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����������
�������

Citation: Gorzałczany, M.B.;
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Abstract: The main objective and contribution of this paper is the application of our knowledge-
discovery business-intelligence technique (fuzzy rule-based classification systems) characterized by
genetically optimized interpretability-accuracy trade-off (using multi-objective evolutionary opti-
mization algorithms) to decision support related to airline passenger satisfaction problems. Recently
published and accessible at Kaggle’s repository airline passengers satisfaction data set containing
259,760 records is used in our experiments. A comparison of our approach with an alternative method
(using SAS-system’s accuracy-oriented prediction tools to determine the attribute importance hierar-
chy) is also performed showing the advantages of our method in terms of: (i) discovering the actual
hierarchy of attribute significance for passenger satisfaction and (ii) knowledge-discovery system’s
interpretability-accuracy trade-off optimization. The main results and findings of our work include:
(i) an introduction of the modern fuzzy-genetic business-intelligence solution characterized both by
high interpretability and high accuracy to the airline passenger satisfaction decision support, (ii) an
analysis of the effect of possible "overlapping" of some input attributes over the other ones in order
to discover the real hierarchy of influence of particular input attributes upon the airline passengers
satisfaction, and (iii) an extended cross-validation experiment confirming high effectiveness of our
approach for different learning-test splits of the data set considered.

Keywords: business intelligence; airline passenger satisfaction; fuzzy rule-based systems; multi-
objective evolutionary optimization; accuracy-interpretability trade-off optimization

1. Introduction

Business intelligence (BI), in general, aims at providing decision support—based
on empirical information—for various business activities in different domains such as
industry, science, technology, healthcare, commerce, defense, etc. [1,2]. BI is often used as
an umbrella term that combines architectures, tools, databases, analytical tools, applications,
and methodologies [3] summarizing a huge set of models and analytical methods such as
reporting, data warehousing, and data mining [1]. Data about the considered business are
the core elements of BI. Modern data mining (or knowledge discovery in data) tools rooted
in the field of computational intelligence have given rise to knowledge-based decision
support systems (equipped with knowledge bases and inference engines [4]) which can
significantly enhance the formal apparatus of BI.

Knowledge-based BI approaches are well suited for decision support of business activ-
ities in aviation industry. It is due to the availability of huge amounts of data collected over
time by airlines and airports on various aspects of their operation. A significant amount of
domain knowledge is buried and hidden in such data. Effective knowledge-discovery ap-
proaches can reveal, in an automatic way, understandable and useful structures, trends and
patterns in the considered data to improve accuracy and provide decision explanation in
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aviation industry decision support. Many data mining techniques—including those rooted
in the field of computational intelligence—have been applied to the airline data analysis—
see, e.g., [5–10]. However, their essential drawback is their non-transparent, black-box,
and accuracy-oriented nature, i.e., they do not provide any deeper (or any) explanations
and justifications of the decisions made. This work is an attempt to address this problem
by providing a solution characterized both by high interpretability and transparency as
well as by high accuracy in the airline passenger satisfaction study.

The main goal and contribution of this paper is the application of our knowledge-
discovery technique (fuzzy rule-based classification systems) characterized by genetically
optimized interpretability-accuracy trade-off (see, e.g., [11–14] for details) to decision sup-
port related to airline passenger satisfaction problems. The quality of service and passenger
satisfaction in the airline industry are increasingly recognized as critical factors of business
performance and strategic tools for gaining competitive advantage [15]. In particular,
we discover the hierarchy of influence of particular input attributes upon the airline pas-
senger satisfaction. We also analyze the effect of possible “overlapping” of some input
attributes over the other ones from the passenger satisfaction point of view. In our ap-
proach, measures of system’s interpretability and accuracy are the separate performance
indices and optimization objectives in designing fuzzy rule-based classifiers (FRBCs) from
data. Due to the complementary/contradictory nature of both optimization objectives,
multi-objective evolutionary optimization algorithms (MOEOAs) are employed in the
process of the FRBC’s structure and parameter optimization which is also equivalent to the
FRBC’s interpretability-accuracy trade-off optimization (see, e.g., [16] for review of related
work and [17,18] for the single-objective optimization case).

First, the recently published Kaggle’s airline passenger satisfaction data set containing
as many as 259,760 records and used in our experiments is briefly characterized. Then, main
components of our FRBCs and their MOEOA-based learning and optimization are outlined.
For comparison purposes, two MOEOAs are used: our generalization (referred to as
SPEA3 [19–21]) of the well-known Strength Pareto Evolutionary Algorithm 2 (SPEA2) [22]
and SPEA2 itself. In turn, the afore outlined main goal of the paper, i.e., the application of
our approach to the Kaggle’s airline passenger satisfaction data and a comparative analysis
with an alternative approach are presented and discussed.

2. Kaggle’s Airline Passenger Satisfaction Data

As earlier mentioned, the recently published airline passenger satisfaction data set
containing 259,760 records will be used in our experiments. It is a combination of two Excel
data sets—referred to as “satisfaction.xlsx” and “satisfaction_2015.xlsx”—accessible at
Kaggle’s repository [23]; see also [24]. Each of them contains 129,880 records. Each record
in both sets is characterized by 24 attributes. However, the attribute “Online support”
occurring in the first set does not occur in the second set and the attribute “Inflight service”
occurring in the second set does not occur in the first set. Following [24], both attributes
were removed from the corresponding sets. Thus, each record of the final data set—
obtained by merging the first and the second sets and referred to as the airline passenger
satisfaction data set—is characterized by 23 attributes. Table 1 presents details of particular
records of the final data set used in our experiments. The first attribute (i.e., “id” of a
passenger—unique for each record) will not be used in our experiments. The second
attribute, i.e., “satisfaction_v2” is the class attribute in our experiments. For better clarity,
from now on its name will be replaced by the phrase "Passenger is" followed by the class
label, i.e., either “neutral or dissatisfied” or “satisfied”. The remaining 21 attributes are the
input attributes. They include four numerical attributes, 13 qualitative ordinal attributes,
and four qualitative nominal (sometimes referred to as categorical) attributes. Such data
will be used in our experiments presented later in the paper. It is worth emphasizing
that the data are almost perfectly balanced. As shown in Table 1, the classes “neutral or
dissatisfied” and “satisfied” are represented by 49% and 51% of all data records, respectively.
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Therefore, there is no bias when accuracy is used as one of performance measures of the
obtained FRBCs.

