price and high-resolution cameras makes these methods more and more popular.
Among the vision-based methods, the digital image correlation (DIC) [18,19] has been
commonly used to measure the deformation and displacement of engineering structures.
By calculating the correlation of gray-scale values between the reference subset and the
target subset of a series of images, the deformation information of the region of interest
(ROI) on the measured surface can be obtained [20]. Therefore, it is extensively applied in
the motion tracking of the target points on bridges to obtain their displacement [21–23]. To
ensure the measurement accuracy and efficacy, sufficient image stability, contrast for an
optimal choice and track of target points should be considered. In addition, in an outdoor
environment, the weather and lighting conditions (e.g., fog interference and illumination
change, etc.) may also influence the measurement results, and a subpixel level method can
be utilized to handle these negative factors [24]. In the vision-based measurement, cameras
need to be fixed in a position with sufficient light and keep an appropriate distance from
the measured bridge. It is, however, difficult to find an ideal place to deploy cameras for
some bridges across rivers and valleys.

Consequently, many scholars use UAVs carrying high-resolution cameras instead
of fixed-position cameras for SHM of bridges [25–27]. UAVs have been widely used in
structural crack detection [28], safety inspections [29], and displacement measurement [30].
Moreover, UAVs have been used for 3D geometry reconstruction to obtain accurate numer-
ical models (e.g., FEM models) [31]. Nevertheless, due to UAV ego-motion, the tracked
displacement is the combination of the absolute displacement of bridges and false displace-
ment induced by UAV motion [30]. Hence, the methods to eliminate the false displacement
induced by the UAV motion have been proposed [26,30,32,33]. The camera parameters of
each UAV video frame are calculated using triangulation [34], so that the world coordinates
of the structure can be restored, and the absolute displacement can be obtained [30]. The
absolute displacement is estimated by subtracting the UAV movement, which derived
from an embedded Inertial Measuring Unit (IMU) [33]. The false displacement is regarded
as the low-frequency noise caused by the UAV hovering, which can be filtered away by
the high-pass filter method [26]. The planar homography transformation between the
images before and after the UAV motion can be determined by direct linear transformation
based on at least four sets of 2D-to-2D (two-dimensional) point correspondences [35,36];
according to this algorithm, the false displacement induced by the UAV motion can be
corrected [32]. However, this method has a restriction that the reference points on the fixed
object plane must be coplanar with the target points, that is, the selected fixed reference
objects on the background should be close enough to the measured bridge; otherwise,
there will be a significant error. To select reference points far from the target bridge in field
measurements, it is necessary to find a way to overcome the above limitation.



Appl. Sci. 2021, 11, 5111 3 of 17

In this paper, an improved correction algorithm is developed for eliminating the false
displacement induced by the UAV motion by using 3D reconstruction. First, a video of
bridge model vibration is captured by a UAV and analyzed by the DIC. Then, the projection
matrices of each UAV motion are obtained by camera calibration, and the 3D coordinates
of the target points on the bridge model are derived by the projection matrices. Then, the
real displacement can be obtained by subtracting the coordinates of the target points on
the first frame. The displacement time-histories of the target point are analyzed by the
OMA; then, the natural frequencies can be extracted [37]. Finally, the results obtained from
the homography-based method and 3D reconstruction method are compared. This work
integrates Zhang’s calibration method [38] with a drone to provide a measurement method
for bridge vibration. The outcome from this investigation demonstrates the efficacy of the
proposed approach for obtaining dynamic displacement of bridges that are inaccessible to
fixed-position cameras or sensors.

