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Abstract: As an inherent characteristic of materials, the fracture toughness is an important parameter
to study the cracking behavior of asphalt concrete mixtures. Although material compositions and
environmental conditions have a significant effect on the fracture toughness, for a certain material and
testing environment, the test condition including the specimen configuration and loading type may
also affect the obtained fracture toughness. In this paper, the effect of specimen configuration and
applied loading type on the measured pure mode-I fracture toughness (KIc) is investigated. In order
to achieve this purpose, using a typical asphalt mixture, four different test specimens including
Semi-Circular Bend (SCB), Edge Notch Disc Bend (ENDB), Single Edge Notch Beam (SENB) and
Edge Notch Diametral Compression (ENDC) disc are tested under pure mode I. The mentioned
specimens have different shapes (i.e., full disc, semi-disc and rectangular beam) and are loaded either
with symmetric three-point bending or diametral compressive force. The tests were performed at two
low temperatures (−5 ◦C and−25 ◦C) and it was observed that the critical mode-I fracture toughness
(KIc) was changed slightly (up to 10%) by changing the shape of the test specimen (i.e., disc and
beam). This reveals that the fracture toughness is not significantly dependent on the shape of the
test specimen. However, the type of applied loading has a significant influence on the determined
mode I fracture toughness such that the fracture toughness determined by the disc shape specimen
loaded by diametral compression (i.e., ENDC) is about 25% less than the KIc value with the same
geometry but loaded with the three-point bending (i.e., ENDB) specimen. In addition, the fracture
toughness values of all tested samples were increased linearly by decreasing the test temperature
such that the fracture toughness ratio (KIc (@−25 ◦C)/KIc (@−5 ◦C)) was nearly constant for the ENDB,
ENDC, SCB and SENB samples.

Keywords: asphalt concrete; mode I fracture toughness; geometry and loading effect; disc and beam
shape specimens; bending and compressive type loads

1. Introduction

As a composite material, asphalt is the most used material for paving the roads.
The main components of asphalt are bitumen and aggregates and due to the brittleness
of mastic and fine aggregate matrix and binder at low temperatures, the behavior of this
material is mainly brittle or quasi-brittle especially at low-temperature conditions [1–5].

Brittle fracture phenomenon resulting from cracking is one of the major degradation
mechanisms of asphalt pavements, especially in cold regions or during the winter season.
Hence, the design and manufacturing of asphalt mixture with high resistance against
cracking is an achievement for the pavement engineers. Fracture toughness is an important
parameter in the framework of fracture mechanics that describes the resistance of material
against crack propagation [6–8].
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Asphalt overlay containing a top-down crack is often subjected to pure mode I or crack
opening failure mode and this is the most common mode of failure due to the cracking
of pavement structures. Traffic loads via passing vehicles and daily or seasonal gradient
temperatures or freeze-thaw cycles are two major sources of crack propagation inside the
pavements (as shown schematically in Figure 1). Indeed, both thermal and mechanical
loading mechanisms tend to gradually and repeatedly open the top-down crack faces
initiated in the surface of the overlay. In order to assess the crack growth behavior and
appropriate pavement repair time, it is necessary to know the mode I fracture toughness
value (KIc) for the asphalt mixtures [9–11].
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Fracture toughness (KIc) can be determined experimentally using suitable specimens
and relevant test methods. Among the test configurations available for obtaining the
KIc value of asphalt mixtures, the following methods have received much attention by
the researchers:

(i) Edge cracked rectangular beam loaded with three-point or four-point bending [1,6,9,10,12];
(ii) Edge cracked circular compact tension specimen by pin loading (DCT) [1,2,13];
(iii) Edge cracked semi-circular specimen loaded with symmetric three-point bending

(SCB) [4,6,7,14–29];
(iv) Center cracked Brazilian disc specimen loaded with diametral compression (BD) [30,31];
(v) Edge cracked disc specimen loaded with diametral compression (ENDC) [32,33];
(vi) Edge cracked disc specimen subjected to three-point bending (ENDB) [34–42];
(vii) Edge cracked circular disc loaded with wedge splitting fixture [43];
(viii) Indirect diametral disc test [44].

