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Abstract: The rapid determination of nitrogen, phosphorus, potassium and other major nutrient
elements is an important technical guarantee in the quality control of chemical fertilizers. In this study,
a small visible spectrometer and a small near-infrared spectrometer were used to collect spectrum
information of 33 different common chemical fertilizers including compound fertilizers, blended
fertilizers and controlled-release fertilizers. The 550~950 nm and 1050~1640 nm spectra with stable
signals were intercepted as the analysis spectrum, and the competitive adaptive reweighted sampling
algorithm (CARS) was used to select 161, 229, and 161 spectral characteristic wavelengths for the
three nutrient contents of N, P2O5, and K2O respectively. The partial least squares (PLS) and extreme
learning machine (ELM) models of N, P2O5, and K2O were established based on the 550~950 nm
waveband, 1050~1640 nm waveband, full spectrum, and characteristic wavelength, respectively. The
coefficient of determination (R2), root mean square error (RMSE), and residual predictive deviation
(RPD) were used to evaluate the effect of the model. With the optimal prediction models, the values
of R2

p for N, P2O5, and K2O were 0.989, 0.963, 0.981, and for RPD were 9.71, 5.09, 7.29, respectively.
The research results show that Vis/NIR spectroscopy can predict the content of nitrogen, phosphorus,
and potassium nutrients in fertilizers, and the near-infrared band from 1050 nm to 1640 nm has a
better prediction effect. The characteristic wavelength selection reduces the spectral variables by
9/10, and the performance of the model based on the characteristic wavelength is close to that of the
full-spectrum model.

Keywords: chemical fertilizer; nitrogen; phosphorus; potassium; visible spectroscopy; near-infrared
spectroscopy

1. Introduction

In modern agriculture, chemical fertilizer is applied to provide necessary nutrients for
crops to improve the quality and yield of crops. Commonly used chemical fertilizers mainly
include compound fertilizer, controlled-release fertilizer, blended fertilizer, etc. Controlled-
release fertilizer can regulate the release of nutrient elements in chemical fertilizer for
a long time. Compound fertilizer and blended fertilizer contain two or more kinds of
nutrient elements, which have the advantages of high nutrient content, less subsidiary
ingredients and good physical properties. Most of the compound fertilizers in actual
use are inorganic compound fertilizers, which use phosphoric acid, ammonia, etc. as raw
materials, and are produced through mechanical processing, drying, screening, and cooling.
Different from fertilizers with a single nutrient element such as urea, compound fertilizers
and blended fertilizers can simultaneously apply multiple nutrient elements to achieve
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balanced fertilization and improve fertilizer utilization efficiency. Therefore, they are more
and more widely used in agricultural production.

Inorganic compound fertilizers mainly contain three macronutrient elements: nitrogen
(N), phosphorus (P), and potassium (K). The three macronutrient elements have different
effects on the growth of plants. Nitrogen is the main nutrient element in plants and the main
element that constitutes plant proteins and enzymes. Nitrogen application can not only
increase yield, but also increase photosynthesis, leaf area yield, and net assimilation rate [1].
Phosphorus is an important element for plant growth and production, and its content in
the plant is about 0.05~0.5% of the total dry weight of the plant. At the whole plant level,
phosphorus can stimulate seed germination, increase root and stem development and
stem strength, promote the formation of flowers and seeds, and increase crop yields [2].
Potassium is a very active element in plants, generally in the form of K ions, shuttled inside
and outside plant cells. Although potassium is not part of the main chemical structure
of plants such as proteins, nucleic acids, lipids, peptides, amino acids, etc., it plays many
important regulatory roles in the process of enzyme activation, sugar transport, protein
synthesis, etc. It can improve crop yield and quality, and is necessary for many plant
growth processes [3].