2. Methods

The general flowchart of this work is shown in Figure 1. The video captured by the
UAV can be converted into a sequence of continuous digital images stored in frames. The
DIC principle is provided to track the displacement of the points of interest at first; the
homography transformation theory is then defined, which can be used to remove the
false displacement induced by the UAV motion; the 3D reconstruction method is further
presented to remove the false displacement and the results obtained by these two methods
are compared.
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2.1. Displacement Tracked by DIC

The DIC principle is shown in Figure 2. To track the movement of the measurement
point P(x, y) on the image I(x, y), the area of N × N pixels surrounding it is taken as
the reference sub-region (Figure 2a), while the sub-region centered on Q(x′, y′) (where
x′ = x + ∆x, y′ = y + ∆y) on the deformed image J(x, y) is defined as the deformed
sub-region; hence, the correlation between the two sub-regions can be expressed as [39]:

C(∆x, ∆y) =
s

S I(x, y)J(x + ∆x, y + ∆y)dxdy√s
S I2(x, y)dxdy ·

√s
S J2(x + ∆x, y + ∆y)dxdy

(1)

where S is the area of two sub-regions; the real displacement of P(x, y), (∆x, ∆y), maximizes
the correlation coefficient C [32].
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The pixel values of the points of interest in the process of bridge model vibration
can be obtained by the DIC. The tracked displacement by the DIC is the combination of
the absolute displacement of the measurement point and the false displacement induced
by UAV motion. The next section introduces the homography transformation method to
remove the false displacement.

2.2. Homography Transformation Method

Figure 1 shows the procedure of displacement correction based on homography
transformation for UAV measurement, which consists of three steps: (1) The DIC principle
is utilized to track the pixel values of the measurement points (step 1); (2) Four reference
points are used to establish the homography matrix between the original frame and the
frame to be corrected (step 2a); and (3) Remove the false displacement by the homography
transformation to obtain the real displacement of the target points (step 3a). The above-
mentioned steps can be realized by a MATLAB (MathWorks, Natick, MA, USA) program.

As shown in Figure 3, there exists a 2D projection mapping between every two frames
of UAV images, which can be expressed as [32]:

s

 u′

v′

1

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 u
v
1

 = Hi

 u
v
1

 (2)

where s is a scale factor; Hi (i = 1, 2, 3 . . . , n− 1) is called the homography matrix; u′, v′

are the pixel coordinates of the reference points on the original frame, and u, v are the pixel
coordinates of the reference points on the frame to be corrected. At least four reference
points are needed to estimate the homography matrix between two frames:

u1 v1 1 0 0 0 −u1u1
′ −u1

′v1
0 0 0 u1 v1 1 −u1v1

′ −v1v1
′

u2 v2 1 0 0 0 −u2u2
′ −u2

′v2
0 0 0 u2 v2 1 −u2v2

′ −v2v2
′

u3 v3 1 0 0 0 −u3u3
′ −u3

′v3
0 0 0 u3 v3 1 −u3v3

′ −v3v3
′

u4 v4 1 0 0 0 −u4u4
′ −u4

′v4
0 0 0 u4 v4 1 −u4v4

′ −v4v4
′


·



h11
h12
h13
h21
h22
h23
h31
h32


=



u1
′

v1
′

u2
′

v2
′

u3
′

v3
′

u4
′

v4
′


(3)
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If there are more than four reference points, the least square method is used to solve
the homography matrix.

The first frame of video can be regarded as the original reference frame, and the later
frames are used to set up the one-to-one homography relationship with the first frame
(Figure 3), separately. The corrected pixel coordinates of a target point are given as: uj

′

vj
′

1

 = Hj−1

 uj
vj
1

 (4)

where j is the frame number;
[

uj vj
]T is the pixel coordinates of the target point on the jth

frame,
[

uj
′ vj

′ ]T is the pixel coordinates of the target point after homography correction.

The real displacement of the target point can be obtained by subtracting
[

u1 v1
]T

from
[

uj
′ vj

′ ]T ; here,
[

u1 v1
]T is the pixel coordinates of the target point on the

first frame. The unit of displacement is pixels, which can be transferred to physical values
in millimeters by multiplying the conversion factor η = l/n (where l is the actual length
in the real world, n is the pixel number in the image corresponding to the actual length).
The homography transformation reflects the relationship between the image plane and the
fixed object plane. Therefore, the fixed object plane must be coplanar with the bridge model
plane if we want to correct the target point on the bridge model plane. However, it is hard
to find a fixed object plane on the same plane as the bridge plane for practical applications.