Table 1. Details of particular records of the airline passenger satisfaction data set used in our experiments.

No. Attribute Name Attribute Type Attribute Domain Details (·%—Percentage
of the Overall Number of Samples)

1. id numerical Passenger’s id (not used in our experiments)
2. satisfaction_v2 ∗1 class label 2 class labels: "neutral or dissatisfied" (49%) and "satisfied" (51%)
3. Gender nominal ∗2 2 terms: “female” (51%) and “male” (49%)
4. Customer type ” 2 terms: “loyal customer” (82%) and “disloyal

customer” (18%)
5. Age numerical integer numbers from 7 to 85 (average: 39.2,

std. deviation: 15.1)
6. Type of travel nominal ∗2 2 terms: “personal travel” (31%) and “busi-

ness travel” (69%)
7. Class ” 3 terms: “eco” (46%), “business” (48%), and

“eco plus” (7%)
8. Flight distance numerical integer numbers from 31 to 6907 (average:

1590.3, std. deviation: 1082.5)
9. Inflight WiFi service ordinal ∗3 ‘0’ (1.6%) ‘1’ (14.3%) ‘2’ (22.9%)

‘3’ (23.0%) ‘4’ (21.7%) ‘5’ (16.6%)
10. Departure/Arrival time

convenient
” ‘0’ (5.1%) ‘1’ (15.5%) ‘2’ (17.1%)

‘3’ (17.5%) ‘4’ (23.7%) ‘5’ (21.1%)
11. Ease of online booking ” ‘0’ (2.2%) ‘1’ (13.6%) ‘2’ (19.2%)

’3’ (20.3%) ‘4’ (24.8%) ‘5’ (19.8%)
12. Gate location ” ‘0’ (0%) ‘1’ (17.2%) ‘2’ (18.8%)

’3’ (26.7%) ‘4’ (23.3%) ‘5’ (14.1%)
13. Food and drink ” ‘0’ (2.3%) ‘1’ (14.3%) ‘2’ (21%)

’3’ (21.5%) ‘4’ (22.2%) ‘5’ (18.6%)
14. Online boarding ” ‘0’ (1.2%) ‘1’ (11%) ‘2’ (15.6%)

’3’ (22.3%) ‘4’ (28.4%) ‘5’ (21.6%)
15. Seat comfort ” ‘0’ (1.8%) ‘1’ (13.9%) ‘2’ (18.2%)

‘3’ (20.2%) ‘4’ (26.2%) ‘5’ (19.6%)
16. Inflight entertainment ” ‘0’ (1.2%) ‘1’ (10.6%) ‘2’ (15.8%)

‘3’ (18.5%) ‘4’ (30.3%) ‘5’ (23.6%)
17. On-board service ” ’0’ (0%) ’1’ (10.8%) ’2’ (13.7%)

‘3’ (21.4%) ‘4’ (30.6%) ’5’ (23.6%)
18. Leg room service ” ‘0’ (0.4%) ‘1’ (9.3%) ’2’ (17.8%)

’3’ (18.3%) ‘4’ (29.1%) ‘5’ (25.1%)
19. Baggage handling ” ‘0’ (0%) ‘1’ (6.5%) ‘2’ (10.7%)

‘3’ (19.4%) ‘4’ (36.6%) ‘5’ (26.8%)
20. Checkin service ” ‘0’ (0%) ‘1’ (12.1%) ’2’ (12.2%)

‘3’ (27.3%) ‘4’ (28%) ‘5’ (20.4%)
21. Cleanliness ” ‘0’ (0%) ‘1’ (9.4%) ‘2’ (12.9%)

‘3’ (21%) ‘4’ (31.9%) ‘5’ (24.8%)
22. Departure delay in

minutes
numerical integer numbers from 0 to 1592 (average: 14.6,

std. deviation: 39.0)
23. Arrival delay in

minutes
” integer numbers from 0 to 1584 (average: 14.9,

std. deviation: 39.4)
∗1 henceforward, for better clarity the name “satisfaction_v2” will be replaced by “Passenger is” (see comments in the paper), ∗2

sometimes referred to as categorical, ∗3 satisfaction level of the passenger: “0” (no answer), “1” (the minimal one), . . . , “5” (the
maximal one).
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3. Methodology: An Outline of Main Components of the Proposed FRBCs and Their
MOEOA-Based Learning and Optimization

For convenience of the reader, in this section we briefly outline main components of
our approach—see [11–13,19] for details and discussion. In general, we consider FRBC
with n input attributes x1, x2, . . . , xn (including both numerical and qualitative ones) and
an output—a fuzzy set over the set Y = {y1, y2, . . . , yc} of c class labels.

Learning data set L: it is a basis for the FRBC’s design from data and contains K
input-output samples:

L = {x(lrn)
k , y(lrn)

k }
K

k=1, (1)

where x(lrn)
k = (x(lrn)

1k , x(lrn)
2k , . . . , x(lrn)

nk ) ∈ X = X1 × X2 × · · · × Xn (× stands for Cartesian

product of ordinary sets) is the set of input attributes and y(lrn)
k is the corresponding class

label (y(lrn)
k ∈ Y) for the k-th data sample, k = 1, 2, . . . , K.

Attribute representation: each numerical attribute xi, i ∈ {1, 2, . . . , n} is represented
by ai fuzzy sets Aiki

∈ F(Xi) (F(Xi) denotes a family of all fuzzy sets defined in the
universe Xi), ki = 1, 2, . . . , ai. Ai1 is an S-type fuzzy set (representing linguistic term
“Small”), Aiai is an L-type set (representing linguistic term “Large”), and Ai2 , Ai3 , . . . , Ai,ai−1
are M-type sets (representing linguistic terms “Medium 1”, “Medium 2”, ... , “Medium
ai − 2”). For simplicity, Aiki

s denote also the corresponding linguistic terms. Trapezoidal
membership functions of S-, M-, and L-type fuzzy sets are shown in Figure 1. Each
qualitative attribute xi, i ∈ {1, 2, . . . , n} (xi ∈ Xi = {xi1, xi2, . . . , xiai}) is characterized

by ai fuzzy singletons Aiki
= A(singl.)

iki
, ki = 1, 2, . . . , ai defined for particular "values"

xiki
of xi as follows: µ

A(singl.)
iki

(xi) = 1 for xi = xiki
and 0 elsewhere. Similarly, class

labels yj(r) in particular rules (2) (j(r) ∈ {1, 2, . . . , c}) are represented by appropriate fuzzy

singletons B(singl.)
j(r)

with the following membership functions: µ
B(singl.)

j(r)
(y) = 1 for y = yj(r)

and 0 elsewhere.
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Figure 1. Trapezoidal membership functions of S-type, M-type, and L-type fuzzy sets and
their parameters.

