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Abstract: A moving axle finite element (FE) was developed to study the contact between a wheel
and curved rail, where the FE can simulate multi-point contact with sticking, sliding, and separation
modes. The possible contact region is inputted as a number of nodes along the wheel and rail
surfaces, while the wheel nodes are simulated as cubic-splines. The rail node to wheel cubic-splines
contact method is then used to find the normal and shear forces, where the normal and tangential
stiffness values obtained from the three-dimensional (3D) FE analysis for an actual wheel and rail
are used to model the force–displacement relationship. A simple theoretical solution for curved
railways was used to validate the proposed FE in 3D analyses. The results show that good agreement
with the theoretical and FE solutions for the contact normal force, shear force, wheel sliding, and
wheel separation under various train speeds, curve radius, cant angles, and friction coefficients. This
FE can be used in combination with other elements to simulate a train traveling on a curved track
system, in which only the standard Newton–Raphson and Newmark’s methods are required in the
FE main program.

Keywords: cant angle; curved rail; finite element method; friction coefficient; moving wheel axle
element; separation; sliding

1. Introduction

High-speed rail and mass rapid transit have become important transportation modes
on a global scale, so safety and passenger comfort need to be taken seriously, especially
in the case of curved railway systems. The vibration and derailment behavior of trains
moving on curved rails are much more complicated than those on straight line rails.
Thus, investigation of moving trains on curved rails is an important issue. There have
been a number of studies on the interaction between wheels and curved rails, and these
studies have increased in number in recent years. Pieringer presented a detailed model for
high-frequency wheel/rail interaction during curving under constant friction in the time
domain, and the results from the interaction model were in good qualitative agreement
with previously published findings on curve squeal [1]. Zeng et al. performed a vehicle–
rail dynamics analysis of trains traveling at high speed on a curved or straight bridge,
and they used the finite element method (FEM) to model vehicle and bridge subsystems
coupled by contact forces [2]. Zeng et al. established a vehicle–rail model, where the
paper focuses on the effects of frequent earthquakes on a vehicle on horizontally curved
railways [3]. Zeng et al. proposed a three-dimensional (3D) vehicle–rail analysis method
to study the resonant behavior of a vehicle–rail system, and they numerically elucidated
the conditions for generating and canceling resonance [4]. Han et al. developed a time
domain simplified model to study the effect of control measures on wheel/rail noise
when the vehicle curves, while the effectiveness of resilient wheel and embedded track
to control curve squeal noise were assessed [5]. Zeng et al. proposed a seismic vehicle–
rail analysis method that can simulate different wheel–rail contact states, such as wheel
detachment and wheelset derailment [6]. Kaewunruen et al. evaluated the transient effect
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of curve radii on the possible occurrence of lateral track resonances, while curved track
models in 3D space were developed using a commercial finite element package [7]. Ma
at al. proposed a curved 2.5D finite element method to model a tunnel–soil system in
order to provide an appropriate artificial boundary for the computation domain, while a
2.5D analytical method considering the longitudinal, transverse, vertical, and rotational
motions of a rail was developed to model a curved track [8]. Zhang et al. implemented a
cargo–wagon-rail coupling model that adopts diagonal lashing to restrain cargo movement,
where a preliminary dynamic simulation analysis demonstrated that the selected cargo
tilted when the wagon negotiated curves [9]. Yang and Li proposed a finite element model
to simulate wheel–rail frictional rolling, where wheel–rail squeal-exciting contact was
investigated with considerations of unsteady lateral creepage, velocity-dependent friction,
and curved rails [10]. Ting et al. developed a 3D coupled train–track–soil interaction model
based on the multi-body simulation principle and finite element modeling theory, and
this model was validated by comparing numerical results with experimental results in a
good agreement [11]. Ma et al. proposed a numerical model to predict the environmental
vibration induced by trains running through a curved tunnel, and a three-dimensional (3D)
train-curved track coupled model was established and solved in the frequency domain
based on the periodic theory [12]. Pan et al. studied the ambient vibration responses
induced by the operation of a metro train on curved rail segments using a finite element
method model. The results showed that the horizontal vibration induced by a metro train
on curved segments cannot be ignored [13]. Lai et al. studied the instability mechanisms in
a constant friction coefficient situation, where a stability analysis of the wheel/rail contact
dynamics in a curve was performed by using an equivalent point contact model combined
with wheel and rail modal bases. Their results showed that two types of instabilities may
occur in the wheel/rail system [14]. Lulu et al. (2020) investigated the random vibration
analysis of tram–track interaction on a curved track due to the polygonal wheel and track
irregularity by the pseudo excitation method, where the dynamic behavior of tram-track
interaction on a curve was modelled using the finite element method and multi-body
system [15]. For the above literature review, references [2,3,10,15] developed the finite
element formulations of the curved railway system, references [1,3–9,11–14] analyzed trains
moving on curved rail, and References [1,3,6] studied the derailment of trains moving on
curved rail.