2.3. Three-Dimensional Reconstruction Method

As shown in Figure 1, the vibration measurement based on 3D reconstruction is
composed of three primary steps. Step 1 is to track displacement by DIC which is the
same as Section 2.2. Step 2b is the UAV camera calibration, through which the projection
matrices of the UAV camera can be estimated. Step 3b is to remove the false displacement
induced by UAV motion to obtain the actual displacement by combining the output data
from Step 1 and Step 2b.
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2.3.1. Camera Calibration

Let [Xw, Yw, Zw]
T be the coordinates of a point in the 3D world coordinate system and

[u, v]T the 2D projection of the point on the image. The relationship between the 3D world
coordinates and 2D pixel coordinates can be written as [38]:

s

 u
v
1

 = A
[

R t
]

Xw
Yw
Zw
1

 (5)

where s is an arbitrary scale factor; R =
[

r1 r2 r3
]

is the rotation matrix and

t = [ t1 t2 t3 ]
T is the translation vector,

[
R t

]
represents the extrinsic matrix that

converts the world coordinate system to the camera coordinate system; and A is the
intrinsic matrix which is given by:

A =

 fx γ u0
0 fy v0
0 0 1

 (6)

where fx and fy are the scale factors in the x and y axes of the image plane, respectively; u0,
v0 are the pixel coordinates of the image center; γ is the skewness parameter.

According to Zhang’s calibration method [38], the solution of the camera projection
matrix (camera calibration) consists of three parts: (a) Intrinsic parameter calibration; (b)
Extrinsic parameter calibration; and (c) Minimizing the reprojection error.

By taking more than three pictures of the chessboard with different views, the intrinsic
matrix A can be solved by Zhang’s method. The intrinsic parameters of the UAV camera
are invariable, and the calibration algorithms are available in the Camera Calibrator app
of MATLAB.

The extrinsic matrix represents the position and orientation of the UAV camera for
different moments. As shown in Figure 4, the upper left corner of the fixed object plane
can be set as the origin of the world coordinate system, the horizontal direction is the Xw
axis, and the vertical direction is the Yw axis. Once A is known, the UAV extrinsic matrix
can be computed by at least four sets of world coordinates and their corresponding image
pixel coordinates.
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During calibration, the extrinsic parameters are estimated numerically by minimizing
the reprojection errors for all calibration images, which is:

n

∑
i=1

m

∑
j=1
‖ mij −

_
m(A,Ri,ti,Pj) ‖2 (7)

where n is the number of frames. m is the number of points. mij represents the jth detected

point in frame i;
_
m(A,Ri,ti,Pj) is the projection of world point Pj in frame i, using the

estimated Ri and ti.
The solution of the extrinsic matrix is completed by applying the extrinsic function in

the Computer Vision Toolbox of MATLAB. Once the matrices Ri and ti (i = 1, 2, 3 . . . , n)
for each UAV frame have been calculated, the projection matrices can be estimated by
combining the intrinsic matrix A. The details of 3D reconstruction using a projection matrix
will be introduced in the next section.

2.3.2. Recovering the 3D Coordinates

The projection matrix M can be obtained by combining the intrinsic and extrinsic
parameters as follows:

s

 u
v
1

 =

 m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34




Xw
Yw
Zw
1

 (8)

Equation (8) can be written in the following form:

m11Xw + m12Yw − su = −m14 −m13Zw
m21Xw + m22Yw − sv = −m24 −m23Zw
m31Xw + m32Yw − s = −m34 −m33Zw

(9)

which leads to: m11 m12 −u
m21 m22 −v
m31 m32 −1

 Xw
Yw
s

 = −

 m14
m24
m34

− Zw

 m13
m23
m33

 (10)