FRBC’s knowledge base: it contains R genetically optimized fuzzy rules discovered in
the learning data set (1). We introduced the following form of the r-th rule, r = 1, 2, . . . , R
(R changes during the learning process):

IF [x1 is [not]
(sw(r)

1 <0)
A

1,|sw(r)
1 |

]
(sw(r)

1 6=0)
AND...AND

[xn is [not]
(sw(r)

n <0)
A

n,|sw(r)
n |

]
(sw(r)

n 6=0)

THEN y is B(singl.)
j(r)

,

(2)

where: (i) [expression](condition) in (2) denotes conditional inclusion of [expression] into
a given rule if and only if (condition) is fulfilled, (ii) | · | returns the absolute value,
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and (iii) sw(r)
i is a switch which controls the presence/absence of the i-th input attribute in

the r-th rule, i = 1, 2, . . . , n.
sw(r)

i ∈ {0,±1,±2, . . . ,±ai}, where ai is the number of fuzzy sets (linguistic terms)

defined for the i-th attribute. For sw(r)
i = 0, the i-th attribute is excluded from (not active

in) that rule, whereas for sw(r)
i > 0 the component [xi is Aiki

] (ki = |sw(r)
i |) is included

(active) and for sw(r)
i < 0 the component [xi is not Aiki

] is used in that rule (not Aiki
= Āiki

and µĀiki
(xi) = 1− µAiki

(xi); µAiki
(xi) and µĀiki

(xi) are membership functions of fuzzy

sets Aiki
and Āiki

).
In our approach two entities, i.e., rule base structure RB and data base DB repre-

sent FRBC’s knowledge base. We introduce direct and computationally efficient RB’s
representation in the following form:

RB = {sw(r)
1 , sw(r)

2 , . . . , sw(r)
n , j(r)}

R

r=1. (3)

In turn, DB contains: (i) a tunable part, i.e., parameters of fuzzy sets representing
numerical attributes and (ii) a non-tunable part, i.e., domains of qualitative attributes
Xi = {xi1, xi2, . . . , xiai}, i ∈ {1, 2, . . . , n} and the set of class labels Y = {y1, y2, . . . , yc}.

We developed original crossover and mutation operators for the transformation of the
RB population as well as we adopted some specialized crossover and mutation operators
for the DBs processing—see [11–13] for details.

Evolutionary optimization objectives—FRBC’s accuracy: the accuracy measure (sub-
ject to maximization) is defined as follows:

Q(lrn)
ACC = 1−Q(lrn)

RMSE, (4)

where

Q(lrn)
RMSE =

√√√√ 1
Kc

K

∑
k=1

c

∑
j=1

[
µ

B(singl.)(lrn)
k

(yj)− µB′k
(yj)

]2
. (5)

Q(lrn)
RMSE ∈ [0, 1]; B′k (characterized by its membership function µB′k

(y)) is the fuzzy-set

response of system (2) for the learning data sample x(lrn)
k , and B(singl.)(lrn)

k (represented by

its membership function µ
B(singl.)(lrn)

k
(y) = 1 for y = y(lrn)

k and 0 elsewhere) is the desired

fuzzy-singleton response for that sample.
Evolutionary optimization objectives—FRBC’s interpretability: we use the notion

interpretability in a broader sense including not only semantic aspects of FRBC but also
its complexity. We proposed the following measure (subject to maximization) for the
evaluation of the FRBC’s complexity-related interpretability:

QINT = 1−QCPLX , (6)

where
QCPLX =

QRINP + QINP + QFS
3

, (7)

and

QRINP =
1
R

R

∑
r=1

n(r)
INP − 1
n− 1

, n > 1, (8)

QINP =
nINP − 1

n− 1
, QFS =

nFS − 1
∑n

i=1 ai − 1
, n > 1. (9)

The FRBC’s complexity measure QCPLX (7) (QCPLX ∈ [0, 1]; 0 and 1 represent minimal
and maximal complexities, respectively) is an average of three sub-indices that measure an
average complexity of particular rules QRINP (8) and the complexity of the whole system in
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terms of its active inputs QINP (9) and active fuzzy sets QFS (9). n(r)
INP in (8) is the number

of active input attributes in the r-th rule. nINP and nFS in (9) are the numbers of active
inputs and fuzzy sets (linguistic terms), respectively, in the whole system.

In turn, the FRBC’s semantic-related interpretability is addressed by us by implement-
ing strong fuzzy partitions (SFPs) [25] of domains of all numerical attributes. SFPs are
fuzzy partitions in which the sum of the values of all membership functions for any domain
value is equal to 1. SFPs satisfy the desired semantics-related interpretability demands [25].
Simple and computationally efficient implementation of SFP requirements for trapezoidal
membership functions can be formulated as follows (see Figure 2 for three-set SFP of xi):

σiki
= ρi,ki−1 = diki

− ei,ki−1, ki = 2, 3, . . . , ai (10)

and, obviously,

ei1 ≤ di2 ≤ ei2 ≤ · · · ≤ di,ai−1 ≤ ei,ai−1 ≤ diai ,

i = 1, 2, . . . , n.
(11)
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Figure 2. Implementation of three-fuzzy-set SFP.

MOEOAs used: as already mentioned in the Introduction of the paper, for comparison
purposes, two MOEOAs are used in our experiments. They include the well-known SPEA2
method and our generalization of SPEA2 referred to as SPEA3. Three indices are usually
applied to evaluate and compare different MOEOAs [25]. These indices include: (i) the
accuracy of non-dominated solutions obtained, (ii) the spread of solutions in the solution
set, and (iii) the distribution of solutions in the solution set. The accuracy represents the
closeness of the generated non-dominated solutions to Pareto-optimal solutions (if they are
available) or to reference solutions. The spread of solutions in the solution set—measured
by the distance between extreme solutions in the set—represents how well the generated
solutions arrive at the extrema of the Pareto-optimal or reference solution set. In turn,
the distribution of solutions in the solution set represents how evenly the solutions are
distributed along the approximation of Pareto-optimal/reference front in the objective
space. Therefore, a set of solutions characterized by a higher accuracy, a higher spread,
and a better-balanced distribution outperforms the alternative sets of solutions.