The multi-point contact between the wheel and rail, such the contact of the wheel
flange and the rail side, is still a difficult issue in terms of research. However, in the case
of wheel and curved rail contact, multi-point contact may occur, so it should be better
to include actual wheel and rail profiles in the contact analysis. In this study, a wheel
axle finite element based on actual wheel and rail profiles is developed that can move
on curved rails, where multi-point contact in the sticking, sliding, and separation modes
is considered. The finite element results are then compared with a simple ideal theory
solution to investigate the accuracy of the proposed method.

2. Finite Element Simulation of Trains Moving on Curved Rails
2.1. Illustration of Coordinate Systems

The curved rail segment, as shown in Figure 1, cannot be omitted in the railway
system, where the figure shows the train moves on a curved and cant rail. The coordinate
systems are also defined in Figure 1. The X-Y-Z is the global coordinate system, which
can be set to the first straight line segment, where X can be the rail direction, Z can be the
vertical direction, and Y = Z × X. The x-y-z is the local coordinate system for a curved
segment, where z is the tangent direction of the plane curve, y is the vertical direction, and
x = y × z (toward the center of the curve). The transformation matrix [Tx−X] between x-y-z
and X-Y-Z is:

[Tx−X] =
[
{x} {y} {z}

]
, and

{
vxyz

}
= [Tx−X]{vXYZ}, (1)
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where {x}, {y}, and {z} are unit vector of the x, y, and z axes in the X-Y-Z coordinate, {vxyz} is
a vector of the x-y-z coordinate, and {vXYZ} is a vector of the X-Y-Z coordinate. For a rail
with a cant angle θ, we define the moving wheel coordinate system as 1-2-3, where axis 3 is
the tangent direction in the same direction as that of axis z, and the tilt angle of axes 1-2
and x-y is θ, so the transformation matrices [T1−X] are:

[T1−X] =
[

cos θ{x}+ sin θ{y} cos θ{y} − sin θ{x} {z}
]
, and {v123} = [T1−X]{vXYZ}, (2)

where {v123} is a vector of the 1-2-3 coordinate.
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Figure 1. Picture of a train moving on the curved railway (photo by Shen-Haw Ju) and illustration
of the X-Y-Z coordinate (global coordinate), x-y-z (local coordinate), and 1-2-3 (moving wheel
coordinate) systems.

2.2. Finite Element Procedures for Moving Trains on Curved Rails

At time step n + 1, the external forces
{

Fext(n+1)

}
should be equal to the sum of

the mass inertia forces
{

FM(n+1)

}
, damping forces FC(n+1)

}
, and element internal forces{

FK(n+1)

}
as follows:{

Fext(n+1)

}
=
{

FM(n+1)

}
+
{

FC(n+1)

}
+
{

FK(n+1)

}
. (3)

We can change the above equation to the incremental form between steps n and n + 1
as follows:

{∆F} =
{

Fext(n+1)

}
−
{

FM(n)

}
−
{

FC(n)

}
−
{

FK(n)

}
−
{

FM_Rigid(n_to_n+1)

}
=
[
M(n+1)

]{ ..
dn+1

}
+
[
C(n+1)

]{ .
dn+1

}
+
[
K(n+1)

]{
∆d(n+1)

}
,

(4)
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where
{

FM(n)

}
,
{

FC(n)

}
, and

{
FK(n)

}
are the force vectors at time step n,

[
M(n+1)

]
,[

C(n+1)

]
, and

[
K(n+1)

]
are the current (time step n + 1) mass, damping, and stiffness

matrices, respectively,
{ ..

dn+1

}
and

{ .
dn+1

}
are the acceleration and velocity vectors at

time step n + 1,
{

∆d(n+1)

}
is the incremental displacement between time steps n and n + 1,

and
{

FM_Rigid(n_to_n+1)

}
is the global external force vector generated from the rigid body

motion of all the mass and mass inertia, which is formed from the element force vector of a
rigid body as follows:

{
FEle(n_to_n+1)

}
= [Tx−X]

T



mv2
x/R
0

max
0

Izax/R
0


, (5)

where for a rigid body, m is the mass, Iz is the mass of inertia in the local z direction, R is
the current radius of the rail, vx is the current velocity in the local x direction, and ax is the
current acceleration in the local x direction.