The simplicity of the specimen shape and test geometry is an important issue for
conducting the fracture tests on asphalt materials. In addition, the specimen and its loading
type should be a good representative for the actual loading conditions that is experienced
by the paving materials in the field. Laboratory specimens prepared for the mechanical
tests of asphalt mixtures are often extracted from cylindrical or slab specimens (using the
gyratory compactor machine, Marshall compactor machine or roller compactor machine).
Thus, the majority of specimens that are used for conducting the mode I fracture toughness
tests on asphalt mixtures are in the form of discs and beams. Circular and semi-circular
specimens, such as the ENDB and SCB; and rectangular beam shape specimens, such as
the SENB sample, are among the conventional fracture test configurations that can be
easily prepared without requiring extra machining. Furthermore, all of the mentioned
specimens are loaded with the conventional three-point bend fixture and can provide good
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simulations for top-down cracking phenomenon in real asphalt pavements subjected to
actual traffic loads.

Based on the previous studies the fracture behavior of brittle and quasi-brittle materi-
als and the measured mode I fracture toughness value can be noticeably affected by the
type of test specimen and applied loading [45]. For example, in an investigation conducted
by Aliha et al. [46] the KIc values of a typical rock material obtained using some standard
test specimens and procedures differ up to 40%. Chao et al. [47] investigated the effect of
specimen geometry on mode I fracture toughness and crack growth behavior of a brittle
polymer called PMMA. Similarly, by testing different specimens subjected to three-point
bend loading, Aliha et al. [48] demonstrated that the fracture toughness of plexiglass mate-
rial depends on the type of specimen utilized for the testing. Furthermore, according to
the previous fracture studies performed on rocks, it has been proven that the type of test
specimen can noticeably affect the measured value of mode I fracture toughness [45–48].
Although the effect of mix design and asphalt ingredients on the mechanical properties
and fracture behavior of asphalt mixtures has been investigated extensively [16,49–54],
the influence of specimen shape and testing method has received less attention by the
asphalt fracture researchers. Some testing methods such as Semi-Circular Bending (SCB)
and circular Disc Compact Tension (DCT) specimens have been proposed by ASTM for
determining the fracture toughness or fracture resistance of asphalt mixtures as two stan-
dard testing methods [55,56]. However, it is still not clear whether these two methods or
other testing techniques provide the same results for the fracture toughness (as material
property) of asphalt mixtures. Since such testing methods use different test geometries
with different loading setups, the possible influence of geometry and loading type on the
cracking resistance behavior of asphalt mixture materials is an interesting issue and it
is necessary to study this topic for the asphalt concrete mixtures. The main aim of this
paper is to investigate the effect of specimen geometry and loading type on the value of
mode I fracture toughness of asphalt concrete mixtures. In order to achieve this purpose,
a series of mode I fracture toughness experiments was performed on the same asphalt
mixture with different test specimens (i.e., SCB and ENDB; and SENB and ENDC configu-
rations). The fracture tests are conducted at two sub-zero temperatures and it is shown that
although there is a general agreement and consistency between the experimental results,
some differences exist in the value of determined KIc. This difference can be attributed to
both the geometry (i.e., shape) of the specimen and the method of applying the loads to the
samples during the fracture toughness test. However, the effect of the type of loading is
more obvious than the geometry (or shape) of the test sample.