Most chemical fertilizers can apply multiple nutrient elements at the same time, but the
percentage of each nutrient element in a single fertilizer is fixed. Therefore, it is necessary
to accurately know the specific nutrient element composition of the fertilizer when using it.
The inaccurate content of nutrient elements in the fertilizer will directly cause plant growth
problems and pollution of the soil environment. Although national standards and industry
standards have been established for chemical fertilizers, there are some chemical fertilizer
products on the market that do not meet the standards due to substandard raw materials,
backward production processes, storage and transportation losses, and other reasons.
Traditionally, the content of nitrogen, phosphorus, and potassium in fertilizers is detected
by chemical methods, such as the potassium tetraphenylborate gravimetric method [4],
quinoline phosphomolybdate gravimetric method [5], temperature titration method [6], etc.
Chemical methods can accurately measure the content of nutrient elements in fertilizers,
but it usually has complex pretreatment processes and harsh detection conditions. Samples
need to be sent to a special laboratory for measurement, resulting in high economic and
time costs, and cause secondary pollution during the detection process. In the process of
chemical fertilizer use, a method that can quickly detect the content of various nutrients in
fertilizers is needed to determine whether the quality of fertilizers meets the standards and
whether there are problems such as spoilage.

The visible/near-infrared (Vis/NIR) spectroscopy technology measures the content
of components in substances through the selective absorption of visible/near-infrared
light by the functional groups of the substances. It has the characteristics of fast analysis
speed, low cost, being non-destructive, requiring fewer samples, fast preparation, and that
multiple characteristics can be analyzed from a single spectral scan. It is widely used in the
quantitative detection and qualitative identification of inorganic, organic, and biological
components in complex mixtures and matrices. In recent years, there has been more and
more research on the use of Vis/NIR spectroscopy to detect the content of various nutrients
in fertilizers. Lin et al. used Vis/NIR spectroscopy to quickly analyze the organic matter
content, total nitrogen content, pH value in the soil and the main nutrient element content
in the fertilizers [7]. Wang et al. quantitatively analyzed the total nitrogen content of
ammonium phosphate fertilizer based on Vis/NIR spectroscopy and least square support
vector machine. The R2 and the root mean square error (RMSEP) of the validation set are
0.91 and 0.101 respectively [8]. Wang et al. used NIR spectroscopy and partial least squares
to quickly assess the quality of organic fertilizers. It was found that the predictions of
total organic matter, water-soluble organic nitrogen, pH, and germination rate are more
accurate, while the results of water content, total nitrogen, electrical conductivity, and
water-soluble organic carbon are less accurate [9]. These researchers have well explored
the value of Vis/NIR spectroscopy in fertilizer quality detection. However, they all used
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high-precision spectrometers, which are expensive in practical application and difficult
to popularize. At the same time, the fertilizer samples collected in research are generally
of a single variety, and the distribution gradient of nutrient element content in different
samples is not sufficiently dispersed, and cannot well cover the nutrient content range of
most chemical fertilizers on the market. In this research, some chemical fertilizer samples
which have good gradient of N, P2O5, and K2O nutrient content were gained, and the
spectral signals of the fertilizer samples were collected using small visible/near-infrared
spectrometers. Based on the spectral signal, different spectral detection models for the
three nutrient contents of N, P2O5, and K2O in common fertilizers were established so as
to provide a reliable basis and method for the rapid detection of nutrient contents in actual
chemical fertilizer applications.

2. Materials and Methods
2.1. Sample Preparation

This research collected 33 representative different chemical fertilizers. These fertilizers
included compound fertilizers, controlled-release fertilizers, and blended fertilizers, which
have different colors, particle sizes, surface roughness, and other characteristics in the
original appearance. The 33 kinds of fertilizers contained two or more effective nutrient
elements of nitrogen, phosphorus, and potassium, which are reflected in the three equiv-
alent detection indicators of N, P2O5, and K2O. For each fertilizer, 2 different batches of
2 kg each were randomly selected as the A and B groups, forming 66 independent sample
groups. For each independent sample group, fertilizers were detected for N, P2O5, and
K2O content according to the method described in the national standard GB 15063-2009.
The detection results of the nutrient content in fertilizers are shown in Table 1.