2.3. A frictional Contact Finite Element for Two Wheels Moving on Curved Rails

Ju [16] developed a stiffness matrix at one node using the sticking, sliding, and
separation modes. The major advantage of the formulation is that it is symmetric, even
in the case of the sliding between the wheel and rail. The two-node stiffness matrix is
then transformed to the 18 by 18 stiffness matrix of nodes B, I and J (Figure 2), where
each node has three global translation and three global rotation DOFs for the contact of
a wheel and rail. Since the above method was used to simulate the wheel moving on a
straight line rail, we modified it and added the longitudinal stiffness to solve moving train
problems on curved railways. Kalker’s variational method [17] is often used for rolling
contact problems. This method follows the half-space assumption and Mohr–Coulomb’s
friction law [18]. Thus, in this study, the Mohr–Coulomb’s friction law was used directly
to obtain the actual contact stiffness of the wheel and rail based on the 3D finite element
analysis. In the finite element analysis, we used the Newton–Raphson method to calculate
the nonlinear contact between the rail and wheel. Thus, the current contact stiffness for a
specific iteration can be written as follows [19]:

d fs
d fn
d fs1

= [Klocal]


dU
dW
dV

, (6)

where [Klocal] =

 k 0 0
0 k 0
0 0 k

for the sticking mode, [Klocal] = [0] for separation mode, (7)

and [Klocal] =

 µ2k µk 0
µk k 0
0 0 kv

 for the sliding mode. (8)

dfs, dfn, dfs1, dU, dW, and dV are incremental nodal contact forces and displacements in the
local directions between two iterations, in which k and kv are penalty constants, and µ is
the coefficient of friction, where it is positive for ∆U < 0 and negative for ∆U > 0, and ∆U
is the difference in the relative tangential displacement between the current and previous
time steps. The force and displacement vectors are obtained between two iterations, and
all the nodal coordinates of the wheel and rail are set to the last iteration. Furthermore,
the direction of dfs and dU is set to the total frictional force direction of the last iteration.
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Thus, at the convergence of a time step, a fixed coordinate for each wheel and rail node
can be obtained, so dU and dV will approach zero. Thus, even for the sliding mode, the
Mohr–Coulomb’s friction theory is still followed.
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be inputted, where master nodes B, C, and K having 6 degrees of freedom control the slave nodes).

As shown in Figure 2, the possible contact region for the wheel and rail should be
inputted as a number of nodes along the wheel and rail surfaces, respectively, where
the wheel nodes are simulated as the cubic-splines to represent the contact surface. The
proposed theory can be used to analyze multi contacts between the wheel and rail, where
the node (rail nodes) to cubic-splines (wheel surface) contact method is used [20]. As
shown in Figures 1 and 2, local direction 3 is set to the rail longitudinally tangential to the
moving wheel direction, the local direction 1 is set in the cant direction to the center of
the rail with a current radius R, and 3 × 1 obtains local direction 2, which is a cant angle
to the vertical direction. The stiffness matrices discussed above are expressed as contact
coordinates. They can be transformed back into the local 1-2-3 coordinates as follows:

[K1-2-3] = [T3]T [Klocal] [T3], (9)

where [T3] =
[
{u} {v} {w}

]
, (10)

where {u} and {w} ({v} = {w} × {u}) are the unit direction vectors of the frictional and
contact forces, respectively. The above matrix is then transformed to the stiffness matrix of
the two master nodes, B and C, in Figure 2, with 12 degrees of freedom, including three
B-nodal translations, three C-nodal translations, three B-nodal rotations, and three C-nodal
rotations in the 1-2-3 coordinates. The 12-DOF stiffness matrix in the 1-2-3 coordinate is
as follows:

[KBC] = Σ[T6×12]
T
[

[K1−2−3] −[K1−2−3]
−[K1−2−3] [K1−2−3]

]
[T6×12], (11)
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where Σ refers to the summation of all the contact points along the wheel and rail sur-
face, and