An appropriate MOEOA for our experiments should have the ability to generate
solution set of possibly high accuracy, spread and distribution balance. It is directly related
to the analysis of possible “overlapping” of some of input attributes over the other ones
in the airline passenger satisfaction data (see the next section for a detailed presentation).
Among the traditional MOEOAs, SPEA2 and NSGA-II (Nondominated Sorting Genetic
Algorithm II) [26] are the best known. Since SPEA2 has a higher ability to generate solution
sets of better-balanced distribution ([22,26]), we selected SPEA2 for further improvement
of the spread and distribution of generated solutions.

The essence of the proposed SPEA2’s generalization (referred to as SPEA3) consists in
replacing its environmental selection procedure by our original algorithm, which improves
the spread, distribution balance and diversity of generated solutions. The environmental
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selection, in general, creates a collection of the best solutions out of all solutions obtained
so far and keeps them in an external archive. Table 2 presents differences between environ-
mental selection procedure of SPEA2 and our original environmental selection procedure
implemented in SPEA3.

Table 2. Differences between environmental selection procedures of SPEA2 and SPEA3.

Environmental Selection Procedure of SPEA2: Our Original Environmental Selection Procedure Imple-
mented in SPEA3:

(a) immediately (i.e., in each generation of the opti-
mization process) copies to the archive all available
non-dominated solutions (if their number is lesser than
the archive size, the best dominated solutions from the
current population are also selected and copied to the
archive to fully fill it),

(a) gradually (i.e., in the subsequent generations of the
optimization process) fills the archive with only such non-
dominated solutions which ensure the best balance of dis-
tances between neighboring solutions in the archive,

(b) truncates overfilled archive by removing from it
redundant solutions characterized by the shortest dis-
tances to other solutions.

(b) truncates archive by removing from it solutions which
have been dominated by any new solutions that have ap-
peared in the current population,

(c) gradually exchanges some non-dominated solutions be-
tween the archive and the current population in order to
maximize the sum of distances between the nearest neigh-
boring solutions in the archive.

Concluding:

(a) in our original approach implemented in SPEA3, the complementary operations of
increasing and reducing the archive lead to obtaining the best available distribution
balance and spread of solutions belonging to Pareto-front approximation (see [19] for
a detailed presentation and [20] for a discussion), whereas

(b) in SPEA2 only the truncation procedure (if activated) contributes to improving the
distribution balance and diversity of the final set of solutions (not addressing, however,
the problem of improving the spread of solutions) and giving, in general, worse results
than its counterpart of SPEA3.

4. Experiments (Application to Kaggle’s Airline Passenger Satisfaction Data)
and Discussion

First, we would like to reveal some details of the operation of our approach to design
FRBCs from the considered Kaggle’s airline data. For this purpose, the MOEOA-based
genetic learning and optimization experiments for a single learning-test data split are
presented and discussed. The ratio of split of the original data was 1:9, i.e., only 10% of the
whole data set (preserving the class proportions) was used as the learning data to build
the system whereas the remaining 90% of the original data were used for testing purposes.
The learning-test data split applied in our experiments is widely used in processing data
sets with large number of data samples (in our case, we dealt with as many as 259,760 data
samples). Such a data split not only reduces the computational complexity of the learning
procedure but, more importantly, formulates much higher demands for the classification
technique since “generally, the larger the training dataset, the better the classification
performance regardless of which classification algorithm is used” (quotation from [27]).
Therefore, the assumed data split poses a significant challenge for the system’s design
technique. For comparison purposes, Figure 3 presents two 10-element collections of
non-dominated solutions (i.e., optimized FRBCs) obtained in a final generation of a single
run of our FRBC’s design technique using, independently, our SPEA3 and SPEA2 methods.
Both collections represent the best available approximations of Pareto-optimal solutions
generated by our SPEA3 and SPEA2, respectively. Particular solutions from a given
front were characterized by different levels of optimized accuracy–interpretability trade-off



Appl. Sci. 2021, 11, 5098 8 of 22

allowing the user to select a single solution (a specific FRBC) characterized by a desired level
of compromise between the accuracy and interpretability. Figure 3 shows that our SPEA3-
based approach outperforms the SPEA2-based one by generating the collection of solutions
characterized by much-better-balanced distribution in the objective space (the solutions are
distributed along the front in a much more even way). The accuracy- and interpretability-
related numerical details of all SPEA3-based solutions from Figure 3 are collected in Table 3,
in which nINP/R is the number of input attributes per rule, ACC(lrn) and ACC(tst) are the
percentages of correct decisions in the learning and test sets, respectively (the remaining
parameters were defined earlier in the paper). Fuzzy rule bases of the first seven solutions
from Figure 3 and Table 3 are presented in Tables 4 and 5 (membership functions of fuzzy
sets used in those rule bases are shown in Figure 4). The remaining three solutions Nos. 8,
9, and 10 from Figure 3 and Table 3 have not been included in Table 5 because—comparing
with solution No. 7—they provide very small increases in the test-data-accuracy ACC(tst)

(by 0.1%, 0.4%, and 0.5%, respectively—see Table 3) despite significant increase in their
complexity—see their interpretability measures in Table 3.

Figure 3. The best Pareto-front approximations generated by our SPEA3 and SPEA2 for the consid-
ered Kaggle’s airline data.

Table 3. Interpretability and accuracy measures of SPEA3-based solutions from Figure 3.

No. Objective Function Complements Interpretability Measures Accuracy Measures
1 − QINT = QCPLX 1 − Q(lrn)

ACC = Q(lrn)
RMSE

R nINP nFS nINP/R ACC(lrn) ACC(tst)

1. 0 0.4498 3 1 3 1 75.1% 75.2%
2. 0.035 0.4214 5 2 6 1.4 77.2% 77.2%
3. 0.0892 0.3917 7 4 11 1.6 80.5% 80.5%
4. 0.1187 0.3693 8 5 13 1.7 82.8% 82.8%
5. 0.1555 0.3497 9 6 15 2.2 84.6% 84.5%
6. 0.2113 0.3336 11 8 18 2.4 86.6% 86.4%
7. 0.2808 0.3216 17 11 25 2.2 88.3% 88.1%
8. 0.3514 0.3143 17 13 31 3.1 88.5% 88.2%
9. 0.4654 0.3119 21 17 37 3.6 88.8% 88.5%

10. 0.5805 0.311 27 21 45 4.2 88.9% 88.6%
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Table 4. Fuzzy rule bases for SPEA3-based solutions (FRBCs) Nos. 1–5 from Figure 3 and Table 3.