Table 1. Test results of N, P2O5, and K2O content in fertilizer samples.

Detection Indicator N (%) P2O5 (%) K2O (%)

Max value 44.77 60.22 52.12
Min value 0 0 0

Average value 17.06 14.24 15.09
Standard deviation 79.38 170.75 102.09

The distribution of N, P2O5, and K2O content detected in all sample groups is shown
in Figure 1. Combined with Table 1, the N content of fertilizers in this research is mainly
distributed between 0% and 30%, the P2O5 content is mainly distributed between 0% and
20%, and the K2O content is mainly distributed between 0% and 25%. From the average
value and standard deviation of the three nutrient contents, it can be seen that the nutrient
contents between the sample groups have an obvious gradient distribution, which can well
represent most chemical fertilizers in practical applications.

In each sample group, 16 independent samples were randomly sampled; each sample
was about 100 g. Since there were 66 chemical fertilizer sample groups, a total of 1056 sam-
ples were formed. The calibration set and the prediction set were randomly divided at a
ratio of 3:1, with 792 samples in the calibration set and 264 samples in the prediction set.
Each sample was ground with a blade grinder which has a maximum speed of 29,000 rpm
and then passed through a standard sieve with an aperture of 0.355 mm to form a powdery
sample with uniform particle size.
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2.2. Vis/NIR Spectroscopy Instrumentation

The equipment for collecting spectral signals is shown in Figure 2. It included a
portable NIR spectrometer, a portable Vis spectrometer, and a halogen lamp. The NIR
spectrometer (SW2520, Wuling Optics Co., Ltd., Shanghai, China) has a measurement
wavelength range of 950~1700 nm, and the highest optical resolution is 8.0 nm. The Vis
spectrometer (EE2063, Wuling Optics Co., Ltd., Shanghai, China) has a measurement
wavelength range of 180~1100 nm, and the highest optical resolution is 0.2 nm. The two
spectrometers and the halogen lamp were connected to each other through a three-in-one
optical fiber. The halogen light source was emitted from the end of the optical fiber to
the probe detection cavity. After the light was reflected on the sample surface, it entered
the NIR/Vis spectrometers through the optical fiber. The two spectrometers collected
spectral signals synchronously, and both were set to automatically save the average value
of 5 consecutive spectral signals. Both spectrometers were set to save the spectrum signal
with 0.5 nm accuracy in order to unify the data processing. For the case where the highest
optical resolution of the spectrometer was lower than 0.5 nm, the software automatically
performed interpolation operations.
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2.3. Data Analysis
2.3.1. Data Preprocessing

Vis/NIR spectroscopy is generally affected by the overlapping spectral response of
sample components, as well as interference from sources of error including instrument
noise and drift, light scattering, and optical path changes during measurement [10]. Many
researchers have shown that data preprocessing methods can effectively reduce the possi-
ble fluctuations in the Vis/NIR spectrum and improve the stability of the signal. Proper
preprocessing can reduce the system and random errors of the instrument and the environ-
ment to gain better models [11,12]. The preprocessing methods commonly used in spectral
analysis generally include smoothing, derivative [13], standard normal variate (SNV), and
multivariate scattering correction [14], etc.

This research used the Savitzky–Golay (S–G) smoothing algorithm and standard
normal variate (SNV) for preprocessing. S–G smoothing increases the signal-to-noise ratio
without causing significant distortion to the spectrum [15]. It is a convolution process that
uses the least squares method to fit a continuous subset of adjacent points with a low-order
polynomial. SNV is widely used to eliminate random errors and fluctuations caused by
equipment and external factors such as temperature, pressure, and pulse energy. It uses
the standard deviation of the response to normalize each spectrum value to correct the
spectrum. The formula is as follows:

SNV correction : Xsnv =
Xi − x

σ
(1)

where Xi is the spectral value of the i-th wavelength point, x is the average spectrum value
of all wavelength points, and σ is the standard deviation of all wavelength points.