[T6×12] =



1 0 0 0 0 0 0 0 0 0 0 −∆YCD
0 1 0 0 0 0 0 0 0 0 0 ∆XCD
0 0 1 0 0 0 0 0 0 ∆YCD −∆XCD 0
0 0 0 1 0 0 0 0 −∆YBD 0 0 0
0 0 0 0 1 0 0 0 ∆XBD 0 0 0
0 0 0 0 0 1 ∆YBD −∆XBD 0 0 0 0

 (12)

The current wheel position is calculated using the initial wheel position, the initial
velocity, and the acceleration, so that one can find the two target nodes between the current
wheel position node. If the two target nodes and the wheel node are nodes I, J, and B,
respectively, the above 12-degree-of-freedom local stiffness matrix is transformed to an 18
by 18 global stiffness matrix comprising points B, I, and J with three global translation and
three global rotation degrees of freedom at each node. The 18-DOF stiffness matrix in the
global coordinate is thus:

[KBIJ] = [T12×18]T [KBC] [T12×18] (13)

[T12×18]
T =



u1 u2 u3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 u1 u2 u3 0 0 0
0 0 0 N1u1 N1u2 Snu3 0 0 0 0 0 0
0 0 0 −N2u2 N2u1 0 0 0 0 Snu1 Snu2 Snu3
0 0 0 N3u1 N3u2 Smu3 0 0 0 0 0 0
0 0 0 −N4u2 N4u1 0 0 0 0 Smu1 Smu2 Smu3

 (14)

where u1, u2, and u3 are the global unit vectors of local directions 1, 2, and 3, obtained
from [T1−X] ([u1,u2,u3] = [T1−X]) listed in Equation (2), Sn is the ratio of length J-C over
length I-J, as shown in Figure 2, and Sm = 1 − Sn, and N1 to N4 are the cubic Hermitian
interpolation functions of a beam with two ends I and J.

The three nonlinear springs (k1, k2, and k3) shown in Figure 2 are used to simulate the
nonlinear behavior of the global wheel/rail contact. Ju [21] assessed the wheel/rail vertical
stiffness k2 using a finite element analysis with 3D solid and contact elements as follows:

k2 = a + bfc
2, (15)

where a, b and c are constants. The horizontal stiffness k1 and k3 can be set to a constant.
We combined the stiffness matrix of points B, I, and J with the above stiffness values to
obtain the following stiffness matrix:

[KABIJ] =

[
[KAB] [0]6×15
[0]15×6 [0]15×15

]
+

[
[0]3×3 [0]3×18
[0]18×3 [KBIJ]

]
, (16)

where [KAB] = [T36]
T

 k1 0 0
0 k2 0
0 0 k3

[T36] (17)

[T36] =
[

u1
T u2

T u3
T −u1

T −u2
T −u3

T ] (18)

The two end nodes A and B of the spring shown in Figure 2 can be set to the same
coordinates, and the wheelset is assumed to be a rigid body. Therefore, the same rotation
DOF can be set, and the other three rotation springs can be set to simulate the rotation
stiffness. The stiffness of the wheel connected to the master node K at the center of the wheel
is derived from the relationship between the slave node and the master node as follows:

[KBKIJ] = [T21×21]
T[KABIJ][T21×21], (19)
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where

[T21×21] =



[I]3×3 [0]3×3 [0]3×3 [0]3×12

[0]3×3 [I]3×3

 0 −∆Z ∆Y
∆Z 0 −∆X
−∆Y ∆X 0

 [0]3×12

[0]3×3 [0]3×3 [I]3×3 [0]3×12
[0]12×3 [0]12×3 [0]12×3 [I]12×12

, (20)

where ∆X, ∆Y, and ∆Z are the X, Y, and Z differences between nodes B and K in the global
coordinate, respectively. The stiffness matrix has 21 DOFs, where node B has three global
translation DOFs, and nodes I, J, and K each have three global translation and three global
rotation DOFs. The computation of the contact forces between the wheel and rail can be
found in [16,20]. The spring–damper element and lumped mass from the reference must be
transformed to the global direction, so they can be used for the problem of a train moving
on curved rails without difficulty.