Then, the 3D world coordinates of the target points on the bridge can be calculated by: Xw
Yw
s

 =

 m11 m12 −u
m21 m22 −v
m31 m32 −1

−1

β (11)

where β = −

 m14
m24
m34

− Zw

 m13
m23
m33

, Zw is the vertical distance between the fixed object

plane and the bridge model plane. Finally, by substituting the pixel coordinates u and v of
the target points into Equation (11), the 3D world coordinates of the points can be recovered.
The real displacement of the target points can be calculated from the subtraction between
Ywi −Yw1 (where i is the frame number, Yw1 is the value of the original coordinate).

Ultimately, the approach mentioned above is compared with the homography trans-
formation approach.
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2.4. Operational Modal Analysis (OMA)

The Response Transmissibility (RT) is commonly used to identify the modal param-
eters of a structure in the OMA theory. The RT, Tio(ω), between the degrees of freedom,
i and o, can be defined as [40]:

Tio(ω) =
Xi(ω)

Xo(ω)
(12)

where Xi(ω) and Xo(ω) are the Fourier transforms of xi(t) and xo(t) which represent the
response time-histories at the degrees of freedom i and o, respectively.

The Power Spectral Density Transmissibility (PSDT), T̂io, is commonly used for modal
identification [41]:

T̂io(ω) =
Si,o(ω)

So,o(ω)
=

Xi(ω)X∗o (ω)

Xo(ω)X∗o (ω)
= Tio(ω) (13)

where X∗o (ω) is the conjugate of Xo(ω) and So,o(ω) is the Power Spectral Density (PSD) of
xo(t)xo(t), while Si,o(ω), which is the Cross Power Spectrum (CPS) for xi(t) and xo(t).

In summary, the natural frequency can be determined by picking the peaks in the PSD
plots of the response of a degree of freedom [42].

3. Experiments
3.1. Experimental Setups

The bridge model has 28 spans, and its total length is 9.8 m (Figure 5a). Each span has
dimensions of 0.35 m × 0.35 m × 0.35 m. The model components include bolted balls and
rods (Figure 5b). The yellow rod has a length of 0.35 m, and the red rod has a length of
0.5 m. The truss is simply supported at both ends.
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Figure 5. (a) Bridge model; (b) Model components.

The quadrotor UAV (Spark, Da-Jiang Innovations, Shenzhen, China) used has a camera
(Figure 6a) with a resolution of 1920× 1080 pixels and a recording rate of 30 frames/second.

The fixed object is a rectangular steel frame as in Figure 6b. The four corner points at
the rectangular frame plane are used as the reference points. For the homography-based
correction approach, the fixed object plane should be as close to the bridge model as
possible, but there is no such request for the 3D reconstruction approach.
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Figure 6. (a) DJI-Spark UAV; (b) fixed reference object.

3.2. Experimental Schemes

Figure 7 shows the four reference points (red points on the rectangular frame) and the
target point (the yellow point on the bridge model). In the experiment, the bridge model is
excited by an arbitrary force.
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Figure 7. Measurement points.

For the homography transformation approach, the four reference points can be used
to establish the homography relationship between the original frame and the frame to
be corrected.

For the 3D reconstruction approach, the fixed rectangular frame is the Xw–Yw plane
of the world coordinate system (Figure 8). The top left corner point is its origin. The world
coordinates of the four reference points are (0.0, 0.0, 0.0), (500.0, 0.0, 0.0), (0.0, 500.0, 0.0),
and (500.0, 500.0, 0.0), respectively, and their corresponding pixel coordinates obtained
from the first frame are (577.1, 147.0), (1245.2, 165.1), (559.2, 806.9), and (1228.2, 804.9),
separately. Using the four sets of coordinate values and the intrinsic matrix A, R1 and t1
can be computed using the extrinsic function of MATLAB.
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4. Results  
4.1. Correction through 3D Reconstruction 

Figure 8. World coordinate system.