2.3.2. Statistical Analysis

After preprocessing the spectrum, the calibration set was input into the multiple
regression model for analysis. According to the generated regression model, the nutrient
content of the prediction set was predicted, so as to evaluate the performance of the model.
The models used include partial least squares (PLS) and extreme learning machines (ELM).
The competitive adaptive reweighted sampling algorithm (CARS) was used to select the
characteristic wavelength of the spectral data.

PLS is a universal chemometric modeling method proposed by O. A. Wold in 1983.
PLS can not only decompose the spectral information matrix and the concentration matrix,
but also greatly reduce the interference of noise signals on the effective spectral signals [16].
PLS respectively projects the predictor variable X and the observed variable Y into a
new space, and tries to find the multidimensional direction of the X space to explain the
multidimensional direction of the largest variance in the Y space. The number of principal
components in the PLS is directly related to the prediction performance of the regression
model. Too few principal components will lose the effective information in the spectrum,
and too many principal components will cause the noise to be retained and reduce the
prediction accuracy.

ELM is a machine learning method based on feedforward neural network (FNN),
which can be used for supervised learning and unsupervised learning problems [17]. Its
characteristic is that the weights of hidden layer nodes are randomly or artificially given
and do not need to be updated. The learning process only calculates the output weights [18].
In many cases, ELM shows better generalization performance than gradient-based machine
learning methods, and because ELM does not require gradient operations, it has a very fast
training speed.

CARS is an efficient variable selection method, whose main idea is derived from
the principle of “survival of the fittest” in Darwin’s theory of evolution. Regarding each
variable as an independent unit, adaptive reweighting sampling technology is used to
select variables with larger absolute values of regression coefficients in the model, and
variables with small weights are eliminated to obtain a series of subsets containing multiple
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variables. Finally, RMSE is calculated for each subset interactive verification, and the subset
with the smallest RMSE value is selected and output [19]. Usually the CARS method uses
the PLS model for modeling calculations, and the CARS method has been widely used in
the selection of characteristic wavelengths of spectral data.

2.3.3. Performance Evaluation

The coefficient of determination (R2), root mean square error (RMSE), and residual
predictive deviation (RPD) are used to comprehensively evaluate the effect of the trained
model on the prediction of N, P2O5, and K2O content in fertilizers. R2 represents the
goodness of fit between the predicted value and the experimental value. R2

c and R2
p are

used as the coefficients of determination for the calibration set and the prediction set,
respectively. The closer the value of R2 is to 1, the better the fit of the model. RMSE is
used to measure the deviation between the predicted value and the experimental value.
RMSECV and RMSEP are the root mean square error of the calibration set and the predicted
set, respectively. The smaller the value of RMSECV and RMSEP, the smaller the deviation
between the predicted value and the experimental value, and the higher the accuracy of
model prediction. RPD is defined as the standard deviation of the predicted value divided
by the RMSEP, which is a measure of the effectiveness and overall predictability of the
regression model. The larger the RPD, the better. The calculation of these parameters is
as follows:

R2 = 1 − ∑N
i=1(ŷi − yi)

2

∑N
i=1(yi − y)2 , (2)

RMSE =

√
∑N

i=1(yi − ŷi)
2

N − 1
, (3)

RPD =
σP

RMSEP
, (4)

where yi and ŷi are the experimental value and predicted value of the nutrient content
of the i-th sample, y is the average value of the experimental value, N is the number of
samples, and σP is the standard deviation of the predicted value. A model with excellent
predictive performance has a higher R2 and RPD.

3. Results
3.1. Spectral Analysis

This research collected the spectral signals of fertilizer samples in powder form. The
specific process was as follows. The fertilizer powder was spread in a Petri dish with a
diameter of 75 mm and the surface was smoothed with a glass plate, the probe detection
cavity was connected at the end of the three-in-one optical fiber, and the probe detection
cavity was placed on the flat surface of the fertilizer powder for measurement. The light
source and spectrometers were turned on, and after the temperature of the light source and
spectrometers stabilized, the spectral signals were collected. The whole experiment process
was carried out under shaded conditions. Combining the band coverage of the light source
and the performance of the spectral signals in different bands, the spectral band with large
noise was removed, and finally the spectral signals of 550~950 nm in the Vis spectrometer,
and 1050~1640 nm in the NIR spectrometer were intercepted, as the original spectrum for
subsequent analysis. The spectral curves of one sample group is shown in Figure 3.