3. Simple Theoretical Method for Wheel Forces, Wheel Sliding, and Car Overturning
3.1. Illustration of the Simple Theoretical Equations

In this section, a simplified theoretical solution is derived to compare with the results
of the finite element analysis discussed in the next section. In this simplified method, since
the railway radius is much larger than the wheel interval, so we assume that the problem is
two-dimensional to calculate the car velocity for the wheel sliding and car overturning in
this simplified method. As shown in Figure 3, a carriage is moving on a canted rail system
with a rail gauge (G) of 1.435 m, where the carriage includes four axles, two bogies, and
a car body with the total weight of w1, w2, and w3, and the mass centers of them are H1,
H2, and H3. The railway is divided into five segments including the straight line, clothoid
curve, circular curve, clothoid curve, and straight line, respectively, and the geometric
calculation of these curves can be found in the thesis [22]. The clothoid curve connects the
straight line and circular curve with a radius ranging from infinite to a constant. Assume
the carriage moves to a location with a velocity V, radius of R, and the cant angle of θ. For
a smooth rail system, the cant angle should be inversely propositional to the current radius,
and the following equation was used:

θ = Ct/R (21)

where Ct is a constant set by the designer. The total forces, F1i and F2i, where i = 1, 2, and 3,
at each mass center in the location direction 1 and 2 are:

F1i = Wisinθ −
(

Wi
g

)
V2cosθ/R (22)

F2i = −Wicosθ −
(

Wi
g

)
V2sinθ/R (23)
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The sliding will occur under the following condition:

−∑3
i=1 F1i ≥ −µ ∑3

i=1 F2i, (24)

where µ is the coefficient of friction. The contact normal force (FN) at each wheel is:

FN = −
3

∑
i=1

F2i
N
±

3

∑
i=1

F1i Hi/(NG) (25)

(+ for the inner wheel and − for the outer wheel), where a positive FN means in the
contact mode, and otherwise, the equation cannot be used due to the separation of the
wheel and rail, and N is the number of wheels, which is eight in this paper. When one of
the wheel normal contact forces is equal to zero, the separation of the wheel and rail occurs,
causing the overturning of the carriage. This condition often comes from the inner wheel.
The shear force (FS) at each wheel is:

FS = −∑3
i=1 F1i/N. (26)

3.2. Summary of the Proposed Simple Theoretical and Finite Element Methods

The proposed theoretical method is simple and clear, so it is not difficult to use.
However, the proposed finite element method is a bit complicated, so we discuss the
important issues of using the two methods in this section, as follows:

1. For the use of the proposed simple theoretical method, Equation (24) can be used to
check the sliding of the carriage, Equations (25) and (26) can be used to find the normal
and shear forces of each wheel, and Equation (25) can be used to check the overturning
of the carriage. We validate the finite element results based on the formulations in
Section 4 using these equations. Moreover, all the data of the comparison of the next
section were computed by the computer automatically.

2. As shown in Figure 4, the proposed moving wheel axis element requires to input
the possible contact wheel and rail profiles, where slave nodes SB are mastered by
node B, and slave nodes SC are mastered by node C. Thus, there are two rigid bodies
contacting together according to the Mohr–Coulomb’s friction law mentioned in
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Section 2.3. Then, k1, k2, and k3, as shown in Figures 2 and 4 are used to simulate
the stiffness of the wheel and rail profiles, where k1 and k2 are constant in the lateral
and longitudinal directions and k3 is set as the power low (Equation (15)) in the
vertical direction. Those parameters can be obtained using the 3D static contact finite
element analysis of the actual wheel and rail. Thus, the proposed moving wheel
axis element can simulate the sticking, sliding, separation, and multi-point contact
behavior between wheels and rails.

3. The element contains 21 DOFs, where six DOFs with three translations and three
rotations are set to node I, J, and K, and three translation DOFs are set to node B. The
three rotation DOFs of node B and the six DOFs of node A are mastered by node K,
while the purpose of the two nodes are used to arrange the location of stiffness k1,
k2, and k3, and they will not connect to other elements. Nodes I and J should be
connected to a beam element to simulate rails where the wheel is located between
that beam. Node K is located at the wheel axle center, and springs and dampers
can be connected to it using slave nodes (such as node O). For example, as shown in
Figure 5, nodes 301 and 401 are mastered by node 1210 of the wheel axle center, and
springs and dampers are then connected between these two nodes to link with the
wheel set.

4. Curved rails should be modeled using a number of beam elements, where the known
position of the wheel can be used to automatically find the beam element to be located,
so that a moving axis element is formed easily. Since the vibration of the train is
highly dependent on a smooth rail, the curve rail system should include the straight-
line, clothoid, and circular segments for the calculation of the wheel position. The
centrifugal forces of the train are directly calculated from Equation (5), but not from
the finite element computation, so they are exact without errors.