No. Fuzzy Classification Rules

Solution No. 1 (ACC(lrn) = 75.1%, ACC(tst) = 75.2%):
1. IF Inflight entertainment is no_answer or low THEN Passenger is neutral

or dissatisfied
2. IF Inflight entertainment is medium THEN Passenger is neutral or dissatisfied
3. IF Inflight entertainment is high THEN Passenger is satisfied

Solution No. 2 (ACC(lrn) = 77.2%, ACC(tst) = 77.2%):
1. This rule is an extension of rule No. 1 from Solution No. 1:

IF Inflight entertainment is no_answer or low AND Seat comfort is low or
medium THEN Passenger is neutral or dissatisfied

2. This rule is an extension of rule No. 2 from Solution No. 1:
IF Inflight entertainment is medium AND Seat comfort is low or medium THEN

Passenger is neutral or dissatisfied
3. This rule is the same as rule No. 3 from Solution No. 1.
4. IF Seat comfort is no_answer THEN Passenger is satisfied
5. IF Seat comfort is high THEN Passenger is satisfied

Solution No. 3 (ACC(lrn) = 80.5%, ACC(tst) = 80.5%):
1. This rule is the same as rule No. 1 from Solution No. 1.
2. This rule is the same as rule No. 2 from Solution No. 2.
3. This rule is an extension of rule No. 3 from Solution No. 2:

IF Inflight entertainment is high AND Type of travel is business travel THEN
Passenger is satisfied

4. This rule is the same as rule No. 4 from Solution No. 2.
5. This rule is an extension of rule No. 5 from Solution No. 2:

IF Seat comfort is high AND Inflight WiFi service is high THEN Passenger
is satisfied

6. IF Inflight WiFi service is low or medium AND Type of travel is personal travel
THEN Passenger is neutral or dissatisfied

7. IF Inflight WiFi service is no_answer THEN Passenger is satisfied

Solution No. 4 (ACC(lrn) = 82.8%, ACC(tst) = 82.8%):
1–2. These rules are the same as rules Nos. 1 and 2 from Solution No. 2.
3. This rule is an extension of rule No. 3 from Solution No. 3:

IF Inflight entertainment is high AND Type of travel is business travel AND
Customer type is loyal customer THEN Passenger is satisfied

4–7. These rules are the same as rules Nos. 4–7 from Solution No. 3.
8. IF Customer type is disloyal customer AND Inflight WiFi service is low (or

medium) THEN Passenger is neutral or dissatisfied

Solution No. 5 (ACC(lrn) = 84.6%, ACC(tst) = 84.5%):
1–4. These rules are the same as rules Nos. 1–4 from Solution No. 4.

5. This rule is the second extension of rule No. 5 from Solution No. 2:
IF Seat comfort is high AND Flight distance is long THEN Passenger is satisfied

6. This rule is an extension of rule No. 6 from Solution No. 4:
IF Inflight WiFi service is low or medium AND Type of travel is personal travel

AND Flight distance is short THEN Passenger is neutral or dissatisfied
7. This rule is the same as rule No. 7 from Solution No. 4.
8. IF Inflight WiFi service is high AND Flight distance is short THEN Passenger

is satisfied
9. IF Inflight entertainment is high AND Inflight WiFi service is low or medium

AND Customer type is disloyal customer AND Flight distance is short THEN
Passenger is neutral or dissatisfied
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Table 5. (Continuation of Table 4) Fuzzy rule bases for SPEA3-based solutions (FRBCs) Nos. 6 and 7
from Figure 3 and Table 3.

No. Fuzzy Classification Rules

Solution No. 6 (ACC(lrn) = 86.6%, ACC(tst) = 86.4%):
1–5. These rules are the same as rules Nos. 1–5 from Solution No. 5.

6. This rule is an extension of rule No. 6 from Solution No. 5:
IF Inflight WiFi service is low or medium AND Type of travel is personal travel

AND Flight distance is short AND Customer type is loyal customer THEN
Passenger is neutral or dissatisfied

7–8. These rules are the same as rules Nos. 7–8 from Solution No. 5.
9. IF Inflight WiFi service is low or medium AND Flight distance is short AND

Customer type is disloyal customer THEN Passenger is neutral or dissatisfied
10. IF Inflight WiFi service is low or medium AND Customer type is loyal customer

AND Ease of online booking is high AND Leg room service is high THEN
Passenger is satisfied

11. IF Inflight WiFi service is low or medium AND Type of travel is personal travel
AND Leg room service is low or medium THEN Passenger is neutral
or dissatisfied

Solution No. 7 (ACC(lrn) = 88.3%, ACC(tst) = 88.1%):
1–5. These rules are the same as rules Nos. 1–5 from Solution No. 6.

6. This rule is an extension of rule No. 6 from Solution No. 4:
IF Inflight WiFi service is low or medium AND Type of travel is personal travel

AND Ease of online booking is no_answer or low THEN Passenger is neutral
or dissatisfied

7–9. These rules are the same as rules Nos. 7–9 from Solution No. 6.
10. This rule is an extension of rule No. 1 from Solution No. 1:

IF Inflight entertainment is no_answer or low AND Seat comfort is no_answer
THEN Passenger is satisfied

11. This rule is an extension of rule No. 6 from Solution No. 4:
IF Inflight WiFi service is low or medium AND Type of travel is personal travel

AND Ease of online booking is medium THEN Passenger is neutral or
dissatisfied

12. IF Inflight WiFi service is no_answer AND Ease of online booking is no_answer or
low THEN Passenger is satisfied

13. IF On-board service is no_answer or low AND Seat comfort is no_answer THEN
Passenger is satisfied

14. IF On-board service is no_answer or low AND Seat comfort is low or medium
THEN Passenger is neutral or dissatisfied

15. IF On-board service is medium AND Leg room service is no_answer THEN
Passenger is satisfied

16. IF On-board service is high AND Ease of online booking is high AND Leg room
service is high THEN Passenger is satisfied