Although spectra were collected by two different portable spectrometers, the spectral
curves of the two spectrometers had relatively good continuity. In the original spectral
curves, different fertilizers show obvious differences in the visible light band and the
near-infrared band. Since the content of each nutrient element in the samples collected in
this experiment had a large span, the spectral morphology between different fertilizer types
also showed obvious difference. After obtaining the original spectra, the S–G smoothing
and SNV methods were used to preprocess the spectra, and the final spectral curves are
shown in Figure 4.
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3.2. Selection of Characteristic Wavelength

There are often multiple correlations between different bands of the spectrum. These
correlated band signals have redundancy, which increases the amount of calculation but
hardly provides more effective information. At the same time, it may introduce noise
signals or cause overfitting of the model. In spectral analysis, characteristic wavelengths
are often extracted to reduce redundant variables. In this research, the CARS method was
used to select characteristic wavelengths for the prediction of N, P2O5, and K2O content.
The final results are shown in Table 2.
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Table 2. The result of characteristic wavelength selection.

Nutrient 550~950 nm 1050~1640 nm Full Spectrum

N 44 117 161
P2O5 32 197 229
K2O 59 102 161

After the characteristic wavelengths were selected, the spectral variables were reduced
to about one-tenth of the original, which greatly reduces invalid information. The charac-
teristic wavelengths selected for N, P2O5, and K2O were all concentrated in 1050~1640 nm,
indicating that the near-infrared band had a greater contribution to detection than the
visible light band.

3.3. Multivariate Analysis

After spectra were preprocessed and the characteristic wavelength was selected,
the PLS model and ELM model were established for 550~950 nm, 1050~1640 nm, full
spectrum and characteristic wavelength, respectively. The maximum number of principal
components in PLS was set to 25, the calibration set data was used to find the optimal
number of principal components, and the model obtained by it was used to predict the
prediction set data. The maximum number of hidden layer nodes of ELM was set to 200. In
particular, for the characteristic wavelength, since the number of variables was reduced, the
maximum number of hidden layer nodes of the ELM was set to 100. The final evaluation
data of the regression model is shown in Table 3.

The results in Table 3 show that the full spectrum had a relatively good predictive
effect on the content of N, P2O5, and K2O. The ELM model had a stronger nonlinear fitting
ability, and had a better prediction performance for different nutrients than the PLS model.
For example, with the full spectrum, the R2

p of ELM was 0.945, while of PLS it was 0.853.
Spectra of 1050~1640 nm had better predictive ability than those of 550~950 nm. For the
three contents of N, P2O5, and K2O, although there were generally good fitting effects,
the highest R2

p of N content was 0.989, while the highest R2
p values of P2O5 and K2O were

0.963 and 0.981, respectively. In general, the predictive ability of Vis/NIR spectroscopy
for P2O5 was slightly worse than that of N and K2O. The model established based on the
characteristic wavelength was basically the same as the full-spectrum model in terms of
performance, and the gap was very small. Even the R2

p of the characteristic wavelength was
higher than the full spectrum in terms of P2O5. Therefore, the characteristic wavelength
selected by CARS can well represent the original spectrum. The characteristic wavelength
greatly reduces the number of spectral variables and model calculations while retaining
effective information.

For N, P2O5, and K2O, the models with the highest RPD were selected to predict the
prediction set, and a scatter plot of the experimental value and predicted value of each
nutrient content was drawn. The result is shown in Figure 5.