2. Fracture Toughness Test Specimens

Four different test specimens namely the SCB, ENDB, SENB and ENDC samples are
selected for conducting the mode I fracture toughness experiments on asphalt mixture and
for determining the corresponding KIc values. Test geometry, crack location and loading
configurations used for the mode I fracture testing via these samples are illustrated in
Figure 2. The ENDB and ENDC specimens are disc shaped samples with radius R and
thickness t that contain an edge crack along the disc diameter. The depth of notch in
ENDB and ENDC samples is defined by a. The SCB specimen is a semi-circular specimen
with radius R and thickness t containing an edge crack of length a. The SENB specimen
is a rectangular beam with the length, width and thickness of L, W and t, respectively,
that contains a vertical edge crack of length a at the middle of the beam. As seen from
Figure 2, the geometry and shape of the test samples varies in terms of shape, such as full
circular, semi-disc and rectangular beam. In addition, while the type of loading in the
SCB, ENDB and SENB samples is three-point bending, the ENDC specimen is loaded via
diametral compression force.
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Based on the framework of Fracture mechanics, the severity of stress/strain ahead
of the crack tip is explained by a well-known parameter called the stress intensity factor.
This parameter, which is related to the singular term in the infinite series expansion for
crack tip stress/strain field, is the most important and dominant term for describing the
state of stress and determining the load bearing capacity of cracked bodies [57]. The mode-I
stress intensity factor (KI) for the mentioned ENDB, SCB, SENB and ENDC samples are
functions of the specimen geometry and loading condition and can be written as:
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where P is the applied load and YI is the mode I geometry factor that is a function of
the specimen geometry (i.e., a/R or a/t) and loading conditions (i.e., S/R or S/L) of the
ENDB, SCB, SENB and ENDC specimens [31,32,58–62]. The corresponding values of
these geometry factors can be determined using finite element analysis. Figure 3 shows
the finite element models of the ENDB, ENDC, SENB and SCB samples created in the
ABAQUS software. The radius and thickness of disc shape samples (i.e., for ENDB, SCB and
ENDC) were considered equal to 50 mm and 30 mm, respectively. For the beam specimen,
the corresponding values of L, W and t were considered as 400 mm, 50 mm and 50 mm,
respectively. Material properties (Young modulus, E and Poisson’s ratio ν) for the models
were constant and equal to 3 GPa and 0.3 GPa, respectively. These values are typical
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values for such asphalt mixtures that have been reported and used in previous related
works [33,63,64]. The finite element models (FEM) were created using solid C3D20 elements
with total numbers of approximately 45,000 elements. Singular type elements were all used
around the crack tip for producing the root singularity of stress in this region as shown
in Figure 3e. For the purpose of applying the boundary conditions, rigid body contact
was assumed between the loading and supporting spans and surfaces of the specimens.
The finite element models of these four samples were analyzed by applying a constant
reference load of P = 100 N for each sample and the corresponding values of pure mode I
stress intensity factor were determined directly via the J-integral method (built in ABAQUS
code) for different crack depths and loading spans. Figure 4 shows the variations of
geometry factor for pure mode I loading conditions of the analyzed samples for different
a/R, a/t, a/W, S/R and S/L ratios. The results presented in Figure 4 for YI values were
obtained by normalizing the KI values obtained from the finite element analysis of the
specimens using the ABAQUS code via employing Equations (1)–(4).
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3. Asphalt Mix Design

The Hot Mix Asphalt (HMA) used in this research is composed of 60/70 binder with
performance grade PG (64-22) and siliceous aggregates with the nominal maximum aggre-
gate size of 12.5 mm. This aggregate gradation is a common sieve size for manufacturing
the HMA mixture for overlaying the roads in real pavement construction projects and
laboratory investigation of asphalt mixtures [35,65]. The physical properties of the used
aggregates are mentioned in Table 1 and their gradations are illustrated in Figure 5.

Table 1. Physical properties of aggregates used for manufacturing the HMA.

Test Value Test Method

Specific gravity 2.42 g/cm3 ASTM C-127

L.A. Abrasion 23 (%) AASHTO T-96

Absorption (coarse aggregate) 1.5 (%) AASHTO T-85

Absorption (fine aggregate) 1 (%) AASHTO T-84

Percent fracture (one face) 98 (%) ASTM D5821

Percent fracture (two face) 91 (%) ASTM D5821

To specify the optimal percentage of bitumen, different asphalt mixtures with 4%, 5%,
6% and 7% of bitumen content were prepared. After mixing the bitumen and aggregates,
the mixtures were poured into a standard Marshall cylinder with a diameter of 100 mm
and further compacted with a Marshall compactor (75 strokes on each side of the sample).
This compaction level is often used for simulating heavy traffic conditions and the resultant
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air void content for such compacted mixture was approximately 5%. Based on some key
mechanical and physical parameters such as specific density, compressive strength, flow
and the air void percentage, the optimum percentage of bitumen required for manufac-
turing the asphalt mixture used in this investigation was determined. Table 2 shows the
mechanical and physical characteristics of the HMA material utilized for the preparation
of the test specimens.
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Table 2. Characteristics of manufactured HMA material.

Optimal
Bitumen (%)

Marshall
Resistance (kN) Air Voids (%) Flow (mm) Unit

Weight (Kg/m3) VMA * (%) VFA ** (%)

5.8 12.2 4.7 2.9 2200 14.6 67.8

* Voids in mineral aggregate (VMA): the inter-granular space occupied by the asphalt and air void in a compacted mixture. ** VFA is the
percentage of voids in the compacted aggregate mass filled with the asphalt mastic.