17. IF Seat comfort is low or medium AND Baggage handling is low or medium AND
Checkin service is no_answer or low THEN Passenger is neutral or dissatisfied
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Figure 4. Final shapes of membership functions of input attributes occurring in fuzzy rule bases of
Tables 4 and 5.
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Tables 4 and 5 also reveal an interesting regularity, i.e., the fuzzy rule base of the
solution No. i contains some rule(s) or extension(s) of some rule(s) from the solution No.
i− 1 (i = 2, 3, . . . ). Therefore, if the higher accuracy is required then our approach adds
some additional fuzzy rules or extends the already existing rules to provide a more detailed
(and thus, more accurate) description of the considered classification problem. Such
regularity also confirms an internal integrity of our approach. The considered regularity is
illustrated—from a bit different angle—in Tables 6–8 (see, first, Part A of Table 6), in which
each black square denotes the presence of a given input attribute in the fuzzy rule base of a
given solution (FRBC). ACC(tst)

1 is the test-data-accuracy of the system exclusively based
on the most significant input attribute (attribute “Inflight entertainment”, system (solution)
No. 1, accuracy 75.2%). ∆ACC(tst)

j , j = 2, 3, . . . is the accuracy increase following the
inclusion of 2nd, 3rd,. . . most significant attribute into the system. For instance, the inclusion
of “Seat comfort” (2nd most significant attribute) yields +2.0% increase in test-data accuracy
and is related to system (solution) No. 2. In turn, the inclusion of “Type of travel” and
“Inflight WiFi service” (3rd most significant attributes) gives further 3.2% test-data-accuracy-
increase and is related to solution No. 3, etc.

The above presented reasoning is correct provided that there is no “overlapping”
of some of input attributes over the other ones in the airline passenger satisfaction data.
In order to verify that aspect of airline data, we remove from the original data set the so-far
most significant attribute (i.e., “Inflight entertainment”) and we repeat, in an analogous
way, the learning experiment. Its results are presented in Part B of Table 6 giving “Online
boarding” attribute the most significant place. Clearly “Online boarding” which occupied
a low position in experiment of Part A was “overlapped” by “Inflight-entertainment”.
In the next step, we remove “Online boarding” from the present data set and repeat the
learning experiment—see Part C of Table 6—obtaining “Ease of online booking” as the
most significant attribute at this stage. It occupied second position in experiments of Part
B. Therefore, we can conclude that it was not “overlapped” by “Online boarding”. We
repeat analogous experiments several times, i.e., removing the most significant attribute at
a given stage and repeating the learning process on the reduced data—see Parts D, E, F
of Table 7, and G, H, I of Table 8. In such a way, we arrive to the final hierarchy of input
attribute significance from the perspective of the airline passenger satisfaction. It is shown
in the left part of Table 9. ACC(tst)

1 of Table 9 means the same as in Tables 6–8, i.e., the
test-data-accuracy of the system exclusively based on a single attribute (listed to the left of
ACC(tst)

1 in Table 9).
The right part of Table 9 presents the results of alternative approach by Patlolla [24].

The paper [24], to our knowledge, is the only available now reference addressing the
considered data set (most probably due to the fact that the data set has been published
most recently). The approach of [24] uses SAS system to calculate the mean values of
particular input attributes separately for both classes of passengers (satisfied and neutral
or dissatisfied) and to build decision tree to determine the attribute importance hierarchy.
Figure 5 summarizes, in a graphical form, details of our approach (the left part of a block
scheme of Figure 5) and the alternative Patlolla’s method [24] (the right part of that block
scheme) for the purpose of their comparative analysis regarding the determination of
the final hierarchy of input attribute significance. Data preprocessing, data partitioning,
learning process, selection of the most significant input attributes, and determining the
final hierarchy of attribute significance are the main stages of performing that task. Since
9 most significant input attributes were selected in the alternative work [24], we also
select the same number of the most significant attributes. Although both approaches select
"Inflight entertainment" as the most significant attribute (as shown in Table 9), our approach
provides much deeper insight into the mechanisms encoded in the considered airline data
set (see collections of easily-interpretable linguistic, fuzzy classification rules presented in
Tables 4 and 5).

An important part of our work is the cross-validation experiment with 1:9 learning-test
data split ratio. Each single learning experiment starts with generation of a Pareto-front
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approximation. Then, a single solution characterized, first, by the highest test-data accu-
racy and, second, by the highest interpretability is selected from that front approximation.
The results from all partial experiments are averaged. The experiment is then repeated
10 times for different initializations of our approach. The averaged results are shown
in Table 10. The only available alternative approach is the aforementioned decision tree
of [24] with 7:3 learning-test data split ratio. Figure 6 summarizes, in an analogous form
as in Figure 5, details of our approach (the left part of a block scheme of Figure 6) and the
alternative method [24] (the right part of that block scheme) for the purpose of their compar-
ative analysis in terms of the cross-validation-based test-data accuracy and interpretability.
The following stages are distinguished in performing that task: data preprocessing, data
partitioning, preparation of single k-th experiment for 10-fold cross validation (exclusively
for our approach), learning process, and calculation of final results. The method of [24]
is outperformed by our approach both in terms of system’s accuracy and interpretability.
Our SPEA3-based approach slightly outperforms its SPEA2-based counterpart in terms of
accuracy whereas both of them are characterized by comparable interpretability.

Concluding the experimental section of our work, it is worth emphasizing that mea-
surement of airline passenger satisfaction is a key factor for improving service quality in
airline companies [9]. In turn, passenger-satisfaction-based service quality is a strategic tool
for gaining competitive advantage [15]. Various specialized companies and agencies such
as, e.g., J.D.POWER (see its last report [28]) or American Customer Satisfaction Index (see,
e.g., its last ACSI Travel Report [29]) carry out, process, and analyze airline passenger satis-
faction surveys to target performance activities that—by attracting more passengers—have
a direct impact on profits and reputation.

As far as attributes affecting airline passenger satisfaction are concerned, “In-Flight Wi-
Fi Service” and “Simplicity of Online Booking” (an analogical attribute to “Ease of Online
Booking” in our research) have been identified in [30] as those which should be optimized
by airlines. According to [31], “F&B” (i.e., catering service) and “In-flight entertainment”
are principal attributes that affect passenger satisfaction. In turn, four attributes, i.e., ”Ease
of online booking”, “e-ticketing”, “Boarding” (analogical attributes to “Online boarding” in
our research), and "Clearance time" have been selected in [32] as significant and important
factors considered by airline passengers.