5. A sub-program of the proposed moving wheel axis element (Figure 4) can be es-
tablished using the equations in Section 2. This finite element can then be used
in combination with other elements to simulate a train traveling on a curved track
system, in which only the standard Newmark’s and the Newton–Raphson methods
are required in the finite element main program. One may use the beam element
to simulate rails and bridges, the plate element to simulate the reinforce concrete
slab track system, the soil spring to simulate the ballast track system, the rigid link
and lumped mass to simulate trains, and any other element to simulate the certain
function of the railway. Finally, using the proposed moving wheel axis element with
the above finite element mesh, one can simulate train moving on complicated railway
systems without difficult.

6. The simulation error is highly dependent on the used time step length (dt), where the
vibration frequency of the analyzed domain larger than 1/(6dt) Hz may cause large
errors. It is noted that we assume that a certain frequency vibration can be modeled
appropriately at least using six time steps. Thus, one should use an appropriate time
step length to perform the proposed finite element analysis.
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Figure 4. Sketch drawing of moving axis element on curved track system (the element contains two rigid bodies contacting
at the wheel and rail surfaces, where slave nodes SB for the wheel and slave nodes SC for the rail are obtained from the
input data. Usually, 30 to 60 nodes for each slave node group are accurate enough to model the possible contact surface.
Rails are modeled using a number of beam elements, where the program automatically find the active beam element that
the wheel is contacting).

4. Validations of the Proposed Finite Element Simulations

In this section, a Taiwan high-speed train (SKS-700) carriage on curved rails to validate
the proposed finite element method, where the carriage contains two bogies and four
wheel sets, as shown in Figure 5, which provides the dimensions, dampers, springs, and
masses. In the finite element model, the car bodies, bogies, and wheel sets are assumed to
be rigid bodies, where master nodes are set to the mass center, and spring–damper elements
set at the slave nodes are used to connect them. Four wheel set elements, as mentioned in
Section 2, are arranged to connect to the curved rail with five segments, as shown in Figure 3,
where the curve lengths are 500 m for the first straight line, 2000 m for the first clothoid
curve, 10,908.3078 m for the circular curve, 2000 m for the second clothoid curve, and
800 m for the last straight line. Since the location of the wheel is known, the wheel and rail
contact locations, nodes D (shown in Figure 2), can be determined. Then, using the input
geometries of the wheel and rail, as shown in Figure 2, the program will automatically
calculate the contact behavior, including the sticking, sliding, and separation modes of
each wheel and rail using the equations in Section 2.3 and Reference [16]. Moreover, the
deformation at any node will affect the contact result, since all the finite elements are
coupled in the numerical analysis. In the finite element analysis, the Newmark’s direct
integration method is used with a time step length of 0.01 s, while the nonlinear equation
is solved by the Newton–Raphson method.

Figure 6 shows the comparison of the normal and shear contact forces of the wheel
and rail between the finite element result and the theoretical result, when the carriage
speed is 80 m/s and cant angle constants Ct are 200 and 900 m for two cases. It is noted
that the rail curve radius is much larger than the carriage length, so the contact forces of
each wheel from the finite element analysis are very similar. This figure indicates that the
finite element and theoretical results are almost identical. It is noted that the theoretical
solution can be easily obtained from Equations (25) and (26), but the finite element solution
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undergoes complex calculations, where each time step often requires two to four iterations
to reach the convergence of the nonlinear matrix equation.
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Figure 5. Three-dimensional model of a carriage of the high-speed train used in the finite element
analysis (4 wheel sets, 2 bogies, and one car body).

Figure 7 shows the beginning of the sliding between the wheel and rail at a certain
curve radius, when the carriage moves on the curved rail with a constant speed. Each
symbol in Figure 7 represents a whole finite element analysis, where Equation (24) are
used to both theoretical and finite element results automatically to obtain the curve radius
under the fixed values of the carriage speed, Ct, and frictional coefficient. The sliding
between the wheel and rail can be found in Figure 8, which was directly obtained from the
finite element results for Ct = 400 m, V = 180 m/s, and µ = 0.2. It is noted that the wheel
and rail shapes, as shown in this figure, are inputted data. The contact is in the sticking
mode for a shear contact force smaller than the normal contact force times of the frictional
coefficient, and otherwise, the wheel will move toward the outer rail. Figure 7 indicates
that the proposed method can accurately be used to simulate the sliding behavior between
a wheel and rail under various carriage speed, rail cant, and friction coefficient conditions
for the wheel and rail.
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Figure 6. The time–history of the normal and shear contact forces of the wheel and rail based on the finite element and
theoretical results for a carriage moving on a curved rail at a speed of 80 m/s (the finite element and theoretical results are
almost identical, where θ is shown in Figure 3 and Equation (21)).