Using the optimum bitumen percentage, the binder and aggregates were heated to
140 ◦C and then blended by a mixer. In order to prepare the disc shape samples (includ-
ing the ENDB, ENDC and SCB specimens), the mixture was compacted by a compactor
machine to produce cylindrical asphalt specimens with a diameter of 100 mm. Although in
most of the previous studies disc shape samples with a diameter of 150 mm obtained from
the gyratory compacted asphalt cylinders have been used for manufacturing the fracture
toughness test specimens, the smaller size samples (i.e., disc with a diameter of 100 mm)
may have some advantages, such as requiring a smaller amount of material for specimen
preparation. Therefore, in some research papers disc shape specimens with a diameter of
100 mm were employed for conducting the fracture toughness testing of asphalt mixtures
and it has been concluded that the small size test samples (i.e., 100 mm in diameter) can also
provide valid test results for asphalt mixtures. The cylindrical samples were then sliced
using a high-speed rotary diamond saw blade to obtain circular discs with the height of
30 mm. For manufacturing the SCB sample each disc was cut along the diameter to create
two semi-discs. In addition, the beam samples were manufactured by casting the mixture
inside a slab mold with dimensions of 400 × 400 × 50 mm3. Finally, the manufactured
slabs were sliced using a rotary diamond saw blade to obtain some SENB specimens with
dimensions of 400 × 50 × 50 mm3.

Since the air void content has noticeable influence on the mechanical and strength
properties of the asphalt mixtures [6], the void percentage in all prepared asphalt samples
was considered constant and equal to 4.7% for the sake of comparison of the experimental
results. A thin rotary diamond saw blade with a thickness of 0.5 mm was used to intro-
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duce an initial artificial straight edge crack in the ENDB, ENDC, SCB and SENB samples.
For each specimen, eight duplicates were prepared and half of them were tested at −5 ◦C
and the rest of them were tested at −25 ◦C. These two test temperatures (that both of
them were below the lower performance grade of the utilized bitumen) were selected to
investigate the effect of temperature on the low temperature fracture resistance of the HMA
mixture. The difference between the temperatures was also considered high enough to
ensure that the obtained results are dominantly related to the influence of test specimen
and not due to the effect of other factors such as the scatter of test results and heterogeneity
of asphalt samples. The prepared test samples were tested using a universal test machine
at the mentioned test temperatures. The loading rate in all experiments was constant and
equal to 1 mm/min. This loading rate, which has also been used in other research work [63],
provides nearly static loading condition for the asphalt mixtures at low temperatures such
that the HMA mixture behaves as brittle and elastic material. Figure 6 displays the sample
testing setup for the tested mode I specimens.
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4. Results and Discussion
4.1. Fracture Pattern and Load-Displacement Curves

Figure 7 shows the samples of broken ENDB, SCB, SENB and ENDC specimens
fracture under mode I. It is seen that in all samples the fracture trajectory is straight without
significant kinking, which extends throughout both aggregates and mastic or fine aggregate
mastic. This reveals that all investigated test samples are symmetrically broken into two
halves after fracturing. Comparison of the fracture trajectories of ENDB and ENDC samples
that have the exact same geometry (or shape) but loaded in two different manners (i.e.,
bending and compression) showed that the fracturing of both samples is similar and the
loading type has no effect on the fracture trajectory.
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Figure 7. Fracture trajectory and fracture surfaces observed for the tested ENDB, SCB, SENB and ENDC specimens.

However, the load bearing capacity and fracture load of the tested samples were
different and this shows the effect of geometry and loading type on the fracture behavior
of the asphalt mixtures. Some typical load-displacement curves obtained for the tested
specimens are shown in Figure 8. From these curves it can be concluded that the low
temperature fracture behavior of the tested asphalt mixture is linear and brittle and, after the
peak load, a sudden drop in the loading curve is observed. The ENDC and SENB samples
presented the highest and lowest fracture loads, respectively. In Table 3, the fracture loads
(i.e., the maximum load values) obtained from different replicates are presented for the
tested ENDB, SCB, SENB and ENDC samples at two low temperatures.

4.2. Fracture Resistance Values of Tested Samples

By considering the framework of Linear Elastic Fracture Mechanics (LEFM), the peak
load of each sample was used for determining the fracture toughness value for the tested
specimens. By replacing the corresponding values of critical fracture loads obtained from
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the experiments into Equations (1)–(4), the corresponding values of KIc were determined.
The required geometry factors (YI) for using these equations are also presented in Table 4
for the tested conditions (determined from numerical analyses). Figure 9 presents the mode
I fracture resistance (or KIc) value of the tested HMA material at −25 ◦C and −5 ◦C.
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Figure 8. Typical load-displacement curves of the tested ENDB, SCB, SENB and ENDC specimens
at −25 ◦C.