In contrast to different methods formulating various sets of attributes affecting airline
passenger satisfaction, our approach—employing the modern fuzzy-genetic business-
intelligence approach—discovers from the huge set of representative data not only a
collection of most important attributes but also formulates a hierarchy of their significance.
Moreover, our approach precisely (in percentage values shown in Tables 6–9) determines
the level of significance of particular attributes from the airline passenger satisfaction per-
spective. In order to discover the real significance hierarchy of input attributes, the analysis
of the effect of possible “overlapping” of some input attributes over the other ones is
also performed. Even more, our approach generates collections of linguistic, fuzzy rules
(shown in Tables 4 and 5) that provide a precise and easily-interpretable insight into the
mechanisms “connecting” the selected input attributes with airline passenger satisfaction
or dissatisfaction. For instance, our approach is able to discover in the airline data not only
rather obvious mechanisms (see, e.g., rule No. 5 in solution No. 5: IF Seat comfort is high
AND Flight distance is long THEN Passenger is satisfied) but also less obvious ones (see,
e.g., rule No. 10 in solution No. 6: IF Inflight WiFi service is low or medium AND Customer
type is loyal customer AND Ease of online booking is high AND Leg room service is high
THEN Passenger is satisfied). The last rule says that for loyal customers, WiFi services are
not significant when online booking and leg room services are of a high quality—perhaps,
this rule relates to older passengers who usually do not use WiFi devices. Another such an
example is rule No. 9 in solution No. 5: IF Inflight entertainment is high AND Inflight WiFi
service is low or medium AND Customer type is disloyal customer AND Flight distance is
short THEN Passenger is neutral or dissatisfied. This rule says that high quality of inflight
entertainment is not enough to satisfy disloyal passengers travelling on short distances
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when WiFi services are low—perhaps, this rule concerns young passengers travelling on
short distances and only interested in inflight WiFi services.

5. Conclusions

This paper presents the application of our MOEOA-based knowledge-discovery
business-intelligence technique (fuzzy rule-based classification systems) characterized
by genetically optimized interpretability-accuracy trade-off to decision support related
to airline passenger satisfaction problems. These problems include, first, discovering—in
an automatic way—in a large and representative set of data describing airline passen-
ger satisfaction, optimized collections of linguistic, fuzzy classification rules uncovering
the “connections” of input attributes with airline passenger satisfaction or dissatisfac-
tion. Second, the considered problems include determining, in a precise and quantitative
way, the level of significance (and thus, the formulation of the significance hierarchy) of
particular input attributes from the airline passenger satisfaction perspective. Moreover,
in order to discover the real significance hierarchy of input attributes, the effect of possible
“overlapping” of some of them over the other ones is carefully analyzed.

The main theoretical contribution of our work, in general, consists in introducing
our modern MOEOA-based fuzzy-genetic business-intelligence approach with optimized
interpretability-accuracy trade-off to broadly understood airline passenger satisfaction
decision support. The interpretability and transparency (i.e., the ability to provide the
user with compact and understandable explanations and justifications of the decisions
proposed) and the accuracy (i.e., the ability to generate precise and correct decisions) are
the fundamental aspects of the operation of any decision support systems including those
in the aviation industry. On the other hand, compact, linguistic, fuzzy classification rules—
due to their easy-to-grasp interpretation and readability—belong to the most effective
knowledge-representation schemes in the considered and also in many other domains.

The main experimental contribution our work is twofold. First, it is the application of
our approach to recently published and accessible at Kaggle’s repository airline passengers
satisfaction data set containing 259,760 records. The aspects already listed in the first
paragraph of this Conclusions section have been addressed. Second, by means of cross-
validation-based experiments, we show that our approach outperforms the alternative
method of [24] in terms of both the interpretability and accuracy of the solutions obtained
(the paper [24], to our knowledge, is the only available reference addressing the considered
and recently published airline passenger satisfaction data set). We also hope that the
findings in this research provide insights that could be used by managers and practitioners
from aviation industry in defining service strategies and policies that improve airline
passenger satisfaction and, consequently, airline reputation and profits.

Our further work will concentrate on two aspects. First, we intend to investigate
additional attributes characterizing airline passenger satisfaction. They include “Disem-
barkation efficiency” pointed out in [9] as the most significant attribute characterizing the
flight stage immediately after landing as well as “Announcement of delay and arrival”,
“Degree of courtesy of staff”, and ”Adult cost” indicated in [33] as important attributes
with which the passengers are most unsatisfied. Second, we intend to concentrate on
improving the systems’ interpretability-accuracy trade-off optimization, which is essential
for generating highly interpretable and accurate modern intelligent decision systems (cf.
explainable artificial intelligence [34,35] or interpretable machine learning [36,37]).
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Table 6. Illustration of attribute presence and significance in airline passenger satisfaction data.

Attribute Name
ACC(tst)

1

∆ACC(tst)
j , j = 2, 3, . . .

Attribute Presence in the Rules
of Solution No.:

1 2 3 4 5 6 7 8 9 10

Part A—Number of input attributes: 21

H
ig

h Inflight entertainment 75.2% n n n n n n n n n n
Seat comfort +2.0% n n n n n n n n n
Type of travel }

+3.2% n n n n n n n n
←
−

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e
−→

Inflight WiFi service n n n n n n n n
Customer type +2.3% n n n n n n n
Flight distance +1.7% n n n n n n
Ease of online booking }

+1.9% n n n n n
Leg room service n n n n n
On-board service }

+1.7%
n n n n

Baggage handling n n n n
Checkin service n n n n
Cleanliness }

+0.1% n n n
Departure delay in minutes n n n
Class }

+0.3%

n n
Departure/Arrival time conv. n n
Gate location n n
Food and drink n n
Online boarding }

+0.1%

n

Lo
w

Arrival delay in minutes n
Gender n
Age n

Part B—Number of input attributes: 20

H
ig

h Online boarding 71.6% n n n n n n n n n n
Ease of online booking +3.7% n n n n n n n n n
On-board service +1.9% n n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e
−→

Seat comfort +2.9% n n n n n n n
Type of travel }

+2.3% n n n n n n
Flight distance n n n n n n
Customer type +2.8% n n n n n
Inflight WiFi service }

+0.8% n n n n
Gender n n n n
Baggage handling +1.1% n n n
Leg room service }

+0.5%
n n

Cleanliness n n
Food and drink n n
Arrival delay in minutes  +0.0%

n
Checkin service n
Age n
Departure delay in minutes n

Lo
w

Class
Departure/Arrival time conv.
Gate location

Part C—Number of input attributes: 19

H
ig

h Ease of online booking 69.0% n n n n n n n n n n
Seat comfort +2.6% n n n n n n n n n
On-board service +5.2% n n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e
−→

Type of travel +3.5% n n n n n n n
Customer type +2.4% n n n n n n
Inflight WiFi service +0.9% n n n n n
Flight distance }

+1.3% n n n n
Leg room service n n n n
Gender +1.2% n n n
Class }

+0.9%
n n

Baggage handling n n
Food and drink n n
Arrival delay in minutes }

+0.6%
n

Departure/Arrival time conv. n
Age n
Cleanliness

Lo
w

Checkin service
Departure delay in minutes
Gate location
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Table 7. (Continuation of Table 6) Illustration of attribute presence and significance in airline
passenger satisfaction data.