It can be seen from Figure 5 that the correlation between the experimental and pre-
dicted values of the N content and K2O content in the prediction set was relatively good,
and the prediction deviation of the nutrient content was basically within 5%, while the
P2O5 content was not so ideal, with a maximum of 5~10% content prediction deviation.
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Table 3. The results of N, P2O5, and K2O content models based on different band spectra.

Nutrient Spectral Band Algorithm
Calibration Set Prediction Set

R2
c RMSECV % R2

p RMSEP % RPD

N

550~950 nm
PLS 0.653 5.211 0.596 5.620 1.29
ELM 0.854 3.382 0.784 4.111 2.02

1050~1640 nm
PLS 0.891 2.920 0.881 3.056 2.74
ELM 0.991 0.823 0.984 1.116 7.91

full spectrum PLS 0.933 2.284 0.908 2.676 3.159
ELM 0.996 0.537 0.989 0.910 9.71

characteristic
wavelength

PLS 0.931 2.317 0.906 2.709 3.10
ELM 0.995 0.659 0.986 1.033 8.59

P2O5

550~950 nm
PLS 0.333 10.587 0.330 10.618 0.69
ELM 0.921 3.649 0.841 5.179 2.38

1050~1640 nm
PLS 0.779 6.100 0.745 6.553 1.76
ELM 0.980 1.850 0.897 4.170 3.18

full spectrum PLS 0.899 4.123 0.853 4.636 2.55
ELM 0.968 2.324 0.945 2.933 4.45

characteristic
wavelength

PLS 0.905 3.987 0.844 5.124 2.46
ELM 0.974 1.439 0.963 1.724 5.09

K2O

550~950 nm
PLS 0.595 6.383 0.522 6.932 1.16
ELM 0.880 3.468 0.730 5.214 2.00

1050~1640 nm
PLS 0.825 4.189 0.804 4.434 2.01
ELM 0.996 0.667 0.975 1.565 6.70

full spectrum PLS 0.955 2.117 0.906 3.070 3.23
ELM 0.990 0.999 0.981 1.393 7.29

characteristic
wavelength

PLS 0.913 2.959 0.901 3.153 3.05
ELM 0.994 0.709 0.980 1.237 7.17
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4. Discussion

In this study, a small Vis spectrometer and a small NIR spectrometer were connected
to each other through a three-in-one optical fiber. The two spectrometers jointly collected
the spectrum information of 33 different fertilizers in powder state. S–G smoothing and the
SNV method were used to preprocess the spectra, and then the CARS method was used to
select the characteristic wavelength corresponding to N, P2O5, and K2O nutrient elements,
respectively. The PLS and ELM models were established for 550~950 nm, 1050~1640 nm,
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full spectrum, and characteristic wavelength, respectively. The results of the study show
that the near-infrared waveband from 1050 nm to 1640 nm has better prediction effects
on fertilizer nutrient content than the visible light waveband from 550 nm to 950 nm.
The characteristic wavelength and the full spectrum have almost equal prediction effects,
and the characteristic wavelength reduces the spectral variables to the original by about
1/10 of that, effectively improving the quality of information in the spectra and reducing
the amount of model calculations. In the end, the RPD values of the optimal prediction
models for N, P2O5, and K2O were 9.71, 5.09, 7.29, and for R2

p were 0.989, 0.963, and 0.981,
respectively.

The experimental results show that for the commonly used chemical fertilizers such
as compound fertilizers, blended fertilizers and controlled-release fertilizers, the small
Vis/NIR spectrometer can accurately predict the nitrogen, phosphorus, and potassium
content, and the effect is better in the near-infrared band. Feature wavelength selection can
be used as an effective means to reduce calculation variables. The above content verifies
the feasibility of using small spectrometers to predict the content of main nutrient elements
in common chemical fertilizers. Especially for end users of chemical fertilizers, low-cost
equipment that can quickly predict the nutrient content of different types of chemical
fertilizers has important practical application value. In the future, at the same time it can
be used as an important means to inspect and supervise the quality of chemical fertilizers
in the market, and promote more scientific and reasonable use of chemical fertilizers.
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