Table 3. Fracture loads of the tested specimens at low temperature conditions.

Specimen Temperature (◦C)
Fracture Load (N)

Repeat 1 Repeat 2 Repeat 3 Repeat 4 Average

ENDB
−25 2401 2982 3014 3091 2872

−5 1955 2005 2165 2218 2086

SCB
−25 2926 3249 3395 3493 3266

−5 2252 2340 2409 2643 2411

SENB
−25 868 986 999 1044 974

−5 611 716 728 747 701

ENDC
−25 6632 8595 8814 9158 8300

−5 5415 5617 5739 6638 5852

Table 4. Corresponding values of geometry factor (YI) for the investigated test specimens.

Specimen Dimentions Test Condition Mode I Geometry Factor

ENDB R = 50 mm
t = 30 mm

S/R = 0.9
a/t =0.4 YI = 1.25

SCB R = 50 mm
t = 30 mm

S/R = 0.66
a/R = 0.33 YI = 4.0

SENB
L = 400 mm
W = 50 mm
t = 50 mm

S/L = 0.9
a/w = 0.5 YI = 0.79

ENDC R = 50 mm
t = 30 mm β = 0◦ YI = 0.65

The fracture toughness value obtained using the ENDB and SCB specimens at −25 ◦C
varies in the range between 0.87 and 1.13 MPa

√
m and 0.89 to 1.06 MPa

√
m with an average

value of 1.05 MPa
√

m and 0.99 MPa
√

m, respectively. The minimum and maximum band
for the mode I fracture toughness obtained from the SENB specimen varies from 0.83 to
1.0 MPa

√
m with an average value of 0.93 MPa

√
m. Similarly, from the tests conducted at

−5 ◦C, the fracture toughness value obtained using the ENDB and SCB specimens varies
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in the range between 0.71 and 0.81 MPa
√

m and 0.68 to 0.80 MPa
√

m with an average
value of 0.76 MPa

√
m and 0.73 MPa

√
m, respectively. The minimum and maximum band

for the mode I fracture toughness obtained from the SENB specimen varies from 0.58 to
0.71 MPa

√
m with the average value of 0.67 MPa

√
m. The corresponding average values

of KIc for the ENDC specimen at −25 ◦C and −5 ◦C are also obtained equal to 0.70 and
0.49 MPa

√
m, respectively.
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Figure 9. Fracture toughness of tested specimens under different test temperatures: (a) −25 ◦C and (b) −5 ◦C.

The mode I fracture toughness values obtained in this investigation shows good
consistency with the data reported by different researchers for similar HMA mixtures.
The results in Table 5 compares and presents typical KIc values reported in the literature for
low temperature fracture of asphalt concrete mixtures. Depending on the type of mixture
(mix design), testing temperature and type of specimen utilized for fracture toughness
experiment, the value of KIc varies in the range between 0.5 and 1 MPa m0.5.

The information in Figure 10 compares the corresponding values of fracture toughness
obtained via four testing methods. It can be observed from Figure 10 that the results of the
ENDB, SCB and SENB samples are in agreement and the KIc values obtained using these
three specimens (especially ENDB and SCB) are close together for both low temperature
conditions tested in this research. The difference between the highest and lowest fracture
toughness value determined from these methods is about 8%. Such difference can be
attributed to the geometry or shape of ENDB, SENB and SCB specimens (i.e., full disc,
rectangular beam and semi-circular geometries, respectively), although the type of loading
(i.e., three-point bending) is similar for all these three specimens. However, the data
obtained from the ENDC specimen shows a noticeable reduction in the value of KIc
compared to the other test samples. For example, while the ENDB and ENDC samples
have the exact same geometry, their KIc values differ by approximately 20%. This is
mainly due to the effect of loading type (three-point bend applied to the ENDB and
diametral compression applied to the ENDC specimen). Indeed, a lower bound fracture
toughness value is obtained by changing the type of loading from bending to diametral
compression in the edge notch disc specimen. From the obtained experimental results,
it can be concluded that the fracture toughness value is more sensitive to the type of loading
(i.e., bending or compression) applied to the asphalt mixture than compared to the shape
of the test specimen (i.e., circular disc or rectangular beam shape).
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Table 5. Mode I fracture toughness values obtained by different researchers.