Figure 9 shows the initial separation between the inner wheel and rail at a specific
curve radius, when the carriage moves on the curved rail at a constant speed, and where the
frictional coefficient between the wheel and rail is set to 0.3. It is noted that the separation
of the wheel and rail due to centrifugal force is somewhat dependent on the frictional
coefficient. Each symbol in Figure 9 represents an entire finite element analysis, where
Equation (25) is used to determine the separation for the theoretical solution, and where
the zero normal contact force of the inner wheel and rail from the finite element results
was used to automatically obtain the curve radius at fixed values of the carriage speed
and Ct. The separation between the wheel and rail can be found in Figure 10, which was
directly obtained from the finite element results for Ct = 200 m, V = 220 m/s, and µ = 0.3.
When the contact force of the inner wheel and rail equal to zero, the separation of the inner
wheel and rail occurs. Figure 9 indicates that the proposed method can accurately simulate
the separation behavior between a wheel and rail under different carriage speed and rail
cant conditions.
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Figure 7. The initial sliding between the wheel and rail at a specific curve radius (R) for the clothoid
segment at a fixed carriage speed, cant constant, and frictional coefficient (Ct and θ are defined in
Equation (21), and u is the friction coefficient).
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wheel axle moving moves to the outer rail (the wheel interval is shortened to 1.3 m to show the figure clearly, and red circles
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Figure 9. The beginning of the separation between the inner wheel and rail at a specific curve radius
when the carriage moves on a curved rail at a constant speed (Ct and θ are defined in Equation (21),
and friction coefficient is set to 0.3).
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Figure 10. Finite element results for the wheel and rail sliding and separation conditions (Ct = 200 m, V = 220 m/s, and
µ = 0.3).

We also performed a complicated finite element analysis for a 12-carriage train moving
on multiple simply supported bridges under seismic loads using the proposed method, and
the time-history contact force and derailment coefficient of each wheel can be obtained. The
finite element mesh, as shown in Figure 11, includes bridges, rails, slabs, and the 12-carriage
train, which have 299,668 elements and 1,043,430 degrees of freedom (113 spans with a
total length of 3362 m). The time step length is set to 0.0005 s, and the convergence of each
time step requires about two to four iterations, where the computer time of each iteration
is about 10 s using an Intel-i7-8700K personal computer. This information indicates that
the proposed method can be used to analyze finite element model with very large degrees
of freedom. Moreover, it can be added to a general nonlinear dynamic finite element code
without difficult.
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Figure 11. The finite element mesh of a 12-carriage train moving on multiple simply supported bridge with 299,668 elements
and 1,043,430 degrees of freedom.

5. Conclusions

The derailment of moving trains has always been an important issue, especially as
travel speeds continue to increase. In addition, the reasons for train derailment on curved
rails are more complicated than is the case on straight rails. Therefore, in this research, a
moving axle element was developed to resolve the contact of the wheel and rail on curved
railways, where the sticking, sliding, and separation modes are included. The shape of the
wheel and rail along the contact curve is required in the proposed moving axle element,
where the normal and tangential stiffness values obtained from a 3D finite element analysis
for an actual wheel and rail are used to model the force–displacement relationship. This
proposed element can be used to solve the multi-point and wheel flange contact problems
on curved rails. Moreover, a finite element case of moving train problems with large
degrees of freedom can be analyzed using this method without difficult. For example, we
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have successfully used this proposed method to analyzed a 12-carriage train traveling on a
curved bridge with more than one million degrees of freedom under earthquake loads.

In this paper, numerical validations were performed on a curved rail system with five
segments, including a straight line, a clothoid curve, a circular curve, a second clothoid
curve, and a second straight line, respectively. A simple two-dimensional theoretical
solution was used to validate the finite element results. After comparisons of the contact
normal and shear force, sliding situation, and separation situation for a number of train
speeds, cant angles, and friction coefficients, the results show good agreement with the
theoretical and finite element solutions.
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