Similarly, the pixel coordinates of the reference points from the 2nd to the nth frames
can also be utilized to calculate the extrinsic matrices Ri and ti for each frame of images.
Ultimately, the projection matrices Mi (i = 1, 2, 3 . . . , n) for each frame can be estimated.

In order to study the influence of the distance between the fixed object and the bridge
model on the measurement accuracy, three working conditions are set up: (1) the reference
points (on the fixed object plane) are coplanar with the target points, that is, the distance
between the fixed object and bridge model is 0.0 m. In addition, the distance between the
UAV and the bridge model is 3 m (Figure 9a); (2) the fixed object is 1 m in front of the
bridge model, and the UAV-bridge model distance is 5 m (Figure 9b); (3) the fixed object is
1 m behind the bridge model, and the UAV-bridge model distance is also 3 m (Figure 9c).
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4. Results
4.1. Correction through 3D Reconstruction

The six-degrees-of-freedom (6 DOF) UAV motion, including three DOF rotations
and three DOF translations, can be obtained after the camera calibration (Figure 10). It
represents the movement of the UAV camera around the three axes of the world coordinate
system. During the experiment, the bridge model is excited five times; hence, there will be
five peaks in the displacement curve.
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Figure 10. Six degrees of freedom motion of the UAV (Zw = 0).

The displacement time–history curves (y-direction) of a reference point (the top left
corner point) before and after correction are shown in Figure 11. Since it is a fixed point, its
corrected displacement curve is almost a straight line along the x-axis. The uncorrected
displacement of the target point collected by the UAV is presented in Figure 12, which
contains the false displacement induced by UAV motion. The real displacement of the target
point (y-direction) obtained by the 3D reconstruction method is also shown in Figure 12.
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The OMA is used to analyze the modal parameters of the corrected displacement
curve of the UAV, and the result is shown in Figure 13. It can be seen from Figure 13 that
the first natural frequencies obtained by the two methods are 3.940 Hz, which demonstrates
that the OMA successfully extracts the modal parameters from the 3D reconstruction-based
displacement data.
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4.2. Comparison of Homography Transformation and 3D Reconstruction

Figure 14 shows the displacement obtained by the two correction methods. The
displacement curves are extremely similar to each other, and their maximum amplitudes
are about 9 mm. Therefore, for the case that the reference points and the target point are
coplanar (Zw = 0 mm), the results of the homography transformation method and the 3D
reconstruction method are consistent.
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Figure 14. Comparison of displacement corrected by 3D reconstruction and homography methods
(Zw = 0).

The following context will discuss the case in which the reference points and the target
point are in different planes.

By moving the fixed objected 1 m towards the UAV camera, the reference points and
the target point are non-coplanar (Zw = 1000 mm). Figure 15 shows the 6 DOF UAV
motion in this case. As demonstrated in Figure 16, the correction result of the homography
transformation is entirely unacceptable, while the 3D reconstruction method is still effective.
As the displacement PSD shows in Figure 17, the first natural frequency obtained by the
proposed method is 3.927 Hz, which has a relative error of 0.33% compared to 3.940 Hz,
while the one obtained by the homography-based method is 0.103 Hz.
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Figure 17. Comparison of PSD from 3D reconstruction and homography methods (Zw = 1000).

By moving the fixed object 1 m behind the bridge model, the distance between the
plane of reference points and the plane of the target point is Zw = −1000 mm. Figure 18
shows the 6 DOF UAV motion in this case. The correction results of the two methods are
also compared (Figure 19). In this case, the homography transformation method fails again,
while the 3D reconstruction method is still effective. As shown in Figure 20, the obtained
first natural frequency by the proposed method is 3.966 Hz, which has a relative error of
0.66% compared to 3.940 Hz, while the one obtained by the homography-based method is
0.044 Hz. Finally, Table 1 shows the frequencies obtained by two methods.
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Table 1. Frequencies obtained by two methods.