Researcher Temperature (◦C) Specimen Asphalt Type Fracture
Toughness (MPa

√
m)

Aliha et al. [4] −15 SCB HMA 0.8

Marasteanu et al. [12] −18 SENB HMA 0.52 and 0.61

Aliha et al. [32]
−15 ENDB HMA 0.67

−15 ENDC HMA 0.54

Pirmohammad and Bayat [36]
−5 ENDB HMA 0.67

−20 ENDB HMA 0.78

Eghbali et al. [37] −15 ENDB HMA 0.86

Fuan et al. [62]

−15 ENDB HMA 0.95

−15 SCB HMA 0.75

−25 ENDB HMA 1.05

−25 SCB HMA 0.83

Shahryari et al. [66]
−20 ENDC HMA 0.65

−20 ENDB HMA 0.75

Molenaar [67]
0 SCB

Dense Graded Asphalt
0.88

−10 SCB 0.98
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As stated earlier, the SCB test method was suggested in recent years by ASTM for mea-
suring the fracture toughness of asphalt mixtures [55]. The information in Figure 11 shows
the normalized fracture toughness ratio (KIc/KIc (SCB)) for the tested samples. This figure
reveals that the ENDB and SENB test samples can also provide nearly the same fracture
toughness results as obtained by the standard SCB testing method. However, the ENDC
test shows an underestimated evaluation for the resistance of asphalt mixture materials
against cracking compared to the standard SCB mode I test method.

The influence of test temperature on the measured KIc value is illustrated and com-
pared in Figure 12a. According to this figure, which shows the variations of KIc versus
temperature, the mode I fracture toughness value is enhanced by reducing the test tem-
perature. By decreasing the test temperature from −5 ◦C to −25 ◦C, in all specimens
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the KIc values increases by approximately 40%. As a viscoelastic material, the asphalt
binder becomes stiffer by reducing the temperature. The stiffness of a bituminous ma-
terial increases due to the reduction of temperature up to the lower performance grade
temperature of bitumen. According to the literature, the stress intensity factor increases
by increasing the stiffness or elastic modulus of bitumen [27,28,68] and consequently
such behavior can result in the increase of stiffness of the HMA mixture as well. Hence,
due to the stiffer HMA mixture at −25 ◦C compared to −5 ◦C, the enhancement of the
low-temperature crack growth resistance for asphalt mixtures is expected. Such trends
observed for the variations of fracture toughness with the temperature are also reported in
other published papers [6,15,38]. The fracture toughness ratio at two testing temperatures
(i.e., (KIc (@−25 ◦C)/KIc (@−5 ◦C))) are also shown in Figure 12b. This figure demonstrates that
a simple shift occurs in the low temperature cracking resistance of the asphalt mixtures
by changing the temperature. Indeed, the (KIc (@−25 ◦C)/KIc (@−5 ◦C)) ratio changes in a
narrow range for the tested geometries and specimens and it can be concluded that the
(KIc (@−25 ◦C)/KIc (@−5 ◦C)) ratio is approximately equal to 1.4 as shown in Figure 12b.
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Figure 11. Normalized mode I fracture toughness ratio (KIc/KIc (SCB)) for the tested samples.
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5. Conclusions

• The average fracture toughness value obtained using the ENDB, SCB, SENB and
ENDC specimens at −25 ◦C were obtained equal to 1.05, 0.99, 0.93 and 0.7 MPa

√
m,

respectively. Similarly, for −5 ◦C, the corresponding values of the average KIc for
the same mixture were 0.76, 0.73, 0.67 and 0.49 MPa

√
m, respectively. These results

demonstrate the effect of testing methods and temperature on the low temperature
fracture resistance of asphalt mixtures.

• Results obtained from the bending type samples (ENDB, SCB and SENB specimens)
were in a narrow bound and with slight differences. However, the KIc value ob-
tained from the ENDC (loaded in diametral compression) was noticeably less than
(about 25%) the results of other testing methods. It can be concluded that the type of
the applied loading (i.e., bending or compression) has more significant effect than the
shape of sample (disc or beam) on KIc value of asphalt mixtures.

• Fracture toughness results were increased by decreasing the test temperature from
−5 ◦C to −25 ◦C by about 40 percent. However, the fracture toughness ratio
(KIc (@−25 ◦C)/KIc (@−5 ◦C)) was nearly constant for the whole HMA tested samples
under mode I with different shapes and loading conditions.

• The results of the ENDB specimen were very close to the fracture toughness obtained
from the SCB specimen that is a recommended testing method by the ASTM. Therefore,
among the investigated test samples the ENDB testing method can also be recom-
mended for conducting low temperature fracture toughness test on asphalt mixtures.
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