Attribute Name
ACC(tst)

1

∆ACC(tst)
j , j = 2, 3, . . .

Attribute Presence in the Rules
of Solution No.:

1 2 3 4 5 6 7 8 9 10

Part D—Number of input attributes: 18
H

ig
h Inflight WiFi service 66.8% n n n n n n n n n n

Seat comfort +2.1% n n n n n n n n n
Class +6.7% n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e
−→

Baggage handling +2.8% n n n n
Type of travel }

+2.5%
n n n

Customer type n n n
Checkin service n n n
Gender }

+0.1% n n
Age n n
Departure/Arrival time conv.  +0.0%

n
Gate location n
Leg room service n
Arrival delay in minutes n
On-board service
Food and drink

Lo
w

Cleanliness
Departure delay in minutes
Flight distance

Part E—Number of input attributes: 17

H
ig

h Leg room service 66.7% n n n n n n n n n n
On-board service +3.8% n n n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e
−→

Seat comfort +3.3% n n n n n n n
Type of travel +1.4% n n n n n n
Baggage handling +1.7% n n n n n
Customer type +1.5% n n n n
Gender +2.8% n n n
Flight distance +0.0% n n
Cleanliness +0.3% n
Class
Age
Departure/Arrival time conv.
Checkin service
Arrival delay in minutes

Lo
w

Food and drink
Gate location
Departure delay in minutes

Part F—Number of input attributes: 16

H
ig

h On-board service 66.3% n n n n n n n n n n
Seat comfort }

+6.8% n n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
.−
→

Cleanliness n n n n n n n n
Customer type +2.5% n n n n n
Type of travel +3.3% n n n
Baggage handling +0.7% n n
Departure/Arrival time conv. +1.4% n
Gender
Flight distance
Class
Age
Checkin service
Arrival delay in minutes

Lo
w

Food and drink
Gate location
Departure delay in minutes
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Table 8. (Continuation of Table 7) Illustration of attribute presence and significance in airline
passenger satisfaction data.

Attribute Name
ACC(tst)

1

∆ACC(tst)
j , j = 2, 3, . . .

Attribute Presence in the Rules
of Solution No.:

1 2 3 4 5 6 7 8 9 10

Part G—Number of input attributes: 15
H

ig
h Seat comfort 64.5% n n n n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
.−
→

Baggage handling +2.7% n n n n n n
Type of travel }

+2.6% n n n n n n n n
Flight distance n n n n n n n n
Customer type +1.6% n n n n n n
Class +0.7% n n n
Age +1.0% n n
Departure/Arrival time conv. +0.1% n
Cleanliness
Gender
Checkin service
Arrival delay in minutes

Lo
w

Food and drink
Gate location
Departure delay in minutes

Part H—Number of input attributes: 14

H
ig

h Cleanliness 63.9% n n n n n n n n n n

←
−

A
tt

ri
bu

te
si

gn
.−
→

Customer type }
+10.7% n n n n n n n n

Type of travel n n n n n n n n
Gender +0.4% n n n n n
Baggage handling }

+1.5% n n n
Food and drink n n n
Gate location +0.5% n n
Age  +0.5%

n
Class n
Departure/Arrival time conv. n
Checkin service n

Lo
w

Arrival delay in minutes n
Flight distance
Departure delay in minutes

Part I—Number of input attributes: 13

H
ig

h Baggage handling 63% n n n n n n n n n n

←
−

A
tt

r.
si

gn
.−
→

Type of travel +4.3% n n n n n n
Class +5.1% n n n n n n n n
Flight distance -0.1% n n n n n n n
Customer type +1.8% n n n n n
Departure/Arrival time conv. +0.5% n n n n
Gender +1.8% n n n
Age }

+0.1% n n
Gate location n n
Food and drink +0.2% n

Lo
w

Checkin service
Arrival delay in minutes
Departure delay in minutes
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Table 9. Final hierarchy of attribute significance—comparison of our approach and alternative
method of [24].

Our Approach Alternative Approach
of [24] (Patlolla (2019))

Attribute Name ACC(tst)
1 Attribute Name Importance

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e

−→
H

ig
h Inflight entertainment 75.2% Inflight entertainment 1.0

Online boarding 71.6% Class 0.5206
Ease of online booking 69.0% Inflight WiFi service 0.4219
Inflight WiFi service 66.8% Seat comfort 0.3580
Leg room service 66.7% Ease of online booking 0.3333

Lo
w
←
−

On-board service 66.3% Leg room service 0.2320
Seat comfort 64.5% Online boarding 0.2099
Cleanliness 63.9% Cleanliness 0.1781
Baggage handling 63.0% Type of travel 0.1772

Table 10. Results of our approach and comparison with alternative method of [24] (Patlolla (2019)).

So
ur

ce

Method

Le
ar

n-
to

-
Te

st
R

at
io

N
um

be
r

of
R

un
s

Average Accuracy Average
Measures for Learning

and Test Data
Interpretability

Measures
ACC(lrn) ACC(tst) R nATR nFS nATR/R

Pa
tl

ol
la

(2
01

9)

Decision tree 7:3 1 84.0% 84.0% n/a n/a n/a n/a

Th
is

pa
pe

r Our approach based on:
SPEA2 1:9 10 88.1% 88.0% 16.8 14.3 28.5 3.1
SPEA3 1:9 10 88.5% 88.3% 17.7 15.5 32.6 3.3

n/a stands for not available.



Appl. Sci. 2021, 11, 5098 19 of 22

Figure 5. A block scheme for comparative analysis of our approach and alternative Patlolla’s
method [24] in terms of determining the attribute significance hierarchy.
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Figure 6. A block scheme for comparative analysis of our approach and alternative Patlolla’s
method [24] in terms of the cross-validation-based test-data accuracy and interpretability.
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