Zw (m)
Homography 3D Reconstruction Homography 3D Reconstruction

Frequency (Hz) Frequency (Hz) Relative Error (%) Relative Error (%)

0 3.940 3.940 0 0
1 0.103 3.927 97.4 0.33
−1 0.044 3.966 98.9 0.66

5. Discussion and Conclusions
5.1. Discussion

Our experimental results suggested that the two methods work well in the situa-
tion that the reference points are on the same plane as the target points. However, for
the situation that the reference points and the target points are in different planes, the
homography-based correction method is invalid, while the 3D reconstruction is still feasible.
As the plane homography is defined as a projection mapping from one plane to another,
the homography matrix calculated from the fixed object plane and image plane cannot be
used for the points on the third plane. This is why the homography transformation fails if
the fixed object plane is non-coplanar with the bridge model plane.

Although the proposed method shows a promising measurement result, there are still
several problems that should be addressed in the future study:

1. For the monocular camera, the value of Zw is assumed to be constant, that is, the
out-of-plane displacement (Zw-direction) is ignored. In some structures with mainly
in-plane displacement, the small change of Zw can be ignored. Nevertheless, there
will be an obvious error for the structures with large out-of-plane displacement if the
change of Zw is ignored. The structure-from-motion (SFM) technique can restore a
bridge’s 3D model coordinates [31], including the Zw-direction, by processing high-
resolution stereo-photogrammetric photos; it has been used for slow deformation
monitoring. An image splitter system, which consisted of four fixed mirrors, is used
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to mimic four different views by using a single camera with a 45-degree horizontal
angle with respect to the target [43]. However, it needs a large splitter and mirror
to measure large bridges from a sufficient distance. Using two UAVs combined
with a binocular vision principle to measure three-dimensional displacement needs
further investigation.

2. The experiment is carried out in a laboratory environment. Its conditions, including
light, weather, reference points, etc. are in the ideal state. It is, however, inevitable
that some negative factors may occur in the real bridge measurement, for example,
difficulty in finding fixed reference objects. An artificial fixed object needs to be
deployed under this situation. It is expected that this method can be realized in the
real bridge measurement in the near future.

3. In the current algorithm, the theory of planar homography is used to calculate the
camera extrinsic matrix R and t. Hence, the four fixed reference points must be on the
same plane with fixed-Zw. However, in some measurement circumstances, it is hard
to guarantee that all four points are coplanar. Whether or not the reference points can
be on different planes needs further study.

5.2. Conclusions

In this paper, we have described a 3D reconstruction correction method for bridge
vibration measurement using a UAV. Through the UAV camera calibration, the projection
matrix for each frame of images can be estimated, and the actual displacement of the
bridge model can be obtained by recovering the 3D world coordinates using the projection
matrices. With the development of computer vision theory and UAV technology in the
future, the UAV-based method may play an important role in vibration measurement and
damage detection of bridges. The above investigation suggested that:

The proposed method can estimate the intrinsic and extrinsic parameters (6 DOF mo-
tion) of the UAV camera using Zhang’s method, and then recover the 3D world coordinates
of the target points through the projection matrices. The natural frequencies obtained by
this method are consistent with the homography-based method. By using a fixed object on
the background as the reference, the proposed method can be used to effectively remove
the false displacement caused by the UAV motion.

To further confirm the applicability of the proposed approach for bridge vibration
measurement, different positions of the fixed object are set up. The experimental results
demonstrated that the proposed method is more applicable than the homography-based
correction method. In practical measurement, it avoids the limitation that the reference
points have to be coplanar with the bridge; they can be artificially arranged in any plane
parallel to the bridge surface. Regardless of whether the fixed object is close enough to the
bridge, the 3D reconstruction can be carried out as long as the distance between them is
known, while the measurement results are more accurate for the short distance between
the fixed object and the bridge.
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